Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bmesh_mesh_normals.c « intern « bmesh « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a3eae6dabe8c10dfcc25c8062cfe9191230a45f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/** \file
 * \ingroup bmesh
 *
 * BM mesh normal calculation functions.
 */

#include "MEM_guardedalloc.h"

#include "DNA_scene_types.h"

#include "BLI_bitmap.h"
#include "BLI_linklist_stack.h"
#include "BLI_math.h"
#include "BLI_stack.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"

#include "BKE_editmesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"

#include "intern/bmesh_private.h"

/* -------------------------------------------------------------------- */
/** \name Update Vertex & Face Normals
 * \{ */

/**
 * Helpers for #BM_mesh_normals_update and #BM_verts_calc_normal_vcos
 */

/* We use that existing internal API flag,
 * assuming no other tool using it would run concurrently to clnors editing. */
#define BM_LNORSPACE_UPDATE _FLAG_MF

typedef struct BMEdgesCalcVectorsData {
  /* Read-only data. */
  const float (*vcos)[3];

  /* Read-write data, but no need to protect it, no concurrency to fear here. */
  float (*edgevec)[3];
} BMEdgesCalcVectorsData;

static void bm_edge_calc_vectors_cb(void *userdata,
                                    MempoolIterData *mp_e,
                                    const TaskParallelTLS *__restrict UNUSED(tls))
{
  BMEdge *e = (BMEdge *)mp_e;
  /* The edge vector will not be needed when the edge has no radial. */
  if (e->l != NULL) {
    float(*edgevec)[3] = userdata;
    float *e_diff = edgevec[BM_elem_index_get(e)];
    sub_v3_v3v3(e_diff, e->v2->co, e->v1->co);
    normalize_v3(e_diff);
  }
}

static void bm_edge_calc_vectors_with_coords_cb(void *userdata,
                                                MempoolIterData *mp_e,
                                                const TaskParallelTLS *__restrict UNUSED(tls))
{
  BMEdge *e = (BMEdge *)mp_e;
  /* The edge vector will not be needed when the edge has no radial. */
  if (e->l != NULL) {
    BMEdgesCalcVectorsData *data = userdata;
    float *e_diff = data->edgevec[BM_elem_index_get(e)];
    sub_v3_v3v3(
        e_diff, data->vcos[BM_elem_index_get(e->v2)], data->vcos[BM_elem_index_get(e->v1)]);
    normalize_v3(e_diff);
  }
}

static void bm_mesh_edges_calc_vectors(BMesh *bm, float (*edgevec)[3], const float (*vcos)[3])
{
  BM_mesh_elem_index_ensure(bm, BM_EDGE | (vcos ? BM_VERT : 0));

  TaskParallelSettings settings;
  BLI_parallel_mempool_settings_defaults(&settings);
  settings.use_threading = bm->totedge >= BM_OMP_LIMIT;

  if (vcos == NULL) {
    BM_iter_parallel(bm, BM_EDGES_OF_MESH, bm_edge_calc_vectors_cb, edgevec, &settings);
  }
  else {
    BMEdgesCalcVectorsData data = {
        .edgevec = edgevec,
        .vcos = vcos,
    };
    BM_iter_parallel(bm, BM_EDGES_OF_MESH, bm_edge_calc_vectors_with_coords_cb, &data, &settings);
  }
}

typedef struct BMVertsCalcNormalsWithCoordsData {
  /* Read-only data. */
  const float (*fnos)[3];
  const float (*edgevec)[3];
  const float (*vcos)[3];

  /* Write data. */
  float (*vnos)[3];
} BMVertsCalcNormalsWithCoordsData;

BLI_INLINE void bm_vert_calc_normals_accum_loop(const BMLoop *l_iter,
                                                const float (*edgevec)[3],
                                                const float f_no[3],
                                                float v_no[3])
{
  /* Calculate the dot product of the two edges that meet at the loop's vertex. */
  const float *e1diff = edgevec[BM_elem_index_get(l_iter->prev->e)];
  const float *e2diff = edgevec[BM_elem_index_get(l_iter->e)];
  /* Edge vectors are calculated from e->v1 to e->v2, so adjust the dot product if one but not
   * both loops actually runs from from e->v2 to e->v1. */
  float dotprod = dot_v3v3(e1diff, e2diff);
  if ((l_iter->prev->e->v1 == l_iter->prev->v) ^ (l_iter->e->v1 == l_iter->v)) {
    dotprod = -dotprod;
  }
  const float fac = saacos(-dotprod);
  /* NAN detection, otherwise this is a degenerated case, ignore that vertex in this case. */
  if (fac == fac) { /* NAN detection. */
    madd_v3_v3fl(v_no, f_no, fac);
  }
}

static void bm_vert_calc_normals_impl(const float (*edgevec)[3], BMVert *v)
{
  float *v_no = v->no;
  zero_v3(v_no);
  BMEdge *e_first = v->e;
  if (e_first != NULL) {
    BMEdge *e_iter = e_first;
    do {
      BMLoop *l_first = e_iter->l;
      if (l_first != NULL) {
        BMLoop *l_iter = l_first;
        do {
          if (l_iter->v == v) {
            bm_vert_calc_normals_accum_loop(l_iter, edgevec, l_iter->f->no, v_no);
          }
        } while ((l_iter = l_iter->radial_next) != l_first);
      }
    } while ((e_iter = BM_DISK_EDGE_NEXT(e_iter, v)) != e_first);

    if (LIKELY(normalize_v3(v_no) != 0.0f)) {
      return;
    }
  }
  /* Fallback normal. */
  normalize_v3_v3(v_no, v->co);
}

static void bm_vert_calc_normals_cb(void *userdata,
                                    MempoolIterData *mp_v,
                                    const TaskParallelTLS *__restrict UNUSED(tls))
{
  const float(*edgevec)[3] = userdata;
  BMVert *v = (BMVert *)mp_v;
  bm_vert_calc_normals_impl(edgevec, v);
}

static void bm_vert_calc_normals_with_coords(BMVert *v, BMVertsCalcNormalsWithCoordsData *data)
{
  float *v_no = data->vnos[BM_elem_index_get(v)];
  zero_v3(v_no);

  /* Loop over edges. */
  BMEdge *e_first = v->e;
  if (e_first != NULL) {
    BMEdge *e_iter = e_first;
    do {
      BMLoop *l_first = e_iter->l;
      if (l_first != NULL) {
        BMLoop *l_iter = l_first;
        do {
          if (l_iter->v == v) {
            bm_vert_calc_normals_accum_loop(
                l_iter, data->edgevec, data->fnos[BM_elem_index_get(l_iter->f)], v_no);
          }
        } while ((l_iter = l_iter->radial_next) != l_first);
      }
    } while ((e_iter = BM_DISK_EDGE_NEXT(e_iter, v)) != e_first);

    if (LIKELY(normalize_v3(v_no) != 0.0f)) {
      return;
    }
  }
  /* Fallback normal. */
  normalize_v3_v3(v_no, data->vcos[BM_elem_index_get(v)]);
}

static void bm_vert_calc_normals_with_coords_cb(void *userdata,
                                                MempoolIterData *mp_v,
                                                const TaskParallelTLS *__restrict UNUSED(tls))
{
  BMVertsCalcNormalsWithCoordsData *data = userdata;
  BMVert *v = (BMVert *)mp_v;
  bm_vert_calc_normals_with_coords(v, data);
}

static void bm_mesh_verts_calc_normals(BMesh *bm,
                                       const float (*edgevec)[3],
                                       const float (*fnos)[3],
                                       const float (*vcos)[3],
                                       float (*vnos)[3])
{
  BM_mesh_elem_index_ensure(bm, (BM_EDGE | BM_FACE) | ((vnos || vcos) ? BM_VERT : 0));

  TaskParallelSettings settings;
  BLI_parallel_mempool_settings_defaults(&settings);
  settings.use_threading = bm->totvert >= BM_OMP_LIMIT;

  if (vcos == NULL) {
    BM_iter_parallel(bm, BM_VERTS_OF_MESH, bm_vert_calc_normals_cb, (void *)edgevec, &settings);
  }
  else {
    BLI_assert(!ELEM(NULL, fnos, vnos));
    BMVertsCalcNormalsWithCoordsData data = {
        .edgevec = edgevec,
        .fnos = fnos,
        .vcos = vcos,
        .vnos = vnos,
    };
    BM_iter_parallel(bm, BM_VERTS_OF_MESH, bm_vert_calc_normals_with_coords_cb, &data, &settings);
  }
}

static void bm_face_calc_normals_cb(void *UNUSED(userdata),
                                    MempoolIterData *mp_f,
                                    const TaskParallelTLS *__restrict UNUSED(tls))
{
  BMFace *f = (BMFace *)mp_f;

