Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bmesh_interp.c « intern « bmesh « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 82502227a9af40eec4333e363ea541392eac3d6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2007 Blender Foundation.
 * All rights reserved.
 */

/** \file
 * \ingroup bmesh
 *
 * Functions for interpolating data across the surface of a mesh.
 */

#include "MEM_guardedalloc.h"

#include "DNA_meshdata_types.h"

#include "BLI_alloca.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_memarena.h"
#include "BLI_task.h"

#include "BKE_customdata.h"
#include "BKE_multires.h"

#include "bmesh.h"
#include "intern/bmesh_private.h"

/* edge and vertex share, currently there's no need to have different logic */
static void bm_data_interp_from_elem(CustomData *data_layer,
                                     const BMElem *ele_src_1,
                                     const BMElem *ele_src_2,
                                     BMElem *ele_dst,
                                     const float fac)
{
  if (ele_src_1->head.data && ele_src_2->head.data) {
    /* first see if we can avoid interpolation */
    if (fac <= 0.0f) {
      if (ele_src_1 == ele_dst) {
        /* do nothing */
      }
      else {
        CustomData_bmesh_free_block_data(data_layer, ele_dst->head.data);
        CustomData_bmesh_copy_data(
            data_layer, data_layer, ele_src_1->head.data, &ele_dst->head.data);
      }
    }
    else if (fac >= 1.0f) {
      if (ele_src_2 == ele_dst) {
        /* do nothing */
      }
      else {
        CustomData_bmesh_free_block_data(data_layer, ele_dst->head.data);
        CustomData_bmesh_copy_data(
            data_layer, data_layer, ele_src_2->head.data, &ele_dst->head.data);
      }
    }
    else {
      const void *src[2];
      float w[2];

      src[0] = ele_src_1->head.data;
      src[1] = ele_src_2->head.data;
      w[0] = 1.0f - fac;
      w[1] = fac;
      CustomData_bmesh_interp(data_layer, src, w, NULL, 2, ele_dst->head.data);
    }
  }
}

/**
 * \brief Data, Interp From Verts
 *
 * Interpolates per-vertex data from two sources to \a v_dst
 *
 * \note This is an exact match to #BM_data_interp_from_edges
 */
void BM_data_interp_from_verts(
    BMesh *bm, const BMVert *v_src_1, const BMVert *v_src_2, BMVert *v_dst, const float fac)
{
  bm_data_interp_from_elem(
      &bm->vdata, (const BMElem *)v_src_1, (const BMElem *)v_src_2, (BMElem *)v_dst, fac);
}

/**
 * \brief Data, Interp From Edges
 *
 * Interpolates per-edge data from two sources to \a e_dst.
 *
 * \note This is an exact match to #BM_data_interp_from_verts
 */
void BM_data_interp_from_edges(
    BMesh *bm, const BMEdge *e_src_1, const BMEdge *e_src_2, BMEdge *e_dst, const float fac)
{
  bm_data_interp_from_elem(
      &bm->edata, (const BMElem *)e_src_1, (const BMElem *)e_src_2, (BMElem *)e_dst, fac);
}

/**
 * \brief Data Vert Average
 *
 * Sets all the customdata (e.g. vert, loop) associated with a vert
 * to the average of the face regions surrounding it.
 */
static void UNUSED_FUNCTION(BM_Data_Vert_Average)(BMesh *UNUSED(bm), BMFace *UNUSED(f))
{
  // BMIter iter;
}

/**
 * \brief Data Face-Vert Edge Interp
 *
 * Walks around the faces of \a e and interpolates
 * the loop data between two sources.
 */
void BM_data_interp_face_vert_edge(BMesh *bm,
                                   const BMVert *v_src_1,
                                   const BMVert *UNUSED(v_src_2),
                                   BMVert *v,
                                   BMEdge *e,
                                   const float fac)
{
  float w[2];
  BMLoop *l_v1 = NULL, *l_v = NULL, *l_v2 = NULL;
  BMLoop *l_iter = NULL;

  if (!e->l) {
    return;
  }

  w[1] = 1.0f - fac;
  w[0] = fac;

  l_iter = e->l;
  do {
    if (l_iter->v == v_src_1) {
      l_v1 = l_iter;
      l_v = l_v1->next;
      l_v2 = l_v->next;
    }
    else if (l_iter->v == v) {
      l_v1 = l_iter->next;
      l_v = l_iter;
      l_v2 = l_iter->prev;
    }

    if (!l_v1 || !l_v2) {
      return;
    }
    else {
      const void *src[2];
      src[0] = l_v1->head.data;
      src[1] = l_v2->head.data;

      CustomData_bmesh_interp(&bm->ldata, src, w, NULL, 2, l_v->head.data);
    }
  } while ((l_iter = l_iter->radial_next) != e->l);
}

