Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bmo_connect_pair.c « operators « bmesh « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 660633e8a0f3c207ab6fddf76d4f9b8e1443ca95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/** \file
 * \ingroup bmesh
 *
 * Connect vertex pair across multiple faces (splits faces).
 */

#include "MEM_guardedalloc.h"

#include "BLI_heap_simple.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"

#include "bmesh.h"

#include "intern/bmesh_operators_private.h" /* own include */

#include "BLI_mempool.h"

/**
 * Method for connecting across many faces.
 *
 * - use the line between both verts and their normal average to construct a matrix.
 * - using the matrix, we can find all intersecting verts/edges.
 * - walk the connected data and find the shortest path.
 *   - store a heap of paths which are being scanned (#PathContext.states).
 *   - continuously search the shortest path in the heap.
 *   - never step over the same element twice (tag elements as #ELE_TOUCHED).
 *     this avoids going into an eternal loop if there are many possible branches (see T45582).
 *   - when running into a branch, create a new #PathLinkState state and add to the heap.
 *   - when the target is reached,
 *     finish - since none of the other paths can be shorter than the one just found.
 * - if the connection can't be found - fail.
 * - with the connection found, split all edges tagging verts
 *   (or tag verts that sit on the intersection).
 * - run the standard connect operator.
 */

#define CONNECT_EPS 0.0001f
#define VERT_OUT 1
#define VERT_EXCLUDE 2

/* typically hidden faces */
#define FACE_EXCLUDE 2

/* any element we've walked over (only do it once!) */
#define ELE_TOUCHED 4

#define FACE_WALK_TEST(f) \
  (CHECK_TYPE_INLINE(f, BMFace *), BMO_face_flag_test(pc->bm_bmoflag, f, FACE_EXCLUDE) == 0)
#define VERT_WALK_TEST(v) \
  (CHECK_TYPE_INLINE(v, BMVert *), BMO_vert_flag_test(pc->bm_bmoflag, v, VERT_EXCLUDE) == 0)

#if 0
#  define ELE_TOUCH_TEST(e) \
    (CHECK_TYPE_ANY(e, BMVert *, BMEdge *, BMElem *, BMElemF *), \
     BMO_elem_flag_test(pc->bm_bmoflag, (BMElemF *)e, ELE_TOUCHED))
#endif
#define ELE_TOUCH_MARK(e) \
  { \
    CHECK_TYPE_ANY(e, BMVert *, BMEdge *, BMElem *, BMElemF *); \
    BMO_elem_flag_enable(pc->bm_bmoflag, (BMElemF *)e, ELE_TOUCHED); \
  } \
  ((void)0)

#define ELE_TOUCH_TEST_VERT(v) BMO_vert_flag_test(pc->bm_bmoflag, v, ELE_TOUCHED)
// #define ELE_TOUCH_MARK_VERT(v) BMO_vert_flag_enable(pc->bm_bmoflag, (BMElemF *)v, ELE_TOUCHED)

#define ELE_TOUCH_TEST_EDGE(e) BMO_edge_flag_test(pc->bm_bmoflag, e, ELE_TOUCHED)
// #define ELE_TOUCH_MARK_EDGE(e) BMO_edge_flag_enable(pc->bm_bmoflag, (BMElemF *)e, ELE_TOUCHED)

// #define ELE_TOUCH_TEST_FACE(f) BMO_face_flag_test(pc->bm_bmoflag, f, ELE_TOUCHED)
// #define ELE_TOUCH_MARK_FACE(f) BMO_face_flag_enable(pc->bm_bmoflag, (BMElemF *)f, ELE_TOUCHED)

// #define DEBUG_PRINT

typedef struct PathContext {
  HeapSimple *states;
  float matrix[3][3];
  float axis_sep;

  /* only to access BMO flags */
  BMesh *bm_bmoflag;

  BMVert *v_a, *v_b;

  BLI_mempool *link_pool;
} PathContext;

/**
 * Single linked list where each item contains state and points to previous path item.
 */
typedef struct PathLink {
  struct PathLink *next;
  BMElem *ele;      /* edge or vert */
  BMElem *ele_from; /* edge or face we came from (not 'next->ele') */
} PathLink;

typedef struct PathLinkState {
  /* chain of links */
  struct PathLink *link_last;

