Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bmesh_structure.c « intern « bmesh « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7d340f02f2eb091db582e6b5c6f6b2f937a17684 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2007 Blender Foundation. All rights reserved. */

/** \file
 * \ingroup bmesh
 *
 * Low level routines for manipulating the BM structure.
 */

#include "BLI_utildefines.h"

#include "bmesh.h"
#include "intern/bmesh_private.h"

/**
 * MISC utility functions.
 */

void bmesh_disk_vert_swap(BMEdge *e, BMVert *v_dst, BMVert *v_src)
{
  if (e->v1 == v_src) {
    e->v1 = v_dst;
    e->v1_disk_link.next = e->v1_disk_link.prev = NULL;
  }
  else if (e->v2 == v_src) {
    e->v2 = v_dst;
    e->v2_disk_link.next = e->v2_disk_link.prev = NULL;
  }
  else {
    BLI_assert(0);
  }
}

void bmesh_edge_vert_swap(BMEdge *e, BMVert *v_dst, BMVert *v_src)
{
  /* swap out loops */
  if (e->l) {
    BMLoop *l_iter, *l_first;
    l_iter = l_first = e->l;
    do {
      if (l_iter->v == v_src) {
        l_iter->v = v_dst;
      }
      else if (l_iter->next->v == v_src) {
        l_iter->next->v = v_dst;
      }
      else {
        BLI_assert(l_iter->prev->v != v_src);
      }
    } while ((l_iter = l_iter->radial_next) != l_first);
  }

  /* swap out edges */
  bmesh_disk_vert_replace(e, v_dst, v_src);
}

void bmesh_disk_vert_replace(BMEdge *e, BMVert *v_dst, BMVert *v_src)
{
  BLI_assert(e->v1 == v_src || e->v2 == v_src);
  bmesh_disk_edge_remove(e, v_src);      /* remove e from tv's disk cycle */
  bmesh_disk_vert_swap(e, v_dst, v_src); /* swap out tv for v_new in e */
  bmesh_disk_edge_append(e, v_dst);      /* add e to v_dst's disk cycle */
  BLI_assert(e->v1 != e->v2);
}

/**
 * \section bm_cycles BMesh Cycles
 *
 * NOTE(@joeedh): this is somewhat outdated, though bits of its API are still used.
 *
 * Cycles are circular doubly linked lists that form the basis of adjacency
 * information in the BME modeler. Full adjacency relations can be derived
 * from examining these cycles very quickly. Although each cycle is a double
 * circular linked list, each one is considered to have a 'base' or 'head',
 * and care must be taken by Euler code when modifying the contents of a cycle.
 *
 * The contents of this file are split into two parts. First there are the
 * bmesh_cycle family of functions which are generic circular double linked list
 * procedures. The second part contains higher level procedures for supporting
 * modification of specific cycle types.
 *
 * The three cycles explicitly stored in the BM data structure are as follows:
 * 1: The Disk Cycle - A circle of edges around a vertex
 * Base: vertex->edge pointer.
 *
 * This cycle is the most complicated in terms of its structure. Each bmesh_Edge contains
 * two bmesh_CycleNode structures to keep track of that edges membership in the disk cycle
 * of each of its vertices. However for any given vertex it may be the first in some edges
 * in its disk cycle and the second for others. The bmesh_disk_XXX family of functions contain
 * some nice utilities for navigating disk cycles in a way that hides this detail from the
 * tool writer.
 *
 * Note that the disk cycle is completely independent from face data. One advantage of this
 * is that wire edges are fully integrated into the topology database. Another is that the
 * the disk cycle has no problems dealing with non-manifold conditions involving faces.
 *
 * Functions relating to this cycle:
 * - #bmesh_disk_vert_replace
 * - #bmesh_disk_edge_append
 * - #bmesh_disk_edge_remove
 * - #bmesh_disk_edge_next
 * - #bmesh_disk_edge_prev
 * - #bmesh_disk_facevert_count
 * - #bmesh_disk_faceedge_find_first
 * - #bmesh_disk_faceedge_find_next
 * 2: The Radial Cycle - A circle of face edges (bmesh_Loop) around an edge
 * Base: edge->l->radial structure.
 *
 * The radial cycle is similar to the radial cycle in the radial edge data structure.*
 * Unlike the radial edge however, the radial cycle does not require a large amount of memory
 * to store non-manifold conditions since BM does not keep track of region/shell information.
 *
 * Functions relating to this cycle:
 * - #bmesh_radial_loop_append
 * - #bmesh_radial_loop_remove
 * - #bmesh_radial_facevert_count
 * - #bmesh_radial_facevert_check
 * - #bmesh_radial_faceloop_find_first
 * - #bmesh_radial_faceloop_find_next
 * - #bmesh_radial_validate
 * 3: The Loop Cycle - A circle of face edges around a polygon.
 * Base: polygon->lbase.
 *
 * The loop cycle keeps track of a faces vertices and edges. It should be noted that the
 * direction of a loop cycle is either CW or CCW depending on the face normal, and is
 * not oriented to the faces edit-edges.
 *
 * Functions relating to this cycle:
 * - bmesh_cycle_XXX family of functions.
 * \note the order of elements in all cycles except the loop cycle is undefined. This
 * leads to slightly increased seek time for deriving some adjacency relations, however the
 * advantage is that no intrinsic properties of the data structures are dependent upon the
 * cycle order and all non-manifold conditions are represented trivially.
 */