  BM_face_calc_normal(f, f->no);
}

/**
 * \brief BMesh Compute Normals
 *
 * Updates the normals of a mesh.
 */
void BM_mesh_normals_update(BMesh *bm)
{
  float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);

  /* Parallel mempool iteration does not allow generating indices inline anymore. */
  BM_mesh_elem_index_ensure(bm, (BM_EDGE | BM_FACE));

  /* Calculate all face normals. */
  TaskParallelSettings settings;
  BLI_parallel_mempool_settings_defaults(&settings);
  settings.use_threading = bm->totedge >= BM_OMP_LIMIT;

  BM_iter_parallel(bm, BM_FACES_OF_MESH, bm_face_calc_normals_cb, NULL, &settings);

  bm_mesh_edges_calc_vectors(bm, edgevec, NULL);

  /* Add weighted face normals to vertices, and normalize vert normals. */
  bm_mesh_verts_calc_normals(bm, edgevec, NULL, NULL, NULL);
  MEM_freeN(edgevec);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Update Vertex & Face Normals (Partial Updates)
 * \{ */

static void bm_partial_faces_parallel_range_calc_normals_cb(
    void *userdata, const int iter, const TaskParallelTLS *__restrict UNUSED(tls))
{
  BMFace *f = ((BMFace **)userdata)[iter];
  BM_face_calc_normal(f, f->no);
}

static void bm_partial_edges_parallel_range_calc_vectors_cb(
    void *userdata, const int iter, const TaskParallelTLS *__restrict UNUSED(tls))
{
  BMEdge *e = ((BMEdge **)((void **)userdata)[0])[iter];
  float *r_edgevec = ((float(*)[3])((void **)userdata)[1])[iter];
  sub_v3_v3v3(r_edgevec, e->v1->co, e->v2->co);
  normalize_v3(r_edgevec);
}

static void bm_partial_verts_parallel_range_calc_normal_cb(
    void *userdata, const int iter, const TaskParallelTLS *__restrict UNUSED(tls))
{
  BMVert *v = ((BMVert **)((void **)userdata)[0])[iter];
  const float(*edgevec)[3] = (const float(*)[3])((void **)userdata)[1];
  bm_vert_calc_normals_impl(edgevec, v);
}

/**
 * A version of #BM_mesh_normals_update that updates a subset of geometry,
 * used to avoid the overhead of updating everything.
 */
void BM_mesh_normals_update_with_partial(BMesh *bm, const BMPartialUpdate *bmpinfo)
{
  BLI_assert(bmpinfo->params.do_normals);

  BMVert **verts = bmpinfo->verts;
  BMEdge **edges = bmpinfo->edges;
  BMFace **faces = bmpinfo->faces;
  const int verts_len = bmpinfo->verts_len;
  const int edges_len = bmpinfo->edges_len;
  const int faces_len = bmpinfo->faces_len;

  float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * edges_len, __func__);

  TaskParallelSettings settings;
  BLI_parallel_range_settings_defaults(&settings);

  /* Faces. */
  BLI_task_parallel_range(
      0, faces_len, faces, bm_partial_faces_parallel_range_calc_normals_cb, &settings);

  /* Temporarily override the edge indices,
   * storing the correct indices in the case they're not dirty.
   *
   * \note in most cases indices are modified and #BMesh.elem_index_dirty is set.
   * This is an exceptional case where indices are restored because the worst case downside
   * of marking the edge indices dirty would require a full loop over all edges to
   * correct the indices in other functions which need them to be valid.
   * When moving a few vertices on a high poly mesh setting and restoring connected
   * edges has very little overhead compared with restoring all edge indices. */
  int *edge_index_value = NULL;
  if ((bm->elem_index_dirty & BM_EDGE) == 0) {
    edge_index_value = MEM_mallocN(sizeof(*edge_index_value) * edges_len, __func__);

    for (int i = 0; i < edges_len; i++) {
      BMEdge *e = edges[i];
      edge_index_value[i] = BM_elem_index_get(e);
      BM_elem_index_set(e, i); /* set_dirty! (restore before this function exits). */
    }
  }
  else {
    for (int i = 0; i < edges_len; i++) {
      BMEdge *e = edges[i];
      BM_elem_index_set(e, i); /* set_dirty! (already dirty) */
    }
  }

  {
    /* Verts. */

    /* Compute normalized direction vectors for each edge.
     * Directions will be used for calculating the weights of the face normals on the vertex
     * normals. */
    void *data[2] = {edges, edgevec};
    BLI_task_parallel_range(
        0, edges_len, data, bm_partial_edges_parallel_range_calc_vectors_cb, &settings);

    /* Calculate vertex normals. */
    data[0] = verts;
    BLI_task_parallel_range(
        0, verts_len, data, bm_partial_verts_parallel_range_calc_normal_cb, &settings);
  }

  if (edge_index_value != NULL) {
    for (int i = 0; i < edges_len; i++) {
      BMEdge *e = edges[i];
      BM_elem_index_set(e, edge_index_value[i]); /* set_ok (restore) */
    }

    MEM_freeN(edge_index_value);
  }

  MEM_freeN(edgevec);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Update Vertex & Face Normals (Custom Coords)
 * \{ */

/**
 * \brief BMesh Compute Normals from/to external data.
 *
 * Computes the vertex normals of a mesh into vnos,
 * using given vertex coordinates (vcos) and polygon normals (fnos).
 */
void BM_verts_calc_normal_vcos(BMesh *bm,
                               const float (*fnos)[3],
                               const float (*vcos)[3],
                               float (*vnos)[3])
{
  float(*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);

  /* Compute normalized direction vectors for each edge.
   * Directions will be used for calculating the weights of the face normals on the vertex normals.
   */
  bm_mesh_edges_calc_vectors(bm, edgevec, vcos);

  /* Add weighted face normals to vertices, and normalize vert normals. */
  bm_mesh_verts_calc_normals(bm, edgevec, fnos, vcos, vnos);
  MEM_freeN(edgevec);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Tagging Utility Functions
 * \{ */

void BM_normals_loops_edges_tag(BMesh *bm, const bool do_edges)
{
  BMFace *f;
  BMEdge *e;
  BMIter fiter, eiter;
  BMLoop *l_curr, *l_first;

  if (do_edges) {
    int index_edge;
    BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, index_edge) {
      BMLoop *l_a, *l_b;

      BM_elem_index_set(e, index_edge); /* set_inline */
      BM_elem_flag_disable(e, BM_ELEM_TAG);
      if (BM_edge_loop_pair(e, &l_a, &l_b)) {
        if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) && l_a->v != l_b->v) {
          BM_elem_flag_enable(e, BM_ELEM_TAG);
        }
      }
    }
    bm->elem_index_dirty &= ~BM_EDGE;
  }

  int index_face, index_loop = 0;
  BM_ITER_MESH_INDEX (f, &fiter, bm, BM_FACES_OF_MESH, index_face) {
    BM_elem_index_set(f, index_face); /* set_inline */
    l_curr = l_first = BM_FACE_FIRST_LOOP(f);
    do {
      BM_elem_index_set(l_curr, index_loop++); /* set_inline */
      BM_elem_flag_disable(l_curr, BM_ELEM_TAG);
    } while ((l_curr = l_curr->next) != l_first);
  }
  bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP);
}

/**
 * Helpers for #BM_mesh_loop_normals_update and #BM_loops_calc_normal_vcos
 */
static void bm_mesh_edges_sharp_tag(BMesh *bm,
                                    const float (*vnos)[3],
                                    const float (*fnos)[3],
                                    float (*r_lnos)[3],
                                    const float split_angle,
                                    const bool do_sharp_edges_tag)
{
  BMIter eiter;
  BMEdge *e;
  int i;

  const bool check_angle = (split_angle < (float)M_PI);
  const float split_angle_cos = check_angle ? cosf(split_angle) : -1.0f;

  {
    char htype = BM_VERT | BM_LOOP;
    if (fnos) {
      htype |= BM_FACE;
    }
    BM_mesh_elem_index_ensure(bm, htype);
  }

  /* This first loop checks which edges are actually smooth,
   * and pre-populate lnos with vnos (as if they were all smooth). */
  BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, i) {
    BMLoop *l_a, *l_b;

    BM_elem_index_set(e, i);              /* set_inline */
    BM_elem_flag_disable(e, BM_ELEM_TAG); /* Clear tag (means edge is sharp). */