/**
 * \brief Data Interp From Face
 *
 * projects target onto source, and pulls interpolated customdata from
 * source.
 *
 * \note Only handles loop customdata. multires is handled.
 */
void BM_face_interp_from_face_ex(BMesh *bm,
                                 BMFace *f_dst,
                                 const BMFace *f_src,
                                 const bool do_vertex,
                                 const void **blocks_l,
                                 const void **blocks_v,
                                 float (*cos_2d)[2],
                                 float axis_mat[3][3])
{
  BMLoop *l_iter;
  BMLoop *l_first;

  float *w = BLI_array_alloca(w, f_src->len);
  float co[2];
  int i;

  if (f_src != f_dst) {
    BM_elem_attrs_copy(bm, bm, f_src, f_dst);
  }

  /* interpolate */
  i = 0;
  l_iter = l_first = BM_FACE_FIRST_LOOP(f_dst);
  do {
    mul_v2_m3v3(co, axis_mat, l_iter->v->co);
    interp_weights_poly_v2(w, cos_2d, f_src->len, co);
    CustomData_bmesh_interp(&bm->ldata, blocks_l, w, NULL, f_src->len, l_iter->head.data);
    if (do_vertex) {
      CustomData_bmesh_interp(&bm->vdata, blocks_v, w, NULL, f_src->len, l_iter->v->head.data);
    }
  } while ((void)i++, (l_iter = l_iter->next) != l_first);
}

void BM_face_interp_from_face(BMesh *bm, BMFace *f_dst, const BMFace *f_src, const bool do_vertex)
{
  BMLoop *l_iter;
  BMLoop *l_first;

  const void **blocks_l = BLI_array_alloca(blocks_l, f_src->len);
  const void **blocks_v = do_vertex ? BLI_array_alloca(blocks_v, f_src->len) : NULL;
  float(*cos_2d)[2] = BLI_array_alloca(cos_2d, f_src->len);
  float axis_mat[3][3]; /* use normal to transform into 2d xy coords */
  int i;

  /* convert the 3d coords into 2d for projection */
  BLI_assert(BM_face_is_normal_valid(f_src));
  axis_dominant_v3_to_m3(axis_mat, f_src->no);

  i = 0;
  l_iter = l_first = BM_FACE_FIRST_LOOP(f_src);
  do {
    mul_v2_m3v3(cos_2d[i], axis_mat, l_iter->v->co);
    blocks_l[i] = l_iter->head.data;
    if (do_vertex) {
      blocks_v[i] = l_iter->v->head.data;
    }
  } while ((void)i++, (l_iter = l_iter->next) != l_first);

  BM_face_interp_from_face_ex(bm, f_dst, f_src, do_vertex, blocks_l, blocks_v, cos_2d, axis_mat);
}

/**
 * \brief Multires Interpolation
 *
 * mdisps is a grid of displacements, ordered thus:
 * <pre>
 *      v1/center----v4/next -> x
 *          |           |
 *          |           |
 *       v2/prev------v3/cur
 *          |
 *          V
 *          y
 * </pre>
 */
static int compute_mdisp_quad(const BMLoop *l,
                              const float l_f_center[3],
                              float v1[3],
                              float v2[3],
                              float v3[3],
                              float v4[3],
                              float e1[3],
                              float e2[3])
{
  float n[3], p[3];

#ifndef NDEBUG
  {
    float cent[3];
    /* computer center */
    BM_face_calc_center_median(l->f, cent);
    BLI_assert(equals_v3v3(cent, l_f_center));
  }
#endif

  mid_v3_v3v3(p, l->prev->v->co, l->v->co);
  mid_v3_v3v3(n, l->next->v->co, l->v->co);

  copy_v3_v3(v1, l_f_center);
  copy_v3_v3(v2, p);
  copy_v3_v3(v3, l->v->co);
  copy_v3_v3(v4, n);

  sub_v3_v3v3(e1, v2, v1);
  sub_v3_v3v3(e2, v3, v4);

  return 1;
}

static bool quad_co(const float v1[3],
                    const float v2[3],
                    const float v3[3],
                    const float v4[3],
                    const float p[3],
                    const float n[3],
                    float r_uv[2])
{
  float projverts[5][3], n2[3];
  float origin[2] = {0.0f, 0.0f};
  int i;

  /* project points into 2d along normal */
  copy_v3_v3(projverts[0], v1);
  copy_v3_v3(projverts[1], v2);
  copy_v3_v3(projverts[2], v3);
  copy_v3_v3(projverts[3], v4);
  copy_v3_v3(projverts[4], p);

  normal_quad_v3(n2, projverts[0], projverts[1], projverts[2], projverts[3]);

  if (dot_v3v3(n, n2) < -FLT_EPSILON) {
    return false;
  }

  /* rotate */
  poly_rotate_plane(n, projverts, 5);

  /* subtract origin */
  for (i = 0; i < 4; i++) {
    sub_v2_v2(projverts[i], projverts[4]);
  }

  if (!isect_point_quad_v2(origin, projverts[0], projverts[1], projverts[2], projverts[3])) {
    return false;
  }

  resolve_quad_uv_v2(r_uv, origin, projverts[0], projverts[3], projverts[2], projverts[1]);

  return true;
}

static void mdisp_axis_from_quad(float v1[3],
                                 const float v2[3],
                                 float UNUSED(v3[3]),
                                 const float v4[3],
                                 float r_axis_x[3],
                                 float r_axis_y[3])
{
  sub_v3_v3v3(r_axis_x, v4, v1);
  sub_v3_v3v3(r_axis_y, v2, v1);

  normalize_v3(r_axis_x);
  normalize_v3(r_axis_y);
}

/* tl is loop to project onto, l is loop whose internal displacement, co, is being
 * projected.  x and y are location in loop's mdisps grid of point co. */
static bool mdisp_in_mdispquad(BMLoop *l_src,
                               BMLoop *l_dst,
                               const float l_dst_f_center[3],
                               const float p[3],
                               int res,
                               float r_axis_x[3],
                               float r_axis_y[3],
                               float r_uv[2])
{
  float v1[3], v2[3], c[3], v3[3], v4[3], e1[3], e2[3];
  float eps = FLT_EPSILON * 4000;

  if (is_zero_v3(l_src->v->no)) {
    BM_vert_normal_update_all(l_src->v);
  }
  if (is_zero_v3(l_dst->v->no)) {
    BM_vert_normal_update_all(l_dst->v);
  }

  compute_mdisp_quad(l_dst, l_dst_f_center, v1, v2, v3, v4, e1, e2);