  /* length along links */
  float dist;
  float co_prev[3];
} PathLinkState;

/**
 * \name Min Dist Dir Util
 *
 * Simply getting the closest intersecting vert/edge is _not_ good enough. see T43792
 * we need to get the closest in both directions since the absolute closest may be a dead-end.
 *
 * Logic is simple:
 *
 * - first intersection, store the direction.
 * - successive intersections will update the first distance if its aligned with the first hit.
 *   otherwise update the opposite distance.
 * - caller stores best outcome in both directions.
 *
 * \{ */

typedef struct MinDistDir {
  /* distance in both directions (FLT_MAX == uninitialized) */
  float dist_min[2];
  /* direction of the first intersection found */
  float dir[3];
} MinDistDir;

#define MIN_DIST_DIR_INIT \
  { \
    { \
      FLT_MAX, FLT_MAX \
    } \
  }

static int min_dist_dir_test(MinDistDir *mddir, const float dist_dir[3], const float dist_sq)
{

  if (mddir->dist_min[0] == FLT_MAX) {
    return 0;
  }
  if (dot_v3v3(dist_dir, mddir->dir) > 0.0f) {
    if (dist_sq < mddir->dist_min[0]) {
      return 0;
    }
  }
  else {
    if (dist_sq < mddir->dist_min[1]) {
      return 1;
    }
  }

  return -1;
}

static void min_dist_dir_update(MinDistDir *dist, const float dist_dir[3])
{
  if (dist->dist_min[0] == FLT_MAX) {
    copy_v3_v3(dist->dir, dist_dir);
  }
}

/** \} */

static int state_isect_co_pair(const PathContext *pc, const float co_a[3], const float co_b[3])
{
  const float diff_a = dot_m3_v3_row_x(pc->matrix, co_a) - pc->axis_sep;
  const float diff_b = dot_m3_v3_row_x(pc->matrix, co_b) - pc->axis_sep;

  const int test_a = (fabsf(diff_a) < CONNECT_EPS) ? 0 : (diff_a < 0.0f) ? -1 : 1;
  const int test_b = (fabsf(diff_b) < CONNECT_EPS) ? 0 : (diff_b < 0.0f) ? -1 : 1;

  if ((test_a && test_b) && (test_a != test_b)) {
    return 1; /* on either side */
  }
  return 0;
}

static int state_isect_co_exact(const PathContext *pc, const float co[3])
{
  const float diff = dot_m3_v3_row_x(pc->matrix, co) - pc->axis_sep;
  return (fabsf(diff) <= CONNECT_EPS);
}

static float state_calc_co_pair_fac(const PathContext *pc,
                                    const float co_a[3],
                                    const float co_b[3])
{
  float diff_a, diff_b, diff_tot;

  diff_a = fabsf(dot_m3_v3_row_x(pc->matrix, co_a) - pc->axis_sep);
  diff_b = fabsf(dot_m3_v3_row_x(pc->matrix, co_b) - pc->axis_sep);
  diff_tot = (diff_a + diff_b);
  return (diff_tot > FLT_EPSILON) ? (diff_a / diff_tot) : 0.5f;
}

static void state_calc_co_pair(const PathContext *pc,
                               const float co_a[3],
                               const float co_b[3],
                               float r_co[3])
{
  const float fac = state_calc_co_pair_fac(pc, co_a, co_b);
  interp_v3_v3v3(r_co, co_a, co_b, fac);
}

#ifndef NDEBUG
/**
 * Ideally we wouldn't need this and for most cases we don't.
 * But when a face has vertices that are on the boundary more than once this becomes tricky.
 */
static bool state_link_find(const PathLinkState *state, BMElem *ele)
{
  PathLink *link = state->link_last;
  BLI_assert(ELEM(ele->head.htype, BM_VERT, BM_EDGE, BM_FACE));
  if (link) {
    do {
      if (link->ele == ele) {
        return true;
      }
    } while ((link = link->next));
  }
  return false;
}
#endif

static void state_link_add(PathContext *pc, PathLinkState *state, BMElem *ele, BMElem *ele_from)
{
  PathLink *step_new = BLI_mempool_alloc(pc->link_pool);
  BLI_assert(ele != ele_from);
  BLI_assert(state_link_find(state, ele) == false);

  /* never walk onto this again */
  ELE_TOUCH_MARK(ele);