    /* An edge with only two loops, might be smooth... */
    if (BM_edge_loop_pair(e, &l_a, &l_b)) {
      bool is_angle_smooth = true;
      if (check_angle) {
        const float *no_a = fnos ? fnos[BM_elem_index_get(l_a->f)] : l_a->f->no;
        const float *no_b = fnos ? fnos[BM_elem_index_get(l_b->f)] : l_b->f->no;
        is_angle_smooth = (dot_v3v3(no_a, no_b) >= split_angle_cos);
      }

      /* We only tag edges that are *really* smooth:
       * If the angle between both its polys' normals is below split_angle value,
       * and it is tagged as such,
       * and both its faces are smooth,
       * and both its faces have compatible (non-flipped) normals,
       * i.e. both loops on the same edge do not share the same vertex.
       */
      if (BM_elem_flag_test(e, BM_ELEM_SMOOTH) && BM_elem_flag_test(l_a->f, BM_ELEM_SMOOTH) &&
          BM_elem_flag_test(l_b->f, BM_ELEM_SMOOTH) && l_a->v != l_b->v) {
        if (is_angle_smooth) {
          const float *no;
          BM_elem_flag_enable(e, BM_ELEM_TAG);

          /* linked vertices might be fully smooth, copy their normals to loop ones. */
          if (r_lnos) {
            no = vnos ? vnos[BM_elem_index_get(l_a->v)] : l_a->v->no;
            copy_v3_v3(r_lnos[BM_elem_index_get(l_a)], no);
            no = vnos ? vnos[BM_elem_index_get(l_b->v)] : l_b->v->no;
            copy_v3_v3(r_lnos[BM_elem_index_get(l_b)], no);
          }
        }
        else if (do_sharp_edges_tag) {
          /* Note that we do not care about the other sharp-edge cases
           * (sharp poly, non-manifold edge, etc.),
           * only tag edge as sharp when it is due to angle threshold. */
          BM_elem_flag_disable(e, BM_ELEM_SMOOTH);
        }
      }
    }
  }

  bm->elem_index_dirty &= ~BM_EDGE;
}

/**
 * Define sharp edges as needed to mimic 'autosmooth' from angle threshold.
 *
 * Used when defining an empty custom loop normals data layer,
 * to keep same shading as with auto-smooth!
 */
void BM_edges_sharp_from_angle_set(BMesh *bm, const float split_angle)
{
  if (split_angle >= (float)M_PI) {
    /* Nothing to do! */
    return;
  }

  bm_mesh_edges_sharp_tag(bm, NULL, NULL, NULL, split_angle, true);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Loop Normals Calculation API
 * \{ */

/**
 * Check whether given loop is part of an unknown-so-far cyclic smooth fan, or not.
 * Needed because cyclic smooth fans have no obvious 'entry point',
 * and yet we need to walk them once, and only once.
 */
bool BM_loop_check_cyclic_smooth_fan(BMLoop *l_curr)
{
  BMLoop *lfan_pivot_next = l_curr;
  BMEdge *e_next = l_curr->e;

  BLI_assert(!BM_elem_flag_test(lfan_pivot_next, BM_ELEM_TAG));
  BM_elem_flag_enable(lfan_pivot_next, BM_ELEM_TAG);

  while (true) {
    /* Much simpler than in sibling code with basic Mesh data! */
    lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot_next, &e_next);

    if (!lfan_pivot_next || !BM_elem_flag_test(e_next, BM_ELEM_TAG)) {
      /* Sharp loop/edge, so not a cyclic smooth fan... */
      return false;
    }
    /* Smooth loop/edge... */
    if (BM_elem_flag_test(lfan_pivot_next, BM_ELEM_TAG)) {
      if (lfan_pivot_next == l_curr) {
        /* We walked around a whole cyclic smooth fan
         * without finding any already-processed loop,
         * means we can use initial l_curr/l_prev edge as start for this smooth fan. */
        return true;
      }
      /* ... already checked in some previous looping, we can abort. */
      return false;
    }
    /* ... we can skip it in future, and keep checking the smooth fan. */
    BM_elem_flag_enable(lfan_pivot_next, BM_ELEM_TAG);
  }
}

/**
 * BMesh version of BKE_mesh_normals_loop_split() in mesh_evaluate.c
 * Will use first clnors_data array, and fallback to cd_loop_clnors_offset
 * (use NULL and -1 to not use clnors).
 *
 * \note This sets #BM_ELEM_TAG which is used in tool code (e.g. T84426).
 * we could add a low-level API flag for this, see #BM_ELEM_API_FLAG_ENABLE and friends.
 */
static void bm_mesh_loops_calc_normals(BMesh *bm,
                                       const float (*vcos)[3],
                                       const float (*fnos)[3],
                                       float (*r_lnos)[3],
                                       MLoopNorSpaceArray *r_lnors_spacearr,
                                       const short (*clnors_data)[2],
                                       const int cd_loop_clnors_offset,
                                       const bool do_rebuild)
{
  BMIter fiter;
  BMFace *f_curr;
  const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);

  MLoopNorSpaceArray _lnors_spacearr = {NULL};

  /* Temp normal stack. */
  BLI_SMALLSTACK_DECLARE(normal, float *);
  /* Temp clnors stack. */
  BLI_SMALLSTACK_DECLARE(clnors, short *);
  /* Temp edge vectors stack, only used when computing lnor spacearr. */
  BLI_Stack *edge_vectors = NULL;

  {
    char htype = 0;
    if (vcos) {
      htype |= BM_VERT;
    }
    /* Face/Loop indices are set inline below. */
    BM_mesh_elem_index_ensure(bm, htype);
  }

  if (!r_lnors_spacearr && has_clnors) {
    /* We need to compute lnor spacearr if some custom lnor data are given to us! */
    r_lnors_spacearr = &_lnors_spacearr;
  }
  if (r_lnors_spacearr) {
    BKE_lnor_spacearr_init(r_lnors_spacearr, bm->totloop, MLNOR_SPACEARR_BMLOOP_PTR);
    edge_vectors = BLI_stack_new(sizeof(float[3]), __func__);
  }

  /* Clear all loops' tags (means none are to be skipped for now). */
  int index_face, index_loop = 0;
  BM_ITER_MESH_INDEX (f_curr, &fiter, bm, BM_FACES_OF_MESH, index_face) {
    BMLoop *l_curr, *l_first;

    BM_elem_index_set(f_curr, index_face); /* set_inline */

    l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
    do {
      BM_elem_index_set(l_curr, index_loop++); /* set_inline */
      BM_elem_flag_disable(l_curr, BM_ELEM_TAG);
    } while ((l_curr = l_curr->next) != l_first);
  }
  bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP);

  /* We now know edges that can be smoothed (they are tagged),
   * and edges that will be hard (they aren't).
   * Now, time to generate the normals.
   */
  BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
    BMLoop *l_curr, *l_first;

    l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
    do {
      if (do_rebuild && !BM_ELEM_API_FLAG_TEST(l_curr, BM_LNORSPACE_UPDATE) &&
          !(bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL)) {
        continue;
      }
      /* A smooth edge, we have to check for cyclic smooth fan case.
       * If we find a new, never-processed cyclic smooth fan, we can do it now using that loop/edge
       * as 'entry point', otherwise we can skip it. */

      /* Note: In theory, we could make bm_mesh_loop_check_cyclic_smooth_fan() store
       * mlfan_pivot's in a stack, to avoid having to fan again around
       * the vert during actual computation of clnor & clnorspace. However, this would complicate
       * the code, add more memory usage, and
       * BM_vert_step_fan_loop() is quite cheap in term of CPU cycles,
       * so really think it's not worth it. */
      if (BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
          (BM_elem_flag_test(l_curr, BM_ELEM_TAG) || !BM_loop_check_cyclic_smooth_fan(l_curr))) {
      }
      else if (!BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
               !BM_elem_flag_test(l_curr->prev->e, BM_ELEM_TAG)) {
        /* Simple case (both edges around that vertex are sharp in related polygon),
         * this vertex just takes its poly normal.
         */
        const int l_curr_index = BM_elem_index_get(l_curr);
        const float *no = fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no;
        copy_v3_v3(r_lnos[l_curr_index], no);

        /* If needed, generate this (simple!) lnor space. */
        if (r_lnors_spacearr) {
          float vec_curr[3], vec_prev[3];
          MLoopNorSpace *lnor_space = BKE_lnor_space_create(r_lnors_spacearr);