  /* expand quad a bit */
  mid_v3_v3v3v3v3(c, v1, v2, v3, v4);

  sub_v3_v3(v1, c);
  sub_v3_v3(v2, c);
  sub_v3_v3(v3, c);
  sub_v3_v3(v4, c);
  mul_v3_fl(v1, 1.0f + eps);
  mul_v3_fl(v2, 1.0f + eps);
  mul_v3_fl(v3, 1.0f + eps);
  mul_v3_fl(v4, 1.0f + eps);
  add_v3_v3(v1, c);
  add_v3_v3(v2, c);
  add_v3_v3(v3, c);
  add_v3_v3(v4, c);

  if (!quad_co(v1, v2, v3, v4, p, l_src->v->no, r_uv)) {
    return 0;
  }

  mul_v2_fl(r_uv, (float)(res - 1));

  mdisp_axis_from_quad(v1, v2, v3, v4, r_axis_x, r_axis_y);

  return 1;
}

static float bm_loop_flip_equotion(float mat[2][2],
                                   float b[2],
                                   const float target_axis_x[3],
                                   const float target_axis_y[3],
                                   const float coord[3],
                                   int i,
                                   int j)
{
  mat[0][0] = target_axis_x[i];
  mat[0][1] = target_axis_y[i];
  mat[1][0] = target_axis_x[j];
  mat[1][1] = target_axis_y[j];
  b[0] = coord[i];
  b[1] = coord[j];

  return cross_v2v2(mat[0], mat[1]);
}

static void bm_loop_flip_disp(const float source_axis_x[3],
                              const float source_axis_y[3],
                              const float target_axis_x[3],
                              const float target_axis_y[3],
                              float disp[3])
{
  float vx[3], vy[3], coord[3];
  float n[3], vec[3];
  float b[2], mat[2][2], d;

  mul_v3_v3fl(vx, source_axis_x, disp[0]);
  mul_v3_v3fl(vy, source_axis_y, disp[1]);
  add_v3_v3v3(coord, vx, vy);

  /* project displacement from source grid plane onto target grid plane */
  cross_v3_v3v3(n, target_axis_x, target_axis_y);
  project_v3_v3v3(vec, coord, n);
  sub_v3_v3v3(coord, coord, vec);

  d = bm_loop_flip_equotion(mat, b, target_axis_x, target_axis_y, coord, 0, 1);

  if (fabsf(d) < 1e-4f) {
    d = bm_loop_flip_equotion(mat, b, target_axis_x, target_axis_y, coord, 0, 2);
    if (fabsf(d) < 1e-4f) {
      d = bm_loop_flip_equotion(mat, b, target_axis_x, target_axis_y, coord, 1, 2);
    }
  }

  disp[0] = (b[0] * mat[1][1] - mat[0][1] * b[1]) / d;
  disp[1] = (mat[0][0] * b[1] - b[0] * mat[1][0]) / d;
}

typedef struct BMLoopInterpMultiresData {
  BMLoop *l_dst;
  BMLoop *l_src_first;
  int cd_loop_mdisp_offset;

  MDisps *md_dst;
  const float *f_src_center;

  float *axis_x, *axis_y;
  float *v1, *v4;
  float *e1, *e2;

  int res;
  float d;
} BMLoopInterpMultiresData;

static void loop_interp_multires_cb(void *__restrict userdata,
                                    const int ix,
                                    const TaskParallelTLS *__restrict UNUSED(tls))
{
  BMLoopInterpMultiresData *data = userdata;

  BMLoop *l_first = data->l_src_first;
  BMLoop *l_dst = data->l_dst;
  const int cd_loop_mdisp_offset = data->cd_loop_mdisp_offset;

  MDisps *md_dst = data->md_dst;
  const float *f_src_center = data->f_src_center;

  float *axis_x = data->axis_x;
  float *axis_y = data->axis_y;

  float *v1 = data->v1;
  float *v4 = data->v4;
  float *e1 = data->e1;
  float *e2 = data->e2;

  const int res = data->res;
  const float d = data->d;

  float x = d * ix, y;
  int iy;
  for (y = 0.0f, iy = 0; iy < res; y += d, iy++) {
    BMLoop *l_iter = l_first;
    float co1[3], co2[3], co[3];

    madd_v3_v3v3fl(co1, v1, e1, y);
    madd_v3_v3v3fl(co2, v4, e2, y);
    interp_v3_v3v3(co, co1, co2, x);

    do {
      MDisps *md_src;
      float src_axis_x[3], src_axis_y[3];
      float uv[2];

      md_src = BM_ELEM_CD_GET_VOID_P(l_iter, cd_loop_mdisp_offset);

      if (mdisp_in_mdispquad(l_dst, l_iter, f_src_center, co, res, src_axis_x, src_axis_y, uv)) {
        old_mdisps_bilinear(md_dst->disps[iy * res + ix], md_src->disps, res, uv[0], uv[1]);
        bm_loop_flip_disp(src_axis_x, src_axis_y, axis_x, axis_y, md_dst->disps[iy * res + ix]);

        break;
      }
    } while ((l_iter = l_iter->next) != l_first);
  }
}

void BM_loop_interp_multires_ex(BMesh *UNUSED(bm),
                                BMLoop *l_dst,
                                const BMFace *f_src,
                                const float f_dst_center[3],
                                const float f_src_center[3],
                                const int cd_loop_mdisp_offset)
{
  MDisps *md_dst;
  float v1[3], v2[3], v3[3], v4[3] = {0.0f, 0.0f, 0.0f}, e1[3], e2[3];
  float axis_x[3], axis_y[3];