#ifdef DEBUG_PRINT
  printf("%s: adding to state %p, %.4f - ", __func__, state, state->dist);
  if (ele->head.htype == BM_VERT) {
    printf("vert %d, ", BM_elem_index_get(ele));
  }
  else if (ele->head.htype == BM_EDGE) {
    printf("edge %d, ", BM_elem_index_get(ele));
  }
  else {
    BLI_assert(0);
  }

  if (ele_from == NULL) {
    printf("from NULL\n");
  }
  else if (ele_from->head.htype == BM_EDGE) {
    printf("from edge %d\n", BM_elem_index_get(ele_from));
  }
  else if (ele_from->head.htype == BM_FACE) {
    printf("from face %d\n", BM_elem_index_get(ele_from));
  }
  else {
    BLI_assert(0);
  }
#endif

  /* track distance */
  {
    float co[3];
    if (ele->head.htype == BM_VERT) {
      copy_v3_v3(co, ((BMVert *)ele)->co);
    }
    else if (ele->head.htype == BM_EDGE) {
      state_calc_co_pair(pc, ((BMEdge *)ele)->v1->co, ((BMEdge *)ele)->v2->co, co);
    }
    else {
      BLI_assert(0);
    }

    /* tally distance */
    if (ele_from) {
      state->dist += len_v3v3(state->co_prev, co);
    }
    copy_v3_v3(state->co_prev, co);
  }

  step_new->ele = ele;
  step_new->ele_from = ele_from;
  step_new->next = state->link_last;
  state->link_last = step_new;
}

static PathLinkState *state_dupe_add(PathLinkState *state, const PathLinkState *state_orig)
{
  state = MEM_mallocN(sizeof(*state), __func__);
  *state = *state_orig;
  return state;
}

static PathLinkState *state_link_add_test(PathContext *pc,
                                          PathLinkState *state,
                                          const PathLinkState *state_orig,
                                          BMElem *ele,
                                          BMElem *ele_from)
{
  const bool is_new = (state_orig->link_last != state->link_last);
  if (is_new) {
    state = state_dupe_add(state, state_orig);
  }

  state_link_add(pc, state, ele, ele_from);

  /* after adding a link so we use the updated 'state->dist' */
  if (is_new) {
    BLI_heapsimple_insert(pc->states, state->dist, state);
  }

  return state;
}

/* walk around the face edges */
static PathLinkState *state_step__face_edges(PathContext *pc,
                                             PathLinkState *state,
                                             const PathLinkState *state_orig,
                                             BMLoop *l_iter,
                                             BMLoop *l_last,
                                             MinDistDir *mddir)
{

  BMLoop *l_iter_best[2] = {NULL, NULL};
  int i;

  do {
    if (state_isect_co_pair(pc, l_iter->v->co, l_iter->next->v->co)) {
      float dist_test;
      float co_isect[3];
      float dist_dir[3];
      int index;

      state_calc_co_pair(pc, l_iter->v->co, l_iter->next->v->co, co_isect);

      sub_v3_v3v3(dist_dir, co_isect, state_orig->co_prev);
      dist_test = len_squared_v3(dist_dir);
      if ((index = min_dist_dir_test(mddir, dist_dir, dist_test)) != -1) {
        BMElem *ele_next = (BMElem *)l_iter->e;
        BMElem *ele_next_from = (BMElem *)l_iter->f;

        if (FACE_WALK_TEST((BMFace *)ele_next_from) &&
            (ELE_TOUCH_TEST_EDGE((BMEdge *)ele_next) == false)) {
          min_dist_dir_update(mddir, dist_dir);
          mddir->dist_min[index] = dist_test;
          l_iter_best[index] = l_iter;
        }
      }
    }
  } while ((l_iter = l_iter->next) != l_last);

  for (i = 0; i < 2; i++) {
    if ((l_iter = l_iter_best[i])) {
      BMElem *ele_next = (BMElem *)l_iter->e;
      BMElem *ele_next_from = (BMElem *)l_iter->f;
      state = state_link_add_test(pc, state, state_orig, ele_next, ele_next_from);
    }
  }

  return state;
}

/* walk around the face verts */
static PathLinkState *state_step__face_verts(PathContext *pc,
                                             PathLinkState *state,
                                             const PathLinkState *state_orig,
                                             BMLoop *l_iter,
                                             BMLoop *l_last,
                                             MinDistDir *mddir)
{
  BMLoop *l_iter_best[2] = {NULL, NULL};
  int i;