          {
            const BMVert *v_pivot = l_curr->v;
            const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;
            const BMVert *v_1 = BM_edge_other_vert(l_curr->e, v_pivot);
            const float *co_1 = vcos ? vcos[BM_elem_index_get(v_1)] : v_1->co;
            const BMVert *v_2 = BM_edge_other_vert(l_curr->prev->e, v_pivot);
            const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;

            sub_v3_v3v3(vec_curr, co_1, co_pivot);
            normalize_v3(vec_curr);
            sub_v3_v3v3(vec_prev, co_2, co_pivot);
            normalize_v3(vec_prev);
          }

          BKE_lnor_space_define(lnor_space, r_lnos[l_curr_index], vec_curr, vec_prev, NULL);
          /* We know there is only one loop in this space,
           * no need to create a linklist in this case... */
          BKE_lnor_space_add_loop(r_lnors_spacearr, lnor_space, l_curr_index, l_curr, true);

          if (has_clnors) {
            const short(*clnor)[2] = clnors_data ? &clnors_data[l_curr_index] :
                                                   (const void *)BM_ELEM_CD_GET_VOID_P(
                                                       l_curr, cd_loop_clnors_offset);
            BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor, r_lnos[l_curr_index]);
          }
        }
      }
      /* We *do not need* to check/tag loops as already computed!
       * Due to the fact a loop only links to one of its two edges,
       * a same fan *will never be walked more than once!*
       * Since we consider edges having neighbor faces with inverted (flipped) normals as sharp,
       * we are sure that no fan will be skipped, even only considering the case
       * (sharp curr_edge, smooth prev_edge), and not the alternative
       * (smooth curr_edge, sharp prev_edge).
       * All this due/thanks to link between normals and loop ordering.
       */
      else {
        /* We have to fan around current vertex, until we find the other non-smooth edge,
         * and accumulate face normals into the vertex!
         * Note in case this vertex has only one sharp edge,
         * this is a waste because the normal is the same as the vertex normal,
         * but I do not see any easy way to detect that (would need to count number of sharp edges
         * per vertex, I doubt the additional memory usage would be worth it, especially as it
         * should not be a common case in real-life meshes anyway).
         */
        BMVert *v_pivot = l_curr->v;
        BMEdge *e_next;
        const BMEdge *e_org = l_curr->e;
        BMLoop *lfan_pivot, *lfan_pivot_next;
        int lfan_pivot_index;
        float lnor[3] = {0.0f, 0.0f, 0.0f};
        float vec_curr[3], vec_next[3], vec_org[3];

        /* We validate clnors data on the fly - cheapest way to do! */
        int clnors_avg[2] = {0, 0};
        const short(*clnor_ref)[2] = NULL;
        int clnors_nbr = 0;
        bool clnors_invalid = false;

        const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;

        MLoopNorSpace *lnor_space = r_lnors_spacearr ? BKE_lnor_space_create(r_lnors_spacearr) :
                                                       NULL;

        BLI_assert((edge_vectors == NULL) || BLI_stack_is_empty(edge_vectors));

        lfan_pivot = l_curr;
        lfan_pivot_index = BM_elem_index_get(lfan_pivot);
        e_next = lfan_pivot->e; /* Current edge here, actually! */

        /* Only need to compute previous edge's vector once,
         * then we can just reuse old current one! */
        {
          const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
          const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;

          sub_v3_v3v3(vec_org, co_2, co_pivot);
          normalize_v3(vec_org);
          copy_v3_v3(vec_curr, vec_org);

          if (r_lnors_spacearr) {
            BLI_stack_push(edge_vectors, vec_org);
          }
        }

        while (true) {
          /* Much simpler than in sibling code with basic Mesh data! */
          lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot, &e_next);
          if (lfan_pivot_next) {
            BLI_assert(lfan_pivot_next->v == v_pivot);
          }
          else {
            /* next edge is non-manifold, we have to find it ourselves! */
            e_next = (lfan_pivot->e == e_next) ? lfan_pivot->prev->e : lfan_pivot->e;
          }

          /* Compute edge vector.
           * NOTE: We could pre-compute those into an array, in the first iteration,
           * instead of computing them twice (or more) here.
           * However, time gained is not worth memory and time lost,
           * given the fact that this code should not be called that much in real-life meshes.
           */
          {
            const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
            const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;

            sub_v3_v3v3(vec_next, co_2, co_pivot);
            normalize_v3(vec_next);
          }

          {
            /* Code similar to accumulate_vertex_normals_poly_v3. */
            /* Calculate angle between the two poly edges incident on this vertex. */
            const BMFace *f = lfan_pivot->f;
            const float fac = saacos(dot_v3v3(vec_next, vec_curr));
            const float *no = fnos ? fnos[BM_elem_index_get(f)] : f->no;
            /* Accumulate */
            madd_v3_v3fl(lnor, no, fac);

            if (has_clnors) {
              /* Accumulate all clnors, if they are not all equal we have to fix that! */
              const short(*clnor)[2] = clnors_data ? &clnors_data[lfan_pivot_index] :
                                                     (const void *)BM_ELEM_CD_GET_VOID_P(
                                                         lfan_pivot, cd_loop_clnors_offset);
              if (clnors_nbr) {
                clnors_invalid |= ((*clnor_ref)[0] != (*clnor)[0] ||
                                   (*clnor_ref)[1] != (*clnor)[1]);
              }
              else {
                clnor_ref = clnor;
              }
              clnors_avg[0] += (*clnor)[0];
              clnors_avg[1] += (*clnor)[1];
              clnors_nbr++;
              /* We store here a pointer to all custom lnors processed. */
              BLI_SMALLSTACK_PUSH(clnors, (short *)*clnor);
            }
          }

          /* We store here a pointer to all loop-normals processed. */
          BLI_SMALLSTACK_PUSH(normal, (float *)r_lnos[lfan_pivot_index]);

          if (r_lnors_spacearr) {
            /* Assign current lnor space to current 'vertex' loop. */
            BKE_lnor_space_add_loop(
                r_lnors_spacearr, lnor_space, lfan_pivot_index, lfan_pivot, false);
            if (e_next != e_org) {
              /* We store here all edges-normalized vectors processed. */
              BLI_stack_push(edge_vectors, vec_next);
            }
          }

          if (!BM_elem_flag_test(e_next, BM_ELEM_TAG) || (e_next == e_org)) {
            /* Next edge is sharp, we have finished with this fan of faces around this vert! */
            break;
          }

          /* Copy next edge vector to current one. */
          copy_v3_v3(vec_curr, vec_next);
          /* Next pivot loop to current one. */
          lfan_pivot = lfan_pivot_next;
          lfan_pivot_index = BM_elem_index_get(lfan_pivot);
        }

        {
          float lnor_len = normalize_v3(lnor);

          /* If we are generating lnor spacearr, we can now define the one for this fan. */
          if (r_lnors_spacearr) {
            if (UNLIKELY(lnor_len == 0.0f)) {
              /* Use vertex normal as fallback! */
              copy_v3_v3(lnor, r_lnos[lfan_pivot_index]);
              lnor_len = 1.0f;
            }

            BKE_lnor_space_define(lnor_space, lnor, vec_org, vec_next, edge_vectors);

            if (has_clnors) {
              if (clnors_invalid) {
                short *clnor;

                clnors_avg[0] /= clnors_nbr;
                clnors_avg[1] /= clnors_nbr;
                /* Fix/update all clnors of this fan with computed average value. */

                /* Prints continuously when merge custom normals, so commenting. */
                /* printf("Invalid clnors in this fan!\n"); */

                while ((clnor = BLI_SMALLSTACK_POP(clnors))) {
                  // print_v2("org clnor", clnor);
                  clnor[0] = (short)clnors_avg[0];
                  clnor[1] = (short)clnors_avg[1];
                }
                // print_v2("new clnors", clnors_avg);
              }
              else {
                /* We still have to consume the stack! */
                while (BLI_SMALLSTACK_POP(clnors)) {
                  /* pass */
                }
              }
              BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor_ref, lnor);
            }
          }

          /* In case we get a zero normal here, just use vertex normal already set! */
          if (LIKELY(lnor_len != 0.0f)) {
            /* Copy back the final computed normal into all related loop-normals. */
            float *nor;

            while ((nor = BLI_SMALLSTACK_POP(normal))) {
              copy_v3_v3(nor, lnor);
            }
          }
          else {
            /* We still have to consume the stack! */
            while (BLI_SMALLSTACK_POP(normal)) {
              /* pass */
            }
          }
        }

