Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bmo_connect_nonplanar.c « operators « bmesh « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ac88ffb9065e18804f9842e5226ec88f6be23402 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/* SPDX-License-Identifier: GPL-2.0-or-later */

/** \file
 * \ingroup bmesh
 *
 * Connect verts non-planer faces iteratively (splits faces).
 */

#include "BLI_alloca.h"
#include "BLI_linklist_stack.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"

#include "bmesh.h"

#include "intern/bmesh_operators_private.h" /* own include */

#define EDGE_OUT (1 << 0)
#define FACE_OUT (1 << 1)

/**
 * Calculates how non-planar the face subset is.
 */
static float bm_face_subset_calc_planar(BMLoop *l_first, BMLoop *l_last, const float no[3])
{
  float axis_mat[3][3];
  float z_prev, z_curr;
  float delta_z = 0.0f;

  /* Newell's Method */
  BMLoop *l_iter = l_first;
  BMLoop *l_term = l_last->next;

  axis_dominant_v3_to_m3(axis_mat, no);

  z_prev = dot_m3_v3_row_z(axis_mat, l_last->v->co);
  do {
    z_curr = dot_m3_v3_row_z(axis_mat, l_iter->v->co);
    delta_z += fabsf(z_curr - z_prev);
    z_prev = z_curr;
  } while ((l_iter = l_iter->next) != l_term);

  return delta_z;
}

static bool bm_face_split_find(BMesh *bm, BMFace *f, BMLoop *l_pair[2], float *r_angle_cos)
{
  BMLoop *l_iter, *l_first;
  BMLoop **l_arr = BLI_array_alloca(l_arr, f->len);
  const uint f_len = f->len;
  uint i_a, i_b;
  bool found = false;

  /* angle finding */
  float err_best = FLT_MAX;
  float angle_best_cos = -FLT_MAX;

  l_iter = l_first = BM_FACE_FIRST_LOOP(f);
  i_a = 0;
  do {
    l_arr[i_a++] = l_iter;
  } while ((l_iter = l_iter->next) != l_first);

  /* now for the big search, O(N^2), however faces normally aren't so large */
  for (i_a = 0; i_a < f_len; i_a++) {
    BMLoop *l_a = l_arr[i_a];
    for (i_b = i_a + 2; i_b < f_len; i_b++) {
      BMLoop *l_b = l_arr[i_b];
      /* check these are not touching
       * (we could be smarter here) */
      if (!BM_loop_is_adjacent(l_a, l_b)) {
        /* first calculate normals */
        float no_a[3], no_b[3];

        if (BM_face_calc_normal_subset(l_a, l_b, no_a) != 0.0f &&
            BM_face_calc_normal_subset(l_b, l_a, no_b) != 0.0f) {
          const float err_a = bm_face_subset_calc_planar(l_a, l_b, no_a);
          const float err_b = bm_face_subset_calc_planar(l_b, l_a, no_b);
          const float err_test = err_a + err_b;

          if (err_test < err_best) {
            /* check we're legal (we could batch this) */
            BMLoop *l_split[2] = {l_a, l_b};
            BM_face_splits_check_legal(bm, f, &l_split, 1);
            if (l_split[0]) {
              err_best = err_test;
              l_pair[0] = l_a;
              l_pair[1] = l_b;

              angle_best_cos = dot_v3v3(no_a, no_b);
              found = true;
            }
          }
        }
      }
    }
  }

  *r_angle_cos = angle_best_cos;

  return found;
}

static bool bm_face_split_by_angle(BMesh *bm,
                                   BMFace *f,
                                   BMFace *r_f_pair[2],
                                   const float angle_limit_cos)
{
  BMLoop *l_pair[2];
  float angle_cos;

  if (bm_face_split_find(bm, f, l_pair, &angle_cos) && (angle_cos < angle_limit_cos)) {
    BMFace *f_new;
    BMLoop *l_new;

    f_new = BM_face_split(bm, f, l_pair[0], l_pair[1], &l_new, NULL, false);
    if (f_new) {
      r_f_pair[0] = f;
      r_f_pair[1] = f_new;

      BMO_face_flag_enable(bm, f, FACE_OUT);
      BMO_face_flag_enable(bm, f_new, FACE_OUT);
      BMO_edge_flag_enable(bm, l_new->e, EDGE_OUT);
      return true;
    }
  }

  return false;
}

void bmo_connect_verts_nonplanar_exec(BMesh *bm, BMOperator *op)
{
  BMOIter siter;
  BMFace *f;
  bool changed = false;
  BLI_LINKSTACK_DECLARE(fstack, BMFace *);

  const float angle_limit_cos = cosf(BMO_slot_float_get(op->slots_in, "angle_limit"));

  BLI_LINKSTACK_INIT(fstack);

  BMO_ITER (f, &siter, op->slots_in, "faces", BM_FACE) {
    if (f->len > 3) {
      BLI_LINKSTACK_PUSH(fstack, f);
    }
  }

  while ((f = BLI_LINKSTACK_POP(fstack))) {
    BMFace *f_pair[2];
    if (bm_face_split_by_angle(bm, f, f_pair, angle_limit_cos)) {
      int j;
      for (j = 0; j < 2; j++) {
        BM_face_normal_update(f_pair[j]);
        if (f_pair[j]->len > 3) {
          BLI_LINKSTACK_PUSH(fstack, f_pair[j]);
        }
      }
      changed = true;
    }
  }

  BLI_LINKSTACK_FREE(fstack);

  if (changed) {
    BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "edges.out", BM_EDGE, EDGE_OUT);
    BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "faces.out", BM_FACE, FACE_OUT);
  }
}