  do {
    if (state_isect_co_exact(pc, l_iter->v->co)) {
      float dist_test;
      const float *co_isect = l_iter->v->co;
      float dist_dir[3];
      int index;

      sub_v3_v3v3(dist_dir, co_isect, state_orig->co_prev);
      dist_test = len_squared_v3(dist_dir);
      if ((index = min_dist_dir_test(mddir, dist_dir, dist_test)) != -1) {
        BMElem *ele_next = (BMElem *)l_iter->v;
        BMElem *ele_next_from = (BMElem *)l_iter->f;

        if (FACE_WALK_TEST((BMFace *)ele_next_from) &&
            (ELE_TOUCH_TEST_VERT((BMVert *)ele_next) == false)) {
          min_dist_dir_update(mddir, dist_dir);
          mddir->dist_min[index] = dist_test;
          l_iter_best[index] = l_iter;
        }
      }
    }
  } while ((l_iter = l_iter->next) != l_last);

  for (i = 0; i < 2; i++) {
    if ((l_iter = l_iter_best[i])) {
      BMElem *ele_next = (BMElem *)l_iter->v;
      BMElem *ele_next_from = (BMElem *)l_iter->f;
      state = state_link_add_test(pc, state, state_orig, ele_next, ele_next_from);
    }
  }

  return state;
}

static bool state_step(PathContext *pc, PathLinkState *state)
{
  PathLinkState state_orig = *state;
  BMElem *ele = state->link_last->ele;
  const void *ele_from = state->link_last->ele_from;

  if (ele->head.htype == BM_EDGE) {
    BMEdge *e = (BMEdge *)ele;

    BMIter liter;
    BMLoop *l_start;

    BM_ITER_ELEM (l_start, &liter, e, BM_LOOPS_OF_EDGE) {
      if ((l_start->f != ele_from) && FACE_WALK_TEST(l_start->f)) {
        MinDistDir mddir = MIN_DIST_DIR_INIT;
        /* Very similar to block below. */
        state = state_step__face_edges(pc, state, &state_orig, l_start->next, l_start, &mddir);
        state = state_step__face_verts(
            pc, state, &state_orig, l_start->next->next, l_start, &mddir);
      }
    }
  }
  else if (ele->head.htype == BM_VERT) {
    BMVert *v = (BMVert *)ele;

    /* Vert loops. */
    {
      BMIter liter;
      BMLoop *l_start;

      BM_ITER_ELEM (l_start, &liter, v, BM_LOOPS_OF_VERT) {
        if ((l_start->f != ele_from) && FACE_WALK_TEST(l_start->f)) {
          MinDistDir mddir = MIN_DIST_DIR_INIT;
          /* Very similar to block above. */
          state = state_step__face_edges(
              pc, state, &state_orig, l_start->next, l_start->prev, &mddir);
          if (l_start->f->len > 3) {
            /* Adjacent verts are handled in #state_step__vert_edges. */
            state = state_step__face_verts(
                pc, state, &state_orig, l_start->next->next, l_start->prev, &mddir);
          }
        }
      }
    }

    /* Vert edges. */
    {
      BMIter eiter;
      BMEdge *e;
      BM_ITER_ELEM (e, &eiter, v, BM_EDGES_OF_VERT) {
        BMVert *v_other = BM_edge_other_vert(e, v);
        if (((BMElem *)e != ele_from) && VERT_WALK_TEST(v_other)) {
          if (state_isect_co_exact(pc, v_other->co)) {
            BMElem *ele_next = (BMElem *)v_other;
            BMElem *ele_next_from = (BMElem *)e;
            if (ELE_TOUCH_TEST_VERT((BMVert *)ele_next) == false) {
              state = state_link_add_test(pc, state, &state_orig, ele_next, ele_next_from);
            }
          }
        }
      }
    }
  }
  else {
    BLI_assert(0);
  }
  return (state_orig.link_last != state->link_last);
}

/**
 * Get a orientation matrix from 2 vertices.
 */
static void bm_vert_pair_to_matrix(BMVert *v_pair[2], float r_unit_mat[3][3])
{
  const float eps = 1e-8f;

  float basis_dir[3];
  float basis_tmp[3];
  float basis_nor[3];

  sub_v3_v3v3(basis_dir, v_pair[0]->co, v_pair[1]->co);
  normalize_v3(basis_dir);