        /* Tag related vertex as sharp, to avoid fanning around it again
         * (in case it was a smooth one). */
        if (r_lnors_spacearr) {
          BM_elem_flag_enable(l_curr->v, BM_ELEM_TAG);
        }
      }
    } while ((l_curr = l_curr->next) != l_first);
  }

  if (r_lnors_spacearr) {
    BLI_stack_free(edge_vectors);
    if (r_lnors_spacearr == &_lnors_spacearr) {
      BKE_lnor_spacearr_free(r_lnors_spacearr);
    }
  }
}

/* This threshold is a bit touchy (usual float precision issue), this value seems OK. */
#define LNOR_SPACE_TRIGO_THRESHOLD (1.0f - 1e-4f)

/**
 * Check each current smooth fan (one lnor space per smooth fan!), and if all its
 * matching custom lnors are not (enough) equal, add sharp edges as needed.
 */
static bool bm_mesh_loops_split_lnor_fans(BMesh *bm,
                                          MLoopNorSpaceArray *lnors_spacearr,
                                          const float (*new_lnors)[3])
{
  BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)bm->totloop, __func__);
  bool changed = false;

  BLI_assert(lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);

  for (int i = 0; i < bm->totloop; i++) {
    if (!lnors_spacearr->lspacearr[i]) {
      /* This should not happen in theory, but in some rare case (probably ugly geometry)
       * we can get some NULL loopspacearr at this point. :/
       * Maybe we should set those loops' edges as sharp?
       */
      BLI_BITMAP_ENABLE(done_loops, i);
      if (G.debug & G_DEBUG) {
        printf("WARNING! Getting invalid NULL loop space for loop %d!\n", i);
      }
      continue;
    }

    if (!BLI_BITMAP_TEST(done_loops, i)) {
      /* Notes:
       * * In case of mono-loop smooth fan, we have nothing to do.
       * * Loops in this linklist are ordered (in reversed order compared to how they were
       *   discovered by BKE_mesh_normals_loop_split(), but this is not a problem).
       *   Which means if we find a mismatching clnor,
       *   we know all remaining loops will have to be in a new, different smooth fan/lnor space.
       * * In smooth fan case, we compare each clnor against a ref one,
       *   to avoid small differences adding up into a real big one in the end!
       */
      if (lnors_spacearr->lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) {
        BLI_BITMAP_ENABLE(done_loops, i);
        continue;
      }

      LinkNode *loops = lnors_spacearr->lspacearr[i]->loops;
      BMLoop *prev_ml = NULL;
      const float *org_nor = NULL;

      while (loops) {
        BMLoop *ml = loops->link;
        const int lidx = BM_elem_index_get(ml);
        const float *nor = new_lnors[lidx];

        if (!org_nor) {
          org_nor = nor;
        }
        else if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
          /* Current normal differs too much from org one, we have to tag the edge between
           * previous loop's face and current's one as sharp.
           * We know those two loops do not point to the same edge,
           * since we do not allow reversed winding in a same smooth fan.
           */
          BMEdge *e = (prev_ml->e == ml->prev->e) ? prev_ml->e : ml->e;

          BM_elem_flag_disable(e, BM_ELEM_TAG | BM_ELEM_SMOOTH);
          changed = true;

          org_nor = nor;
        }

        prev_ml = ml;
        loops = loops->next;
        BLI_BITMAP_ENABLE(done_loops, lidx);
      }

      /* We also have to check between last and first loops,
       * otherwise we may miss some sharp edges here!
       * This is just a simplified version of above while loop.
       * See T45984. */
      loops = lnors_spacearr->lspacearr[i]->loops;
      if (loops && org_nor) {
        BMLoop *ml = loops->link;
        const int lidx = BM_elem_index_get(ml);
        const float *nor = new_lnors[lidx];

        if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
          BMEdge *e = (prev_ml->e == ml->prev->e) ? prev_ml->e : ml->e;

          BM_elem_flag_disable(e, BM_ELEM_TAG | BM_ELEM_SMOOTH);
          changed = true;
        }
      }
    }
  }

  MEM_freeN(done_loops);
  return changed;
}

/**
 * Assign custom normal data from given normal vectors, averaging normals
 * from one smooth fan as necessary.
 */
static void bm_mesh_loops_assign_normal_data(BMesh *bm,
                                             MLoopNorSpaceArray *lnors_spacearr,
                                             short (*r_clnors_data)[2],
                                             const int cd_loop_clnors_offset,
                                             const float (*new_lnors)[3])
{
  BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)bm->totloop, __func__);

  BLI_SMALLSTACK_DECLARE(clnors_data, short *);

  BLI_assert(lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);

  for (int i = 0; i < bm->totloop; i++) {
    if (!lnors_spacearr->lspacearr[i]) {
      BLI_BITMAP_ENABLE(done_loops, i);
      if (G.debug & G_DEBUG) {
        printf("WARNING! Still getting invalid NULL loop space in second loop for loop %d!\n", i);
      }
      continue;
    }

    if (!BLI_BITMAP_TEST(done_loops, i)) {
      /* Note we accumulate and average all custom normals in current smooth fan,
       * to avoid getting different clnors data (tiny differences in plain custom normals can
       * give rather huge differences in computed 2D factors).
       */
      LinkNode *loops = lnors_spacearr->lspacearr[i]->loops;

      if (lnors_spacearr->lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) {
        BMLoop *ml = (BMLoop *)loops;
        const int lidx = BM_elem_index_get(ml);

        BLI_assert(lidx == i);

        const float *nor = new_lnors[lidx];
        short *clnor = r_clnors_data ? &r_clnors_data[lidx] :
                                       BM_ELEM_CD_GET_VOID_P(ml, cd_loop_clnors_offset);

        BKE_lnor_space_custom_normal_to_data(lnors_spacearr->lspacearr[i], nor, clnor);
        BLI_BITMAP_ENABLE(done_loops, i);
      }
      else {
        int nbr_nors = 0;
        float avg_nor[3];
        short clnor_data_tmp[2], *clnor_data;

        zero_v3(avg_nor);

        while (loops) {
          BMLoop *ml = loops->link;
          const int lidx = BM_elem_index_get(ml);
          const float *nor = new_lnors[lidx];
          short *clnor = r_clnors_data ? &r_clnors_data[lidx] :
                                         BM_ELEM_CD_GET_VOID_P(ml, cd_loop_clnors_offset);

          nbr_nors++;
          add_v3_v3(avg_nor, nor);
          BLI_SMALLSTACK_PUSH(clnors_data, clnor);

          loops = loops->next;
          BLI_BITMAP_ENABLE(done_loops, lidx);
        }

        mul_v3_fl(avg_nor, 1.0f / (float)nbr_nors);
        BKE_lnor_space_custom_normal_to_data(
            lnors_spacearr->lspacearr[i], avg_nor, clnor_data_tmp);

        while ((clnor_data = BLI_SMALLSTACK_POP(clnors_data))) {
          clnor_data[0] = clnor_data_tmp[0];
          clnor_data[1] = clnor_data_tmp[1];
        }
      }
    }
  }

  MEM_freeN(done_loops);
}

/**
 * Compute internal representation of given custom normals (as an array of float[2] or data layer).
 *
 * It also makes sure the mesh matches those custom normals, by marking new sharp edges to split
 * the smooth fans when loop normals for the same vertex are different, or averaging the normals
 * instead, depending on the do_split_fans parameter.
 */
static void bm_mesh_loops_custom_normals_set(BMesh *bm,
                                             const float (*vcos)[3],
                                             const float (*vnos)[3],
                                             const float (*fnos)[3],
                                             MLoopNorSpaceArray *r_lnors_spacearr,
                                             short (*r_clnors_data)[2],
                                             const int cd_loop_clnors_offset,
                                             float (*new_lnors)[3],
                                             const int cd_new_lnors_offset,
                                             bool do_split_fans)
{
  BMFace *f;
  BMLoop *l;
  BMIter liter, fiter;
  float(*cur_lnors)[3] = MEM_mallocN(sizeof(*cur_lnors) * bm->totloop, __func__);

  BKE_lnor_spacearr_clear(r_lnors_spacearr);

  /* Tag smooth edges and set lnos from vnos when they might be completely smooth...
   * When using custom loop normals, disable the angle feature! */
  bm_mesh_edges_sharp_tag(bm, vnos, fnos, cur_lnors, (float)M_PI, false);

  /* Finish computing lnos by accumulating face normals
   * in each fan of faces defined by sharp edges. */
  bm_mesh_loops_calc_normals(
      bm, vcos, fnos, cur_lnors, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, false);