  /* ignore 2-edged faces */
  if (UNLIKELY(l_dst->f->len < 3)) {
    return;
  }

  md_dst = BM_ELEM_CD_GET_VOID_P(l_dst, cd_loop_mdisp_offset);
  compute_mdisp_quad(l_dst, f_dst_center, v1, v2, v3, v4, e1, e2);

  /* if no disps data allocate a new grid, the size of the first grid in f_src. */
  if (!md_dst->totdisp) {
    const MDisps *md_src = BM_ELEM_CD_GET_VOID_P(BM_FACE_FIRST_LOOP(f_src), cd_loop_mdisp_offset);

    md_dst->totdisp = md_src->totdisp;
    md_dst->level = md_src->level;
    if (md_dst->totdisp) {
      md_dst->disps = MEM_callocN(sizeof(float) * 3 * md_dst->totdisp, __func__);
    }
    else {
      return;
    }
  }

  mdisp_axis_from_quad(v1, v2, v3, v4, axis_x, axis_y);

  const int res = (int)sqrt(md_dst->totdisp);
  BMLoopInterpMultiresData data = {
      .l_dst = l_dst,
      .l_src_first = BM_FACE_FIRST_LOOP(f_src),
      .cd_loop_mdisp_offset = cd_loop_mdisp_offset,
      .md_dst = md_dst,
      .f_src_center = f_src_center,
      .axis_x = axis_x,
      .axis_y = axis_y,
      .v1 = v1,
      .v4 = v4,
      .e1 = e1,
      .e2 = e2,
      .res = res,
      .d = 1.0f / (float)(res - 1),
  };
  TaskParallelSettings settings;
  BLI_parallel_range_settings_defaults(&settings);
  settings.use_threading = (res > 5);
  BLI_task_parallel_range(0, res, &data, loop_interp_multires_cb, &settings);
}

/**
 * project the multires grid in target onto f_src's set of multires grids
 */
void BM_loop_interp_multires(BMesh *bm, BMLoop *l_dst, const BMFace *f_src)
{
  const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);

  if (cd_loop_mdisp_offset != -1) {
    float f_dst_center[3];
    float f_src_center[3];

    BM_face_calc_center_median(l_dst->f, f_dst_center);
    BM_face_calc_center_median(f_src, f_src_center);

    BM_loop_interp_multires_ex(bm, l_dst, f_src, f_dst_center, f_src_center, cd_loop_mdisp_offset);
  }
}

void BM_face_interp_multires_ex(BMesh *bm,
                                BMFace *f_dst,
                                const BMFace *f_src,
                                const float f_dst_center[3],
                                const float f_src_center[3],
                                const int cd_loop_mdisp_offset)
{
  BMLoop *l_iter, *l_first;
  l_iter = l_first = BM_FACE_FIRST_LOOP(f_dst);
  do {
    BM_loop_interp_multires_ex(
        bm, l_iter, f_src, f_dst_center, f_src_center, cd_loop_mdisp_offset);
  } while ((l_iter = l_iter->next) != l_first);
}

void BM_face_interp_multires(BMesh *bm, BMFace *f_dst, const BMFace *f_src)
{
  const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);

  if (cd_loop_mdisp_offset != -1) {
    float f_dst_center[3];
    float f_src_center[3];

    BM_face_calc_center_median(f_dst, f_dst_center);
    BM_face_calc_center_median(f_src, f_src_center);

    BM_face_interp_multires_ex(bm, f_dst, f_src, f_dst_center, f_src_center, cd_loop_mdisp_offset);
  }
}

/**
 * smooths boundaries between multires grids,
 * including some borders in adjacent faces
 */
void BM_face_multires_bounds_smooth(BMesh *bm, BMFace *f)
{
  const int cd_loop_mdisp_offset = CustomData_get_offset(&bm->ldata, CD_MDISPS);
  BMLoop *l;
  BMIter liter;

  if (cd_loop_mdisp_offset == -1) {
    return;
  }

  BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
    MDisps *mdp = BM_ELEM_CD_GET_VOID_P(l->prev, cd_loop_mdisp_offset);
    MDisps *mdl = BM_ELEM_CD_GET_VOID_P(l, cd_loop_mdisp_offset);
    MDisps *mdn = BM_ELEM_CD_GET_VOID_P(l->next, cd_loop_mdisp_offset);
    float co1[3];
    int sides;
    int y;

    /**
     * mdisps is a grid of displacements, ordered thus:
     * <pre>
     *                    v4/next
     *                      |
     *  |      v1/cent-----mid2 ---> x
     *  |         |         |
     *  |         |         |
     * v2/prev---mid1-----v3/cur
     *            |
     *            V
     *            y
     * </pre>
     */

    sides = (int)sqrt(mdp->totdisp);
    for (y = 0; y < sides; y++) {
      mid_v3_v3v3(co1, mdn->disps[y * sides], mdl->disps[y]);

      copy_v3_v3(mdn->disps[y * sides], co1);
      copy_v3_v3(mdl->disps[y], co1);
    }
  }

  BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
    MDisps *mdl1 = BM_ELEM_CD_GET_VOID_P(l, cd_loop_mdisp_offset);
    MDisps *mdl2;
    float co1[3], co2[3], co[3];
    int sides;
    int y;

    /**
     * mdisps is a grid of displacements, ordered thus:
     * <pre>
     *                    v4/next
     *                      |
     *  |      v1/cent-----mid2 ---> x
     *  |         |         |
     *  |         |         |
     * v2/prev---mid1-----v3/cur
     *            |
     *            V
     *            y
     * </pre>
     */

    if (l->radial_next == l) {
      continue;
    }

    if (l->radial_next->v == l->v) {
      mdl2 = BM_ELEM_CD_GET_VOID_P(l->radial_next, cd_loop_mdisp_offset);
    }
    else {
      mdl2 = BM_ELEM_CD_GET_VOID_P(l->radial_next->next, cd_loop_mdisp_offset);
    }

    sides = (int)sqrt(mdl1->totdisp);
    for (y = 0; y < sides; y++) {
      int a1, a2, o1, o2;

      if (l->v != l->radial_next->v) {
        a1 = sides * y + sides - 2;
        a2 = (sides - 2) * sides + y;

        o1 = sides * y + sides - 1;
        o2 = (sides - 1) * sides + y;
      }
      else {
        a1 = sides * y + sides - 2;
        a2 = sides * y + sides - 2;
        o1 = sides * y + sides - 1;
        o2 = sides * y + sides - 1;
      }

      /* magic blending numbers, hardcoded! */
      add_v3_v3v3(co1, mdl1->disps[a1], mdl2->disps[a2]);
      mul_v3_fl(co1, 0.18);

      add_v3_v3v3(co2, mdl1->disps[o1], mdl2->disps[o2]);
      mul_v3_fl(co2, 0.32);

      add_v3_v3v3(co, co1, co2);

      copy_v3_v3(mdl1->disps[o1], co);
      copy_v3_v3(mdl2->disps[o2], co);
    }
  }
}

/**
 * projects a single loop, target, onto f_src for customdata interpolation. multires is handled.
 * if do_vertex is true, target's vert data will also get interpolated.
 */
void BM_loop_interp_from_face(
    BMesh *bm, BMLoop *l_dst, const BMFace *f_src, const bool do_vertex, const bool do_multires)
{
  BMLoop *l_iter;
  BMLoop *l_first;
  const void **vblocks = do_vertex ? BLI_array_alloca(vblocks, f_src->len) : NULL;
  const void **blocks = BLI_array_alloca(blocks, f_src->len);
  float(*cos_2d)[2] = BLI_array_alloca(cos_2d, f_src->len);
  float *w = BLI_array_alloca(w, f_src->len);
  float axis_mat[3][3]; /* use normal to transform into 2d xy coords */
  float co[2];
  int i;

  /* Convert the 3d coords into 2d for projection. */
  float axis_dominant[3];
  if (!is_zero_v3(f_src->no)) {
    BLI_assert(BM_face_is_normal_valid(f_src));
    copy_v3_v3(axis_dominant, f_src->no);
  }
  else {
    /* Rare case in which all the vertices of the face are aligned.
     * Get a random axis that is orthogonal to the tangent. */
    float vec[3];
    BM_face_calc_tangent_auto(f_src, vec);
    ortho_v3_v3(axis_dominant, vec);
    normalize_v3(axis_dominant);
  }
  axis_dominant_v3_to_m3(axis_mat, axis_dominant);

  i = 0;
  l_iter = l_first = BM_FACE_FIRST_LOOP(f_src);
  do {
    mul_v2_m3v3(cos_2d[i], axis_mat, l_iter->v->co);
    blocks[i] = l_iter->head.data;

    if (do_vertex) {
      vblocks[i] = l_iter->v->head.data;
    }
  } while ((void)i++, (l_iter = l_iter->next) != l_first);

  mul_v2_m3v3(co, axis_mat, l_dst->v->co);

  /* interpolate */
  interp_weights_poly_v2(w, cos_2d, f_src->len, co);
  CustomData_bmesh_interp(&bm->ldata, blocks, w, NULL, f_src->len, l_dst->head.data);
  if (do_vertex) {
    CustomData_bmesh_interp(&bm->vdata, vblocks, w, NULL, f_src->len, l_dst->v->head.data);
  }

  if (do_multires) {
    BM_loop_interp_multires(bm, l_dst, f_src);
  }
}

void BM_vert_interp_from_face(BMesh *bm, BMVert *v_dst, const BMFace *f_src)
{
  BMLoop *l_iter;
  BMLoop *l_first;
  const void **blocks = BLI_array_alloca(blocks, f_src->len);
  float(*cos_2d)[2] = BLI_array_alloca(cos_2d, f_src->len);
  float *w = BLI_array_alloca(w, f_src->len);
  float axis_mat[3][3]; /* use normal to transform into 2d xy coords */
  float co[2];
  int i;

  /* convert the 3d coords into 2d for projection */
  BLI_assert(BM_face_is_normal_valid(f_src));
  axis_dominant_v3_to_m3(axis_mat, f_src->no);

  i = 0;
  l_iter = l_first = BM_FACE_FIRST_LOOP(f_src);
  do {
    mul_v2_m3v3(cos_2d[i], axis_mat, l_iter->v->co);
    blocks[i] = l_iter->v->head.data;
  } while ((void)i++, (l_iter = l_iter->next) != l_first);

  mul_v2_m3v3(co, axis_mat, v_dst->co);