void bmesh_disk_edge_append(BMEdge *e, BMVert *v)
{
  if (!v->e) {
    BMDiskLink *dl1 = bmesh_disk_edge_link_from_vert(e, v);

    v->e = e;
    dl1->next = dl1->prev = e;
  }
  else {
    BMDiskLink *dl1, *dl2, *dl3;

    dl1 = bmesh_disk_edge_link_from_vert(e, v);
    dl2 = bmesh_disk_edge_link_from_vert(v->e, v);
    dl3 = dl2->prev ? bmesh_disk_edge_link_from_vert(dl2->prev, v) : NULL;

    dl1->next = v->e;
    dl1->prev = dl2->prev;

    dl2->prev = e;
    if (dl3) {
      dl3->next = e;
    }
  }
}

void bmesh_disk_edge_remove(BMEdge *e, BMVert *v)
{
  BMDiskLink *dl1, *dl2;

  dl1 = bmesh_disk_edge_link_from_vert(e, v);
  if (dl1->prev) {
    dl2 = bmesh_disk_edge_link_from_vert(dl1->prev, v);
    dl2->next = dl1->next;
  }

  if (dl1->next) {
    dl2 = bmesh_disk_edge_link_from_vert(dl1->next, v);
    dl2->prev = dl1->prev;
  }

  if (v->e == e) {
    v->e = (e != dl1->next) ? dl1->next : NULL;
  }

  dl1->next = dl1->prev = NULL;
}

BMEdge *bmesh_disk_edge_exists(const BMVert *v1, const BMVert *v2)
{
  if (v1->e) {
    BMEdge *e_iter, *e_first;
    e_first = e_iter = v1->e;

    do {
      if (BM_verts_in_edge(v1, v2, e_iter)) {
        return e_iter;
      }
    } while ((e_iter = bmesh_disk_edge_next(e_iter, v1)) != e_first);
  }

  return NULL;
}

int bmesh_disk_count(const BMVert *v)
{
  int count = 0;
  if (v->e) {
    BMEdge *e_first, *e_iter;
    e_iter = e_first = v->e;
    do {
      count++;
    } while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e_first);
  }
  return count;
}

int bmesh_disk_count_at_most(const BMVert *v, const int count_max)
{
  int count = 0;
  if (v->e) {
    BMEdge *e_first, *e_iter;
    e_iter = e_first = v->e;
    do {
      count++;
      if (count == count_max) {
        break;
      }
    } while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e_first);
  }
  return count;
}

bool bmesh_disk_validate(int len, BMEdge *e, BMVert *v)
{
  BMEdge *e_iter;

  if (!BM_vert_in_edge(e, v)) {
    return false;
  }
  if (len == 0 || bmesh_disk_count_at_most(v, len + 1) != len) {
    return false;
  }

  e_iter = e;
  do {
    if (len != 1 && bmesh_disk_edge_prev(e_iter, v) == e_iter) {
      return false;
    }
  } while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e);

  return true;
}

int bmesh_disk_facevert_count(const BMVert *v)
{
  /* is there an edge on this vert at all */
  int count = 0;
  if (v->e) {
    BMEdge *e_first, *e_iter;