  /* Extract new normals from the data layer if necessary. */
  float(*custom_lnors)[3] = new_lnors;

  if (new_lnors == NULL) {
    custom_lnors = MEM_mallocN(sizeof(*new_lnors) * bm->totloop, __func__);

    BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
      BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
        const float *normal = BM_ELEM_CD_GET_VOID_P(l, cd_new_lnors_offset);
        copy_v3_v3(custom_lnors[BM_elem_index_get(l)], normal);
      }
    }
  }

  /* Validate the new normals. */
  for (int i = 0; i < bm->totloop; i++) {
    if (is_zero_v3(custom_lnors[i])) {
      copy_v3_v3(custom_lnors[i], cur_lnors[i]);
    }
    else {
      normalize_v3(custom_lnors[i]);
    }
  }

  /* Now, check each current smooth fan (one lnor space per smooth fan!),
   * and if all its matching custom lnors are not equal, add sharp edges as needed. */
  if (do_split_fans && bm_mesh_loops_split_lnor_fans(bm, r_lnors_spacearr, custom_lnors)) {
    /* If any sharp edges were added, run bm_mesh_loops_calc_normals() again to get lnor
     * spacearr/smooth fans matching the given custom lnors. */
    BKE_lnor_spacearr_clear(r_lnors_spacearr);

    bm_mesh_loops_calc_normals(
        bm, vcos, fnos, cur_lnors, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, false);
  }

  /* And we just have to convert plain object-space custom normals to our
   * lnor space-encoded ones. */
  bm_mesh_loops_assign_normal_data(
      bm, r_lnors_spacearr, r_clnors_data, cd_loop_clnors_offset, custom_lnors);

  MEM_freeN(cur_lnors);

  if (custom_lnors != new_lnors) {
    MEM_freeN(custom_lnors);
  }
}

static void bm_mesh_loops_calc_normals_no_autosmooth(BMesh *bm,
                                                     const float (*vnos)[3],
                                                     const float (*fnos)[3],
                                                     float (*r_lnos)[3])
{
  BMIter fiter;
  BMFace *f_curr;

  {
    char htype = BM_LOOP;
    if (vnos) {
      htype |= BM_VERT;
    }
    if (fnos) {
      htype |= BM_FACE;
    }
    BM_mesh_elem_index_ensure(bm, htype);
  }

  BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
    BMLoop *l_curr, *l_first;
    const bool is_face_flat = !BM_elem_flag_test(f_curr, BM_ELEM_SMOOTH);

    l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
    do {
      const float *no = is_face_flat ? (fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no) :
                                       (vnos ? vnos[BM_elem_index_get(l_curr->v)] : l_curr->v->no);
      copy_v3_v3(r_lnos[BM_elem_index_get(l_curr)], no);

    } while ((l_curr = l_curr->next) != l_first);
  }
}

#if 0 /* Unused currently */
/**
 * \brief BMesh Compute Loop Normals
 *
 * Updates the loop normals of a mesh.
 * Assumes vertex and face normals are valid (else call BM_mesh_normals_update() first)!
 */
void BM_mesh_loop_normals_update(BMesh *bm,
                                 const bool use_split_normals,
                                 const float split_angle,
                                 float (*r_lnos)[3],
                                 MLoopNorSpaceArray *r_lnors_spacearr,
                                 const short (*clnors_data)[2],
                                 const int cd_loop_clnors_offset)
{
  const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);

  if (use_split_normals) {
    /* Tag smooth edges and set lnos from vnos when they might be completely smooth...
     * When using custom loop normals, disable the angle feature! */
    bm_mesh_edges_sharp_tag(bm, NULL, NULL, has_clnors ? (float)M_PI : split_angle, r_lnos);

    /* Finish computing lnos by accumulating face normals
     * in each fan of faces defined by sharp edges. */
    bm_mesh_loops_calc_normals(
        bm, NULL, NULL, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset);
  }
  else {
    BLI_assert(!r_lnors_spacearr);
    bm_mesh_loops_calc_normals_no_autosmooth(bm, NULL, NULL, r_lnos);
  }
}
#endif

/**
 * \brief BMesh Compute Loop Normals from/to external data.
 *
 * Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals').
 * Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry
 * (splitting edges).
 */
void BM_loops_calc_normal_vcos(BMesh *bm,
                               const float (*vcos)[3],
                               const float (*vnos)[3],
                               const float (*fnos)[3],
                               const bool use_split_normals,
                               const float split_angle,
                               float (*r_lnos)[3],
                               MLoopNorSpaceArray *r_lnors_spacearr,
                               short (*clnors_data)[2],
                               const int cd_loop_clnors_offset,
                               const bool do_rebuild)
{
  const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);

  if (use_split_normals) {
    /* Tag smooth edges and set lnos from vnos when they might be completely smooth...
     * When using custom loop normals, disable the angle feature! */
    bm_mesh_edges_sharp_tag(bm, vnos, fnos, r_lnos, has_clnors ? (float)M_PI : split_angle, false);

    /* Finish computing lnos by accumulating face normals
     * in each fan of faces defined by sharp edges. */
    bm_mesh_loops_calc_normals(
        bm, vcos, fnos, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset, do_rebuild);
  }
  else {
    BLI_assert(!r_lnors_spacearr);
    bm_mesh_loops_calc_normals_no_autosmooth(bm, vnos, fnos, r_lnos);
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Loop Normal Space API
 * \{ */

void BM_lnorspacearr_store(BMesh *bm, float (*r_lnors)[3])
{
  BLI_assert(bm->lnor_spacearr != NULL);

  if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
    BM_data_layer_add(bm, &bm->ldata, CD_CUSTOMLOOPNORMAL);
  }

  int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);

  BM_loops_calc_normal_vcos(bm,
                            NULL,
                            NULL,
                            NULL,
                            true,
                            M_PI,
                            r_lnors,
                            bm->lnor_spacearr,
                            NULL,
                            cd_loop_clnors_offset,
                            false);
  bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
}

#define CLEAR_SPACEARRAY_THRESHOLD(x) ((x) / 2)

void BM_lnorspace_invalidate(BMesh *bm, const bool do_invalidate_all)
{
  if (bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
    return;
  }
  if (do_invalidate_all || bm->totvertsel > CLEAR_SPACEARRAY_THRESHOLD(bm->totvert)) {
    bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
    return;
  }
  if (bm->lnor_spacearr == NULL) {
    bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
    return;
  }

  BMVert *v;
  BMLoop *l;
  BMIter viter, liter;
  /* Note: we could use temp tag of BMItem for that,
   * but probably better not use it in such a low-level func?
   * --mont29 */
  BLI_bitmap *done_verts = BLI_BITMAP_NEW(bm->totvert, __func__);

  BM_mesh_elem_index_ensure(bm, BM_VERT);

  /* When we affect a given vertex, we may affect following smooth fans:
   *     - all smooth fans of said vertex;
   *     - all smooth fans of all immediate loop-neighbors vertices;
   * This can be simplified as 'all loops of selected vertices and their immediate neighbors'
   * need to be tagged for update.
   */
  BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
    if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
      BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
        BM_ELEM_API_FLAG_ENABLE(l, BM_LNORSPACE_UPDATE);

        /* Note that we only handle unselected neighbor vertices here, main loop will take care of
         * selected ones. */
        if ((!BM_elem_flag_test(l->prev->v, BM_ELEM_SELECT)) &&
            !BLI_BITMAP_TEST(done_verts, BM_elem_index_get(l->prev->v))) {

          BMLoop *l_prev;
          BMIter liter_prev;
          BM_ITER_ELEM (l_prev, &liter_prev, l->prev->v, BM_LOOPS_OF_VERT) {
            BM_ELEM_API_FLAG_ENABLE(l_prev, BM_LNORSPACE_UPDATE);
          }
          BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(l_prev->v));
        }

        if ((!BM_elem_flag_test(l->next->v, BM_ELEM_SELECT)) &&
            !BLI_BITMAP_TEST(done_verts, BM_elem_index_get(l->next->v))) {

          BMLoop *l_next;
          BMIter liter_next;
          BM_ITER_ELEM (l_next, &liter_next, l->next->v, BM_LOOPS_OF_VERT) {
            BM_ELEM_API_FLAG_ENABLE(l_next, BM_LNORSPACE_UPDATE);
          }
          BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(l_next->v));
        }
      }