  /* interpolate */
  interp_weights_poly_v2(w, cos_2d, f_src->len, co);
  CustomData_bmesh_interp(&bm->vdata, blocks, w, NULL, f_src->len, v_dst->head.data);
}

static void update_data_blocks(BMesh *bm, CustomData *olddata, CustomData *data)
{
  BMIter iter;
  BLI_mempool *oldpool = olddata->pool;
  void *block;

  if (data == &bm->vdata) {
    BMVert *eve;

    CustomData_bmesh_init_pool(data, bm->totvert, BM_VERT);

    BM_ITER_MESH (eve, &iter, bm, BM_VERTS_OF_MESH) {
      block = NULL;
      CustomData_bmesh_set_default(data, &block);
      CustomData_bmesh_copy_data(olddata, data, eve->head.data, &block);
      CustomData_bmesh_free_block(olddata, &eve->head.data);
      eve->head.data = block;
    }
  }
  else if (data == &bm->edata) {
    BMEdge *eed;

    CustomData_bmesh_init_pool(data, bm->totedge, BM_EDGE);

    BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) {
      block = NULL;
      CustomData_bmesh_set_default(data, &block);
      CustomData_bmesh_copy_data(olddata, data, eed->head.data, &block);
      CustomData_bmesh_free_block(olddata, &eed->head.data);
      eed->head.data = block;
    }
  }
  else if (data == &bm->ldata) {
    BMIter liter;
    BMFace *efa;
    BMLoop *l;

    CustomData_bmesh_init_pool(data, bm->totloop, BM_LOOP);
    BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
      BM_ITER_ELEM (l, &liter, efa, BM_LOOPS_OF_FACE) {
        block = NULL;
        CustomData_bmesh_set_default(data, &block);
        CustomData_bmesh_copy_data(olddata, data, l->head.data, &block);
        CustomData_bmesh_free_block(olddata, &l->head.data);
        l->head.data = block;
      }
    }
  }
  else if (data == &bm->pdata) {
    BMFace *efa;

    CustomData_bmesh_init_pool(data, bm->totface, BM_FACE);

    BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
      block = NULL;
      CustomData_bmesh_set_default(data, &block);
      CustomData_bmesh_copy_data(olddata, data, efa->head.data, &block);
      CustomData_bmesh_free_block(olddata, &efa->head.data);
      efa->head.data = block;
    }
  }
  else {
    /* should never reach this! */
    BLI_assert(0);
  }

  if (oldpool) {
    /* this should never happen but can when dissolve fails - [#28960] */
    BLI_assert(data->pool != oldpool);

    BLI_mempool_destroy(oldpool);
  }
}

void BM_data_layer_add(BMesh *bm, CustomData *data, int type)
{
  CustomData olddata;

  olddata = *data;
  olddata.layers = (olddata.layers) ? MEM_dupallocN(olddata.layers) : NULL;

  /* the pool is now owned by olddata and must not be shared */
  data->pool = NULL;

  CustomData_add_layer(data, type, CD_DEFAULT, NULL, 0);

  update_data_blocks(bm, &olddata, data);
  if (olddata.layers) {
    MEM_freeN(olddata.layers);
  }
}

void BM_data_layer_add_named(BMesh *bm, CustomData *data, int type, const char *name)
{
  CustomData olddata;

  olddata = *data;
  olddata.layers = (olddata.layers) ? MEM_dupallocN(olddata.layers) : NULL;

  /* the pool is now owned by olddata and must not be shared */
  data->pool = NULL;

  CustomData_add_layer_named(data, type, CD_DEFAULT, NULL, 0, name);

  update_data_blocks(bm, &olddata, data);
  if (olddata.layers) {
    MEM_freeN(olddata.layers);
  }
}

void BM_data_layer_free(BMesh *bm, CustomData *data, int type)
{
  CustomData olddata;
  bool has_layer;

  olddata = *data;
  olddata.layers = (olddata.layers) ? MEM_dupallocN(olddata.layers) : NULL;

  /* the pool is now owned by olddata and must not be shared */
  data->pool = NULL;

  has_layer = CustomData_free_layer_active(data, type, 0);
  /* assert because its expensive to realloc - better not do if layer isnt present */
  BLI_assert(has_layer != false);
  UNUSED_VARS_NDEBUG(has_layer);

  update_data_blocks(bm, &olddata, data);
  if (olddata.layers) {
    MEM_freeN(olddata.layers);
  }
}

void BM_data_layer_free_n(BMesh *bm, CustomData *data, int type, int n)
{
  CustomData olddata;
  bool has_layer;

  olddata = *data;
  olddata.layers = (olddata.layers) ? MEM_dupallocN(olddata.layers) : NULL;

  /* the pool is now owned by olddata and must not be shared */
  data->pool = NULL;

  has_layer = CustomData_free_layer(data, type, 0, CustomData_get_layer_index_n(data, type, n));
  /* assert because its expensive to realloc - better not do if layer isnt present */
  BLI_assert(has_layer != false);
  UNUSED_VARS_NDEBUG(has_layer);

  update_data_blocks(bm, &olddata, data);
  if (olddata.layers) {
    MEM_freeN(olddata.layers);
  }
}

void BM_data_layer_copy(BMesh *bm, CustomData *data, int type, int src_n, int dst_n)
{
  BMIter iter;

  if (&bm->vdata == data) {
    BMVert *eve;