#if 0
  add_v3_v3v3(basis_nor, v_pair[0]->no, v_pair[1]->no);
  cross_v3_v3v3(basis_tmp, basis_nor, basis_dir);
  cross_v3_v3v3(basis_nor, basis_tmp, basis_dir);
#else
  /* align both normals to the directions before combining */
  {
    float basis_nor_a[3];
    float basis_nor_b[3];

    /* align normal to direction */
    project_plane_normalized_v3_v3v3(basis_nor_a, v_pair[0]->no, basis_dir);
    project_plane_normalized_v3_v3v3(basis_nor_b, v_pair[1]->no, basis_dir);

    /* Don't normalize before combining so as normals approach the direction,
     * they have less effect (T46784). */

    /* combine the normals */
    /* for flipped faces */
    if (dot_v3v3(basis_nor_a, basis_nor_b) < 0.0f) {
      negate_v3(basis_nor_b);
    }
    add_v3_v3v3(basis_nor, basis_nor_a, basis_nor_b);
  }
#endif

  /* get third axis */
  normalize_v3(basis_nor);
  cross_v3_v3v3(basis_tmp, basis_dir, basis_nor);

  /* Try get the axis from surrounding faces, fallback to 'ortho_v3_v3' */
  if (UNLIKELY(normalize_v3(basis_tmp) < eps)) {
    /* vertex normals are directly opposite */

    /* find the loop with the lowest angle */
    struct {
      float nor[3];
      float angle_cos;
    } axis_pair[2];
    int i;

    for (i = 0; i < 2; i++) {
      BMIter liter;
      BMLoop *l;

      zero_v2(axis_pair[i].nor);
      axis_pair[i].angle_cos = -FLT_MAX;

      BM_ITER_ELEM (l, &liter, v_pair[i], BM_LOOPS_OF_VERT) {
        float basis_dir_proj[3];
        float angle_cos_test;

        /* project basis dir onto the normal to find its closest angle */
        project_plane_normalized_v3_v3v3(basis_dir_proj, basis_dir, l->f->no);

        if (normalize_v3(basis_dir_proj) > eps) {
          angle_cos_test = dot_v3v3(basis_dir_proj, basis_dir);

          if (angle_cos_test > axis_pair[i].angle_cos) {
            axis_pair[i].angle_cos = angle_cos_test;
            copy_v3_v3(axis_pair[i].nor, basis_dir_proj);
          }
        }
      }
    }

    /* create a new 'basis_nor' from the best direction.
     * NOTE: we could add the directions,
     * but this more often gives 45d rotated matrix, so just use the best one. */
    copy_v3_v3(basis_nor, axis_pair[axis_pair[0].angle_cos < axis_pair[1].angle_cos].nor);
    project_plane_normalized_v3_v3v3(basis_nor, basis_nor, basis_dir);

    cross_v3_v3v3(basis_tmp, basis_dir, basis_nor);

    /* last resort, pick _any_ ortho axis */
    if (UNLIKELY(normalize_v3(basis_tmp) < eps)) {
      ortho_v3_v3(basis_nor, basis_dir);
      normalize_v3(basis_nor);
      cross_v3_v3v3(basis_tmp, basis_dir, basis_nor);
      normalize_v3(basis_tmp);
    }
  }

  copy_v3_v3(r_unit_mat[0], basis_tmp);
  copy_v3_v3(r_unit_mat[1], basis_dir);
  copy_v3_v3(r_unit_mat[2], basis_nor);
  if (invert_m3(r_unit_mat) == false) {
    unit_m3(r_unit_mat);
  }
}

void bmo_connect_vert_pair_exec(BMesh *bm, BMOperator *op)
{
  BMOpSlot *op_verts_slot = BMO_slot_get(op->slots_in, "verts");

  PathContext pc;
  PathLinkState state_best = {NULL};

  if (op_verts_slot->len != 2) {
    /* fail! */
    return;
  }

  pc.bm_bmoflag = bm;
  pc.v_a = ((BMVert **)op_verts_slot->data.p)[0];
  pc.v_b = ((BMVert **)op_verts_slot->data.p)[1];