      BLI_BITMAP_ENABLE(done_verts, BM_elem_index_get(v));
    }
  }

  MEM_freeN(done_verts);
  bm->spacearr_dirty |= BM_SPACEARR_DIRTY;
}

void BM_lnorspace_rebuild(BMesh *bm, bool preserve_clnor)
{
  BLI_assert(bm->lnor_spacearr != NULL);

  if (!(bm->spacearr_dirty & (BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL))) {
    return;
  }
  BMFace *f;
  BMLoop *l;
  BMIter fiter, liter;

  float(*r_lnors)[3] = MEM_callocN(sizeof(*r_lnors) * bm->totloop, __func__);
  float(*oldnors)[3] = preserve_clnor ? MEM_mallocN(sizeof(*oldnors) * bm->totloop, __func__) :
                                        NULL;

  int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);

  BM_mesh_elem_index_ensure(bm, BM_LOOP);

  if (preserve_clnor) {
    BLI_assert(bm->lnor_spacearr->lspacearr != NULL);

    BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
      BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
        if (BM_ELEM_API_FLAG_TEST(l, BM_LNORSPACE_UPDATE) ||
            bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
          short(*clnor)[2] = BM_ELEM_CD_GET_VOID_P(l, cd_loop_clnors_offset);
          int l_index = BM_elem_index_get(l);

          BKE_lnor_space_custom_data_to_normal(
              bm->lnor_spacearr->lspacearr[l_index], *clnor, oldnors[l_index]);
        }
      }
    }
  }

  if (bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
    BKE_lnor_spacearr_clear(bm->lnor_spacearr);
  }
  BM_loops_calc_normal_vcos(bm,
                            NULL,
                            NULL,
                            NULL,
                            true,
                            M_PI,
                            r_lnors,
                            bm->lnor_spacearr,
                            NULL,
                            cd_loop_clnors_offset,
                            true);
  MEM_freeN(r_lnors);

  BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
    BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
      if (BM_ELEM_API_FLAG_TEST(l, BM_LNORSPACE_UPDATE) ||
          bm->spacearr_dirty & BM_SPACEARR_DIRTY_ALL) {
        if (preserve_clnor) {
          short(*clnor)[2] = BM_ELEM_CD_GET_VOID_P(l, cd_loop_clnors_offset);
          int l_index = BM_elem_index_get(l);
          BKE_lnor_space_custom_normal_to_data(
              bm->lnor_spacearr->lspacearr[l_index], oldnors[l_index], *clnor);
        }
        BM_ELEM_API_FLAG_DISABLE(l, BM_LNORSPACE_UPDATE);
      }
    }
  }

  MEM_SAFE_FREE(oldnors);
  bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);

#ifndef NDEBUG
  BM_lnorspace_err(bm);
#endif
}

/**
 * \warning This function sets #BM_ELEM_TAG on loops & edges via #bm_mesh_loops_calc_normals,
 * take care to run this before setting up tags.
 */
void BM_lnorspace_update(BMesh *bm)
{
  if (bm->lnor_spacearr == NULL) {
    bm->lnor_spacearr = MEM_callocN(sizeof(*bm->lnor_spacearr), __func__);
  }
  if (bm->lnor_spacearr->lspacearr == NULL) {
    float(*lnors)[3] = MEM_callocN(sizeof(*lnors) * bm->totloop, __func__);

    BM_lnorspacearr_store(bm, lnors);

    MEM_freeN(lnors);
  }
  else if (bm->spacearr_dirty & (BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL)) {
    BM_lnorspace_rebuild(bm, false);
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Loop Normal Edit Data Array API
 *
 * Utilities for creating/freeing #BMLoopNorEditDataArray.
 * \{ */

/**
 * Auxiliary function only used by rebuild to detect if any spaces were not marked as invalid.
 * Reports error if any of the lnor spaces change after rebuilding, meaning that all the possible
 * lnor spaces to be rebuilt were not correctly marked.
 */
#ifndef NDEBUG
void BM_lnorspace_err(BMesh *bm)
{
  bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL;
  bool clear = true;

  MLoopNorSpaceArray *temp = MEM_callocN(sizeof(*temp), __func__);
  temp->lspacearr = NULL;

  BKE_lnor_spacearr_init(temp, bm->totloop, MLNOR_SPACEARR_BMLOOP_PTR);

  int cd_loop_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
  float(*lnors)[3] = MEM_callocN(sizeof(*lnors) * bm->totloop, __func__);
  BM_loops_calc_normal_vcos(
      bm, NULL, NULL, NULL, true, M_PI, lnors, temp, NULL, cd_loop_clnors_offset, true);

  for (int i = 0; i < bm->totloop; i++) {
    int j = 0;
    j += compare_ff(
        temp->lspacearr[i]->ref_alpha, bm->lnor_spacearr->lspacearr[i]->ref_alpha, 1e-4f);
    j += compare_ff(
        temp->lspacearr[i]->ref_beta, bm->lnor_spacearr->lspacearr[i]->ref_beta, 1e-4f);
    j += compare_v3v3(
        temp->lspacearr[i]->vec_lnor, bm->lnor_spacearr->lspacearr[i]->vec_lnor, 1e-4f);
    j += compare_v3v3(
        temp->lspacearr[i]->vec_ortho, bm->lnor_spacearr->lspacearr[i]->vec_ortho, 1e-4f);
    j += compare_v3v3(
        temp->lspacearr[i]->vec_ref, bm->lnor_spacearr->lspacearr[i]->vec_ref, 1e-4f);

    if (j != 5) {
      clear = false;
      break;
    }
  }
  BKE_lnor_spacearr_free(temp);
  MEM_freeN(temp);
  MEM_freeN(lnors);
  BLI_assert(clear);

  bm->spacearr_dirty &= ~BM_SPACEARR_DIRTY_ALL;
}
#endif

static void bm_loop_normal_mark_indiv_do_loop(BMLoop *l,
                                              BLI_bitmap *loops,
                                              MLoopNorSpaceArray *lnor_spacearr,
                                              int *totloopsel,
                                              const bool do_all_loops_of_vert)
{
  if (l != NULL) {
    const int l_idx = BM_elem_index_get(l);

    if (!BLI_BITMAP_TEST(loops, l_idx)) {
      /* If vert and face selected share a loop, mark it for editing. */
      BLI_BITMAP_ENABLE(loops, l_idx);
      (*totloopsel)++;

      if (do_all_loops_of_vert) {
        /* If required, also mark all loops shared by that vertex.
         * This is needed when loop spaces may change
         * (i.e. when some faces or edges might change of smooth/sharp status). */
        BMIter liter;
        BMLoop *lfan;
        BM_ITER_ELEM (lfan, &liter, l->v, BM_LOOPS_OF_VERT) {
          const int lfan_idx = BM_elem_index_get(lfan);
          if (!BLI_BITMAP_TEST(loops, lfan_idx)) {
            BLI_BITMAP_ENABLE(loops, lfan_idx);
            (*totloopsel)++;
          }
        }
      }
      else {
        /* Mark all loops in same loop normal space (aka smooth fan). */
        if ((lnor_spacearr->lspacearr[l_idx]->flags & MLNOR_SPACE_IS_SINGLE) == 0) {
          for (LinkNode *node = lnor_spacearr->lspacearr[l_idx]->loops; node; node = node->next) {
            const int lfan_idx = BM_elem_index_get((BMLoop *)node->link);
            if (!BLI_BITMAP_TEST(loops, lfan_idx)) {
              BLI_BITMAP_ENABLE(loops, lfan_idx);
              (*totloopsel)++;
            }
          }
        }
      }
    }
  }
}

/* Mark the individual clnors to be edited, if multiple selection methods are used. */
static int bm_loop_normal_mark_indiv(BMesh *bm, BLI_bitmap *loops, const bool do_all_loops_of_vert)
{
  BMEditSelection *ese, *ese_prev;
  int totloopsel = 0;

  const bool sel_verts = (bm->selectmode & SCE_SELECT_VERTEX) != 0;
  const bool sel_edges = (bm->selectmode & SCE_SELECT_EDGE) != 0;
  const bool sel_faces = (bm->selectmode & SCE_SELECT_FACE) != 0;
  const bool use_sel_face_history = sel_faces && (sel_edges || sel_verts);

  BM_mesh_elem_index_ensure(bm, BM_LOOP);