    /* first, loop around edge */
    e_first = e_iter = v->e;
    do {
      if (e_iter->l) {
        count += bmesh_radial_facevert_count(e_iter->l, v);
      }
    } while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e_first);
  }
  return count;
}

int bmesh_disk_facevert_count_at_most(const BMVert *v, const int count_max)
{
  /* is there an edge on this vert at all */
  int count = 0;
  if (v->e) {
    BMEdge *e_first, *e_iter;

    /* first, loop around edge */
    e_first = e_iter = v->e;
    do {
      if (e_iter->l) {
        count += bmesh_radial_facevert_count_at_most(e_iter->l, v, count_max - count);
        if (count == count_max) {
          break;
        }
      }
    } while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e_first);
  }
  return count;
}

BMEdge *bmesh_disk_faceedge_find_first(const BMEdge *e, const BMVert *v)
{
  const BMEdge *e_iter = e;
  do {
    if (e_iter->l != NULL) {
      return (BMEdge *)((e_iter->l->v == v) ? e_iter : e_iter->l->next->e);
    }
  } while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e);
  return NULL;
}

BMLoop *bmesh_disk_faceloop_find_first(const BMEdge *e, const BMVert *v)
{
  const BMEdge *e_iter = e;
  do {
    if (e_iter->l != NULL) {
      return (e_iter->l->v == v) ? e_iter->l : e_iter->l->next;
    }
  } while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e);
  return NULL;
}

BMLoop *bmesh_disk_faceloop_find_first_visible(const BMEdge *e, const BMVert *v)
{
  const BMEdge *e_iter = e;
  do {
    if (!BM_elem_flag_test(e_iter, BM_ELEM_HIDDEN)) {
      if (e_iter->l != NULL) {
        BMLoop *l_iter, *l_first;
        l_iter = l_first = e_iter->l;
        do {
          if (!BM_elem_flag_test(l_iter->f, BM_ELEM_HIDDEN)) {
            return (l_iter->v == v) ? l_iter : l_iter->next;
          }
        } while ((l_iter = l_iter->radial_next) != l_first);
      }
    }
  } while ((e_iter = bmesh_disk_edge_next(e_iter, v)) != e);
  return NULL;
}

BMEdge *bmesh_disk_faceedge_find_next(const BMEdge *e, const BMVert *v)
{
  BMEdge *e_find;
  e_find = bmesh_disk_edge_next(e, v);
  do {
    if (e_find->l && bmesh_radial_facevert_check(e_find->l, v)) {
      return e_find;
    }
  } while ((e_find = bmesh_disk_edge_next(e_find, v)) != e);
  return (BMEdge *)e;
}

bool bmesh_radial_validate(int radlen, BMLoop *l)
{
  BMLoop *l_iter = l;
  int i = 0;

  if (bmesh_radial_length(l) != radlen) {
    return false;
  }

  do {
    if (UNLIKELY(!l_iter)) {
      BMESH_ASSERT(0);
      return false;
    }

    if (l_iter->e != l->e) {
      return false;
    }
    if (!ELEM(l_iter->v, l->e->v1, l->e->v2)) {
      return false;
    }

    if (UNLIKELY(i > BM_LOOP_RADIAL_MAX)) {
      BMESH_ASSERT(0);
      return false;
    }

    i++;
  } while ((l_iter = l_iter->radial_next) != l);

  return true;
}

void bmesh_radial_loop_append(BMEdge *e, BMLoop *l)
{
  if (e->l == NULL) {
    e->l = l;
    l->radial_next = l->radial_prev = l;
  }
  else {
    l->radial_prev = e->l;
    l->radial_next = e->l->radial_next;

    e->l->radial_next->radial_prev = l;
    e->l->radial_next = l;

    e->l = l;
  }

  if (UNLIKELY(l->e && l->e != e)) {
    /* l is already in a radial cycle for a different edge */
    BMESH_ASSERT(0);
  }

  l->e = e;
}

void bmesh_radial_loop_remove(BMEdge *e, BMLoop *l)
{
  /* if e is non-NULL, l must be in the radial cycle of e */
  if (UNLIKELY(e != l->e)) {
    BMESH_ASSERT(0);
  }

  if (l->radial_next != l) {
    if (l == e->l) {
      e->l = l->radial_next;
    }

    l->radial_next->radial_prev = l->radial_prev;
    l->radial_prev->radial_next = l->radial_next;
  }
  else {
    if (l == e->l) {
      e->l = NULL;
    }
    else {
      BMESH_ASSERT(0);
    }
  }