  /* fail! */
  if (!(pc.v_a && pc.v_b)) {
    return;
  }

#ifdef DEBUG_PRINT
  printf("%s: v_a: %d\n", __func__, BM_elem_index_get(pc.v_a));
  printf("%s: v_b: %d\n", __func__, BM_elem_index_get(pc.v_b));
#endif

  /* tag so we won't touch ever (typically hidden faces) */
  BMO_slot_buffer_flag_enable(bm, op->slots_in, "faces_exclude", BM_FACE, FACE_EXCLUDE);
  BMO_slot_buffer_flag_enable(bm, op->slots_in, "verts_exclude", BM_VERT, VERT_EXCLUDE);

  /* setup context */
  {
    pc.states = BLI_heapsimple_new();
    pc.link_pool = BLI_mempool_create(sizeof(PathLink), 0, 512, BLI_MEMPOOL_NOP);
  }

  /* calculate matrix */
  {
    bm_vert_pair_to_matrix(&pc.v_a, pc.matrix);
    pc.axis_sep = dot_m3_v3_row_x(pc.matrix, pc.v_a->co);
  }

  /* add first vertex */
  {
    PathLinkState *state;
    state = MEM_callocN(sizeof(*state), __func__);
    state_link_add(&pc, state, (BMElem *)pc.v_a, NULL);
    BLI_heapsimple_insert(pc.states, state->dist, state);
  }

  while (!BLI_heapsimple_is_empty(pc.states)) {

#ifdef DEBUG_PRINT
    printf("\n%s: stepping %u\n", __func__, BLI_heapsimple_len(pc.states));
#endif

    while (!BLI_heapsimple_is_empty(pc.states)) {
      PathLinkState *state = BLI_heapsimple_pop_min(pc.states);

      /* either we insert this into 'pc.states' or its freed */
      bool continue_search;

      if (state->link_last->ele == (BMElem *)pc.v_b) {
        /* pass, wait until all are found */
#ifdef DEBUG_PRINT
        printf("%s: state %p loop found %.4f\n", __func__, state, state->dist);
#endif
        state_best = *state;

        /* we're done, exit all loops */
        BLI_heapsimple_clear(pc.states, MEM_freeN);
        continue_search = false;
      }
      else if (state_step(&pc, state)) {
        continue_search = true;
      }
      else {
        /* didn't reach the end, remove it,
         * links are shared between states so just free the link_pool at the end */

#ifdef DEBUG_PRINT
        printf("%s: state %p removed\n", __func__, state);
#endif
        continue_search = false;
      }

      if (continue_search) {
        BLI_heapsimple_insert(pc.states, state->dist, state);
      }
      else {
        MEM_freeN(state);
      }
    }
  }

  if (state_best.link_last) {
    PathLink *link;

    /* find the best state */
    link = state_best.link_last;
    do {
      if (link->ele->head.htype == BM_EDGE) {
        BMEdge *e = (BMEdge *)link->ele;
        BMVert *v_new;
        float e_fac = state_calc_co_pair_fac(&pc, e->v1->co, e->v2->co);
        v_new = BM_edge_split(bm, e, e->v1, NULL, e_fac);
        BMO_vert_flag_enable(bm, v_new, VERT_OUT);
      }
      else if (link->ele->head.htype == BM_VERT) {
        BMVert *v = (BMVert *)link->ele;
        BMO_vert_flag_enable(bm, v, VERT_OUT);
      }
      else {
        BLI_assert(0);
      }
    } while ((link = link->next));
  }

  BMO_vert_flag_enable(bm, pc.v_a, VERT_OUT);
  BMO_vert_flag_enable(bm, pc.v_b, VERT_OUT);

  BLI_mempool_destroy(pc.link_pool);

  BLI_heapsimple_free(pc.states, MEM_freeN);

#if 1
  if (state_best.link_last) {
    BMOperator op_sub;
    BMO_op_initf(bm,
                 &op_sub,
                 0,
                 "connect_verts verts=%fv faces_exclude=%s check_degenerate=%b",
                 VERT_OUT,
                 op,
                 "faces_exclude",
                 true);
    BMO_op_exec(bm, &op_sub);
    BMO_slot_copy(&op_sub, slots_out, "edges.out", op, slots_out, "edges.out");
    BMO_op_finish(bm, &op_sub);
  }
#endif
}