  BLI_assert(bm->lnor_spacearr != NULL);
  BLI_assert(bm->lnor_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR);

  if (use_sel_face_history) {
    /* Using face history allows to select a single loop from a single face...
     * Note that this is O(n^2) piece of code,
     * but it is not designed to be used with huge selection sets,
     * rather with only a few items selected at most.*/
    /* Goes from last selected to the first selected element. */
    for (ese = bm->selected.last; ese; ese = ese->prev) {
      if (ese->htype == BM_FACE) {
        /* If current face is selected,
         * then any verts to be edited must have been selected before it. */
        for (ese_prev = ese->prev; ese_prev; ese_prev = ese_prev->prev) {
          if (ese_prev->htype == BM_VERT) {
            bm_loop_normal_mark_indiv_do_loop(
                BM_face_vert_share_loop((BMFace *)ese->ele, (BMVert *)ese_prev->ele),
                loops,
                bm->lnor_spacearr,
                &totloopsel,
                do_all_loops_of_vert);
          }
          else if (ese_prev->htype == BM_EDGE) {
            BMEdge *e = (BMEdge *)ese_prev->ele;
            bm_loop_normal_mark_indiv_do_loop(BM_face_vert_share_loop((BMFace *)ese->ele, e->v1),
                                              loops,
                                              bm->lnor_spacearr,
                                              &totloopsel,
                                              do_all_loops_of_vert);

            bm_loop_normal_mark_indiv_do_loop(BM_face_vert_share_loop((BMFace *)ese->ele, e->v2),
                                              loops,
                                              bm->lnor_spacearr,
                                              &totloopsel,
                                              do_all_loops_of_vert);
          }
        }
      }
    }
  }
  else {
    if (sel_faces) {
      /* Only select all loops of selected faces. */
      BMLoop *l;
      BMFace *f;
      BMIter liter, fiter;
      BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
        if (BM_elem_flag_test(f, BM_ELEM_SELECT)) {
          BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
            bm_loop_normal_mark_indiv_do_loop(
                l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
          }
        }
      }
    }
    if (sel_edges) {
      /* Only select all loops of selected edges. */
      BMLoop *l;
      BMEdge *e;
      BMIter liter, eiter;
      BM_ITER_MESH (e, &eiter, bm, BM_EDGES_OF_MESH) {
        if (BM_elem_flag_test(e, BM_ELEM_SELECT)) {
          BM_ITER_ELEM (l, &liter, e, BM_LOOPS_OF_EDGE) {
            bm_loop_normal_mark_indiv_do_loop(
                l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
            /* Loops actually 'have' two edges, or said otherwise, a selected edge actually selects
             * *two* loops in each of its faces. We have to find the other one too. */
            if (BM_vert_in_edge(e, l->next->v)) {
              bm_loop_normal_mark_indiv_do_loop(
                  l->next, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
            }
            else {
              BLI_assert(BM_vert_in_edge(e, l->prev->v));
              bm_loop_normal_mark_indiv_do_loop(
                  l->prev, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
            }
          }
        }
      }
    }
    if (sel_verts) {
      /* Select all loops of selected verts. */
      BMLoop *l;
      BMVert *v;
      BMIter liter, viter;
      BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
        if (BM_elem_flag_test(v, BM_ELEM_SELECT)) {
          BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
            bm_loop_normal_mark_indiv_do_loop(
                l, loops, bm->lnor_spacearr, &totloopsel, do_all_loops_of_vert);
          }
        }
      }
    }
  }

  return totloopsel;
}

static void loop_normal_editdata_init(
    BMesh *bm, BMLoopNorEditData *lnor_ed, BMVert *v, BMLoop *l, const int offset)
{
  BLI_assert(bm->lnor_spacearr != NULL);
  BLI_assert(bm->lnor_spacearr->lspacearr != NULL);

  const int l_index = BM_elem_index_get(l);
  short *clnors_data = BM_ELEM_CD_GET_VOID_P(l, offset);

  lnor_ed->loop_index = l_index;
  lnor_ed->loop = l;

  float custom_normal[3];
  BKE_lnor_space_custom_data_to_normal(
      bm->lnor_spacearr->lspacearr[l_index], clnors_data, custom_normal);

  lnor_ed->clnors_data = clnors_data;
  copy_v3_v3(lnor_ed->nloc, custom_normal);
  copy_v3_v3(lnor_ed->niloc, custom_normal);

  lnor_ed->loc = v->co;
}

BMLoopNorEditDataArray *BM_loop_normal_editdata_array_init(BMesh *bm,
                                                           const bool do_all_loops_of_vert)
{
  BMLoop *l;
  BMVert *v;
  BMIter liter, viter;

  int totloopsel = 0;

  BLI_assert(bm->spacearr_dirty == 0);

  BMLoopNorEditDataArray *lnors_ed_arr = MEM_callocN(sizeof(*lnors_ed_arr), __func__);
  lnors_ed_arr->lidx_to_lnor_editdata = MEM_callocN(
      sizeof(*lnors_ed_arr->lidx_to_lnor_editdata) * bm->totloop, __func__);

  if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
    BM_data_layer_add(bm, &bm->ldata, CD_CUSTOMLOOPNORMAL);
  }
  const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);

  BM_mesh_elem_index_ensure(bm, BM_LOOP);

  BLI_bitmap *loops = BLI_BITMAP_NEW(bm->totloop, __func__);

  /* This function define loop normals to edit, based on selection modes and history. */
  totloopsel = bm_loop_normal_mark_indiv(bm, loops, do_all_loops_of_vert);

  if (totloopsel) {
    BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata = MEM_mallocN(
        sizeof(*lnor_ed) * totloopsel, __func__);

    BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) {
      BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) {
        if (BLI_BITMAP_TEST(loops, BM_elem_index_get(l))) {
          loop_normal_editdata_init(bm, lnor_ed, v, l, cd_custom_normal_offset);
          lnors_ed_arr->lidx_to_lnor_editdata[BM_elem_index_get(l)] = lnor_ed;
          lnor_ed++;
        }
      }
    }
    lnors_ed_arr->totloop = totloopsel;
  }

  MEM_freeN(loops);
  lnors_ed_arr->cd_custom_normal_offset = cd_custom_normal_offset;
  return lnors_ed_arr;
}

void BM_loop_normal_editdata_array_free(BMLoopNorEditDataArray *lnors_ed_arr)
{
  MEM_SAFE_FREE(lnors_ed_arr->lnor_editdata);
  MEM_SAFE_FREE(lnors_ed_arr->lidx_to_lnor_editdata);
  MEM_freeN(lnors_ed_arr);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Custom Normals / Vector Layer Conversion
 * \{ */

/**
 * \warning This function sets #BM_ELEM_TAG on loops & edges via #bm_mesh_loops_calc_normals,
 * take care to run this before setting up tags.
 */
bool BM_custom_loop_normals_to_vector_layer(BMesh *bm)
{
  BMFace *f;
  BMLoop *l;
  BMIter liter, fiter;

  if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) {
    return false;
  }

  BM_lnorspace_update(bm);
  BM_mesh_elem_index_ensure(bm, BM_LOOP);

  /* Create a loop normal layer. */
  if (!CustomData_has_layer(&bm->ldata, CD_NORMAL)) {
    BM_data_layer_add(bm, &bm->ldata, CD_NORMAL);

    CustomData_set_layer_flag(&bm->ldata, CD_NORMAL, CD_FLAG_TEMPORARY);
  }

  const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
  const int cd_normal_offset = CustomData_get_offset(&bm->ldata, CD_NORMAL);

  BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) {
    BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
      const int l_index = BM_elem_index_get(l);
      const short *clnors_data = BM_ELEM_CD_GET_VOID_P(l, cd_custom_normal_offset);
      float *normal = BM_ELEM_CD_GET_VOID_P(l, cd_normal_offset);

      BKE_lnor_space_custom_data_to_normal(
          bm->lnor_spacearr->lspacearr[l_index], clnors_data, normal);
    }
  }

  return true;
}

void BM_custom_loop_normals_from_vector_layer(BMesh *bm, bool add_sharp_edges)
{
  if (!CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL) ||
      !CustomData_has_layer(&bm->ldata, CD_NORMAL)) {
    return;
  }

  const int cd_custom_normal_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL);
  const int cd_normal_offset = CustomData_get_offset(&bm->ldata, CD_NORMAL);

  if (bm->lnor_spacearr == NULL) {
    bm->lnor_spacearr = MEM_callocN(sizeof(*bm->lnor_spacearr), __func__);
  }

  bm_mesh_loops_custom_normals_set(bm,
                                   NULL,
                                   NULL,
                                   NULL,
                                   bm->lnor_spacearr,
                                   NULL,
                                   cd_custom_normal_offset,
                                   NULL,
                                   cd_normal_offset,
                                   add_sharp_edges);

  bm->spacearr_dirty &= ~(BM_SPACEARR_DIRTY | BM_SPACEARR_DIRTY_ALL);
}

/** \} */