    BM_ITER_MESH (eve, &iter, bm, BM_VERTS_OF_MESH) {
      void *ptr = CustomData_bmesh_get_n(data, eve->head.data, type, src_n);
      CustomData_bmesh_set_n(data, eve->head.data, type, dst_n, ptr);
    }
  }
  else if (&bm->edata == data) {
    BMEdge *eed;

    BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) {
      void *ptr = CustomData_bmesh_get_n(data, eed->head.data, type, src_n);
      CustomData_bmesh_set_n(data, eed->head.data, type, dst_n, ptr);
    }
  }
  else if (&bm->pdata == data) {
    BMFace *efa;

    BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
      void *ptr = CustomData_bmesh_get_n(data, efa->head.data, type, src_n);
      CustomData_bmesh_set_n(data, efa->head.data, type, dst_n, ptr);
    }
  }
  else if (&bm->ldata == data) {
    BMIter liter;
    BMFace *efa;
    BMLoop *l;

    BM_ITER_MESH (efa, &iter, bm, BM_FACES_OF_MESH) {
      BM_ITER_ELEM (l, &liter, efa, BM_LOOPS_OF_FACE) {
        void *ptr = CustomData_bmesh_get_n(data, l->head.data, type, src_n);
        CustomData_bmesh_set_n(data, l->head.data, type, dst_n, ptr);
      }
    }
  }
  else {
    /* should never reach this! */
    BLI_assert(0);
  }
}

float BM_elem_float_data_get(CustomData *cd, void *element, int type)
{
  const float *f = CustomData_bmesh_get(cd, ((BMHeader *)element)->data, type);
  return f ? *f : 0.0f;
}

void BM_elem_float_data_set(CustomData *cd, void *element, int type, const float val)
{
  float *f = CustomData_bmesh_get(cd, ((BMHeader *)element)->data, type);
  if (f) {
    *f = val;
  }
}

/** \name Loop interpolation functions: BM_vert_loop_groups_data_layer_***
 *
 * Handling loop custom-data such as UV's, while keeping contiguous fans is rather tedious.
 * Especially when a verts loops can have multiple CustomData layers,
 * and each layer can have multiple (different) contiguous fans.
 * Said differently, a single vertices loops may span multiple UV islands.
 *
 * These functions snapshot vertices loops, storing each contiguous fan in its own group.
 * The caller can manipulate the loops, then re-combine the CustomData values.
 *
 * While these functions don't explicitly handle multiple layers at once,
 * the caller can simply store its own list.
 *
 * \note Currently they are averaged back together (weighted by loop angle)
 * but we could copy add other methods to re-combine CustomData-Loop-Fans.
 *
 * \{ */

struct LoopWalkCtx {
  /* same for all groups */
  int type;
  int cd_layer_offset;
  const float *loop_weights;
  MemArena *arena;

  /* --- Per loop fan vars --- */

  /* reference for this contiguous fan */
  const void *data_ref;
  int data_len;

  /* accumulate 'LoopGroupCD.weight' to make unit length */
  float weight_accum;

  /* both arrays the size of the 'BM_vert_face_count(v)'
   * each contiguous fan gets a slide of these arrays */
  void **data_array;
  int *data_index_array;
  float *weight_array;
};

/* Store vars to pass into 'CustomData_bmesh_interp' */
struct LoopGroupCD {
  /* direct customdata pointer array */
  void **data;
  /* weights (aligned with 'data') */
  float *data_weights;
  /* index-in-face */
  int *data_index;
  /* number of loops in the fan */
  int data_len;
};

static void bm_loop_walk_add(struct LoopWalkCtx *lwc, BMLoop *l)
{
  const int i = BM_elem_index_get(l);
  const float w = lwc->loop_weights[i];
  BM_elem_flag_disable(l, BM_ELEM_INTERNAL_TAG);
  lwc->data_array[lwc->data_len] = BM_ELEM_CD_GET_VOID_P(l, lwc->cd_layer_offset);
  lwc->data_index_array[lwc->data_len] = i;
  lwc->weight_array[lwc->data_len] = w;
  lwc->weight_accum += w;

  lwc->data_len += 1;
}

/**
 * called recursively, keep stack-usage minimal.
 *
 * \note called for fan matching so we're pretty much safe not to break the stack
 */
static void bm_loop_walk_data(struct LoopWalkCtx *lwc, BMLoop *l_walk)
{
  int i;

  BLI_assert(CustomData_data_equals(
      lwc->type, lwc->data_ref, BM_ELEM_CD_GET_VOID_P(l_walk, lwc->cd_layer_offset)));
  BLI_assert(BM_elem_flag_test(l_walk, BM_ELEM_INTERNAL_TAG));

  bm_loop_walk_add(lwc, l_walk);

  /* recurse around this loop-fan (in both directions) */
  for (i = 0; i < 2; i++) {
    BMLoop *l_other = ((i == 0) ? l_walk : l_walk->prev)->radial_next;
    if (l_other->radial_next != l_other) {
      if (l_other->v != l_walk->v) {
        l_other = l_other->next;
      }
      BLI_assert(l_other->v == l_walk->v);
      if (BM_elem_flag_test(l_other, BM_ELEM_INTERNAL_TAG)) {
        if (CustomData_data_equals(
                lwc->type, lwc->data_ref, BM_ELEM_CD_GET_VOID_P(l_other, lwc->cd_layer_offset))) {
          bm_loop_walk_data(lwc, l_other);
        }
      }
    }
  }
}