  /* l is no longer in a radial cycle; empty the links
   * to the cycle and the link back to an edge */
  l->radial_next = l->radial_prev = NULL;
  l->e = NULL;
}

void bmesh_radial_loop_unlink(BMLoop *l)
{
  if (l->radial_next != l) {
    l->radial_next->radial_prev = l->radial_prev;
    l->radial_prev->radial_next = l->radial_next;
  }

  /* l is no longer in a radial cycle; empty the links
   * to the cycle and the link back to an edge */
  l->radial_next = l->radial_prev = NULL;
  l->e = NULL;
}

BMLoop *bmesh_radial_faceloop_find_first(const BMLoop *l, const BMVert *v)
{
  const BMLoop *l_iter;
  l_iter = l;
  do {
    if (l_iter->v == v) {
      return (BMLoop *)l_iter;
    }
  } while ((l_iter = l_iter->radial_next) != l);
  return NULL;
}

BMLoop *bmesh_radial_faceloop_find_next(const BMLoop *l, const BMVert *v)
{
  BMLoop *l_iter;
  l_iter = l->radial_next;
  do {
    if (l_iter->v == v) {
      return l_iter;
    }
  } while ((l_iter = l_iter->radial_next) != l);
  return (BMLoop *)l;
}

int bmesh_radial_length(const BMLoop *l)
{
  const BMLoop *l_iter = l;
  int i = 0;

  if (!l) {
    return 0;
  }

  do {
    if (UNLIKELY(!l_iter)) {
      /* Radial cycle is broken (not a circular loop). */
      BMESH_ASSERT(0);
      return 0;
    }

    i++;
    if (UNLIKELY(i >= BM_LOOP_RADIAL_MAX)) {
      BMESH_ASSERT(0);
      return -1;
    }
  } while ((l_iter = l_iter->radial_next) != l);

  return i;
}

int bmesh_radial_facevert_count(const BMLoop *l, const BMVert *v)
{
  const BMLoop *l_iter;
  int count = 0;
  l_iter = l;
  do {
    if (l_iter->v == v) {
      count++;
    }
  } while ((l_iter = l_iter->radial_next) != l);

  return count;
}

int bmesh_radial_facevert_count_at_most(const BMLoop *l, const BMVert *v, const int count_max)
{
  const BMLoop *l_iter;
  int count = 0;
  l_iter = l;
  do {
    if (l_iter->v == v) {
      count++;
      if (count == count_max) {
        break;
      }
    }
  } while ((l_iter = l_iter->radial_next) != l);

  return count;
}

bool bmesh_radial_facevert_check(const BMLoop *l, const BMVert *v)
{
  const BMLoop *l_iter;
  l_iter = l;
  do {
    if (l_iter->v == v) {
      return true;
    }
  } while ((l_iter = l_iter->radial_next) != l);

  return false;
}

bool bmesh_loop_validate(BMFace *f)
{
  int i;
  int len = f->len;
  BMLoop *l_iter, *l_first;

  l_first = BM_FACE_FIRST_LOOP(f);

  if (l_first == NULL) {
    return false;
  }

  /* Validate that the face loop cycle is the length specified by f->len */
  for (i = 1, l_iter = l_first->next; i < len; i++, l_iter = l_iter->next) {
    if ((l_iter->f != f) || (l_iter == l_first)) {
      return false;
    }
  }
  if (l_iter != l_first) {
    return false;
  }

  /* Validate the loop->prev links also form a cycle of length f->len */
  for (i = 1, l_iter = l_first->prev; i < len; i++, l_iter = l_iter->prev) {
    if (l_iter == l_first) {
      return false;
    }
  }
  if (l_iter != l_first) {
    return false;
  }

  return true;
}