LinkNode *BM_vert_loop_groups_data_layer_create(
    BMesh *bm, BMVert *v, const int layer_n, const float *loop_weights, MemArena *arena)
{
  struct LoopWalkCtx lwc;
  LinkNode *groups = NULL;
  BMLoop *l;
  BMIter liter;
  int loop_num;

  lwc.type = bm->ldata.layers[layer_n].type;
  lwc.cd_layer_offset = bm->ldata.layers[layer_n].offset;
  lwc.loop_weights = loop_weights;
  lwc.arena = arena;

  /* Enable 'BM_ELEM_INTERNAL_TAG', leaving the flag clean on completion. */
  loop_num = 0;
  BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
    BM_elem_flag_enable(l, BM_ELEM_INTERNAL_TAG);
    BM_elem_index_set(l, loop_num); /* set_dirty! */
    loop_num++;
  }
  bm->elem_index_dirty |= BM_LOOP;

  lwc.data_len = 0;
  lwc.data_array = BLI_memarena_alloc(lwc.arena, sizeof(void *) * loop_num);
  lwc.data_index_array = BLI_memarena_alloc(lwc.arena, sizeof(int) * loop_num);
  lwc.weight_array = BLI_memarena_alloc(lwc.arena, sizeof(float) * loop_num);

  BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
    if (BM_elem_flag_test(l, BM_ELEM_INTERNAL_TAG)) {
      struct LoopGroupCD *lf = BLI_memarena_alloc(lwc.arena, sizeof(*lf));
      int len_prev = lwc.data_len;

      lwc.data_ref = BM_ELEM_CD_GET_VOID_P(l, lwc.cd_layer_offset);

      /* assign len-last */
      lf->data = &lwc.data_array[lwc.data_len];
      lf->data_index = &lwc.data_index_array[lwc.data_len];
      lf->data_weights = &lwc.weight_array[lwc.data_len];
      lwc.weight_accum = 0.0f;

      /* new group */
      bm_loop_walk_data(&lwc, l);
      lf->data_len = lwc.data_len - len_prev;

      if (LIKELY(lwc.weight_accum != 0.0f)) {
        mul_vn_fl(lf->data_weights, lf->data_len, 1.0f / lwc.weight_accum);
      }
      else {
        copy_vn_fl(lf->data_weights, lf->data_len, 1.0f / (float)lf->data_len);
      }

      BLI_linklist_prepend_arena(&groups, lf, lwc.arena);
    }
  }

  BLI_assert(lwc.data_len == loop_num);

  return groups;
}

static void bm_vert_loop_groups_data_layer_merge__single(BMesh *bm,
                                                         void *lf_p,
                                                         int layer_n,
                                                         void *data_tmp)
{
  struct LoopGroupCD *lf = lf_p;
  const int type = bm->ldata.layers[layer_n].type;
  int i;
  const float *data_weights;

  data_weights = lf->data_weights;

  CustomData_bmesh_interp_n(
      &bm->ldata, (const void **)lf->data, data_weights, NULL, lf->data_len, data_tmp, layer_n);

  for (i = 0; i < lf->data_len; i++) {
    CustomData_copy_elements(type, data_tmp, lf->data[i], 1);
  }
}

static void bm_vert_loop_groups_data_layer_merge_weights__single(
    BMesh *bm, void *lf_p, const int layer_n, void *data_tmp, const float *loop_weights)
{
  struct LoopGroupCD *lf = lf_p;
  const int type = bm->ldata.layers[layer_n].type;
  int i;
  const float *data_weights;

  /* re-weight */
  float *temp_weights = BLI_array_alloca(temp_weights, lf->data_len);
  float weight_accum = 0.0f;

  for (i = 0; i < lf->data_len; i++) {
    float w = loop_weights[lf->data_index[i]] * lf->data_weights[i];
    temp_weights[i] = w;
    weight_accum += w;
  }

  if (LIKELY(weight_accum != 0.0f)) {
    mul_vn_fl(temp_weights, lf->data_len, 1.0f / weight_accum);
    data_weights = temp_weights;
  }
  else {
    data_weights = lf->data_weights;
  }

  CustomData_bmesh_interp_n(
      &bm->ldata, (const void **)lf->data, data_weights, NULL, lf->data_len, data_tmp, layer_n);

  for (i = 0; i < lf->data_len; i++) {
    CustomData_copy_elements(type, data_tmp, lf->data[i], 1);
  }
}

/**
 * Take existing custom data and merge each fan's data.
 */
void BM_vert_loop_groups_data_layer_merge(BMesh *bm, LinkNode *groups, const int layer_n)
{
  const int type = bm->ldata.layers[layer_n].type;
  const int size = CustomData_sizeof(type);
  void *data_tmp = alloca(size);

  do {
    bm_vert_loop_groups_data_layer_merge__single(bm, groups->link, layer_n, data_tmp);
  } while ((groups = groups->next));
}

/**
 * A version of #BM_vert_loop_groups_data_layer_merge
 * that takes an array of loop-weights (aligned with #BM_LOOPS_OF_VERT iterator)
 */
void BM_vert_loop_groups_data_layer_merge_weights(BMesh *bm,
                                                  LinkNode *groups,
                                                  const int layer_n,
                                                  const float *loop_weights)
{
  const int type = bm->ldata.layers[layer_n].type;
  const int size = CustomData_sizeof(type);
  void *data_tmp = alloca(size);

  do {
    bm_vert_loop_groups_data_layer_merge_weights__single(
        bm, groups->link, layer_n, data_tmp, loop_weights);
  } while ((groups = groups->next));
}

/** \} */