Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bmo_fill_grid.c « operators « bmesh « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6a0fca425f8610a25f9de04ab7fe11d9c38a76d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * Contributor(s): Campbell Barton.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/bmesh/operators/bmo_fill_grid.c
 *  \ingroup bmesh
 *
 * Fill 2 isolated, open edge loops with a grid of quads.
 */

#include "MEM_guardedalloc.h"

#include "BLI_listbase.h"
#include "BLI_math.h"

#include "BKE_customdata.h"

#include "bmesh.h"

#include "intern/bmesh_operators_private.h" /* own include */

#include "BLI_strict_flags.h"

#define EDGE_MARK	4
#define FACE_OUT	16

#define BARYCENTRIC_INTERP

#ifdef BARYCENTRIC_INTERP
/**
 * 2 edge vectors to normal.
 */
static void quad_edges_to_normal(
        float no[3],
        const float co_a1[3], const float co_a2[3],
        const float co_b1[3], const float co_b2[3])
{
	float diff_a[3];
	float diff_b[3];

	sub_v3_v3v3(diff_a, co_a2, co_a1);
	sub_v3_v3v3(diff_b, co_b2, co_b1);
	normalize_v3(diff_a);
	normalize_v3(diff_b);
	add_v3_v3v3(no, diff_a, diff_b);
	normalize_v3(no);
}

static void quad_verts_to_barycentric_tri(
        float tri[3][3],
        const float co_a[3],
        const float co_b[3],

        const float co_a_next[3],
        const float co_b_next[3],

        const float co_a_prev[3],
        const float co_b_prev[3],
        const bool is_flip
        )
{
	float no[3];

	copy_v3_v3(tri[0], co_a);
	copy_v3_v3(tri[1], co_b);

	quad_edges_to_normal(no,
	                     co_a, co_a_next,
	                     co_b, co_b_next);

	if (co_a_prev) {
		float no_t[3];
		quad_edges_to_normal(no_t,
		                     co_a_prev, co_a,
		                     co_b_prev, co_b);
		add_v3_v3(no, no_t);
		normalize_v3(no);
	}

	if (is_flip) negate_v3(no);
	mul_v3_fl(no, len_v3v3(tri[0], tri[1]));

	mid_v3_v3v3(tri[2], tri[0], tri[1]);
	add_v3_v3(tri[2], no);
}

#endif


/* -------------------------------------------------------------------- */
/* Handle Loop Pairs */

/** \name Loop Pairs
 * \{ */

/**
 * Assign a loop pair from 2 verts (which _must_ share an edge)
 */
static void bm_loop_pair_from_verts(BMVert *v_a, BMVert *v_b,
                                    BMLoop *l_pair[2])
{
	BMEdge *e = BM_edge_exists(v_a, v_b);
	if (e->l) {
		if (e->l->v == v_a) {
			l_pair[0] = e->l;
			l_pair[1] = e->l->next;
		}
		else {
			l_pair[0] = e->l->next;
			l_pair[1] = e->l;
		}
	}
	else {
		l_pair[0] = NULL;
		l_pair[1] = NULL;
	}
}

/**
 * Copy loop pair from one side to the other if either is missing,
 * this simplifies interpolation code so we only need to check if x/y are missing,
 * rather then checking each loop.
 */
static void bm_loop_pair_test_copy(BMLoop *l_pair_a[2], BMLoop *l_pair_b[2])
{
	/* if the first one is set, we know the second is too */
	if (l_pair_a[0] && l_pair_b[0] == NULL) {
		l_pair_b[0] = l_pair_a[1];
		l_pair_b[1] = l_pair_a[0];
	}
	else if (l_pair_b[0] && l_pair_a[0] == NULL) {
		l_pair_a[0] = l_pair_b[1];
		l_pair_a[1] = l_pair_b[0];
	}
}

/**
 * Interpolate from boundary loops.
 *
 * \note These weights will be calculated multiple times per vertex.
 */
static void bm_loop_interp_from_grid_boundary_4(BMesh *bm, BMLoop *l, BMLoop *l_bound[4], const float w[4])
{
	void *l_cdata[4] = {
	    l_bound[0]->head.data,
	    l_bound[1]->head.data,
	    l_bound[2]->head.data,
	    l_bound[3]->head.data};

	CustomData_bmesh_interp(&bm->ldata, l_cdata, w, NULL, 4, l->head.data);
}

static void bm_loop_interp_from_grid_boundary_2(BMesh *bm, BMLoop *l, BMLoop *l_bound[2], const float t)
{

	void *l_cdata[2] = {
	    l_bound[0]->head.data,
	    l_bound[1]->head.data};

	const float w[2] = {1.0f - t, t};

	CustomData_bmesh_interp(&bm->ldata, l_cdata, w, NULL, 2, l->head.data);
}

/** \} */


/**
 * Avoids calling #barycentric_weights_v2_quad often by caching weights into an array.
 */
static void barycentric_weights_v2_grid_cache(const unsigned int xtot, const unsigned int ytot,
                                              float (*weight_table)[4])
{
	float x_step = 1.0f / (float)(xtot - 1);
	float y_step = 1.0f / (float)(ytot - 1);
	unsigned int i = 0;
	float xy_fl[2];

	unsigned int x, y;
	for (y = 0; y < ytot; y++) {
		xy_fl[1] = y_step * (float)y;
		for (x = 0; x < xtot; x++) {
			xy_fl[0] = x_step * (float)x;
			{
				const float cos[4][2] = {
				    {xy_fl[0], 0.0f},
				    {0.0f, xy_fl[1]},
				    {xy_fl[0], 1.0f},
				    {1.0f, xy_fl[1]}};
				barycentric_weights_v2_quad(UNPACK4(cos), xy_fl, weight_table[i++]);
			}
		}
	}
}


/**
 * This may be useful outside the bmesh operator.
 *
 * \param v_grid  2d array of verts, all boundary verts must be set, we fill in the middle.
 */
static void bm_grid_fill_array(BMesh *bm, BMVert **v_grid, const unsigned int xtot, unsigned const int ytot,
                               const short mat_nr, const bool use_smooth,
                               const bool use_flip, const bool use_interp_simple)
{
	const bool use_vert_interp = CustomData_has_interp(&bm->vdata);
	const bool use_loop_interp = CustomData_has_interp(&bm->ldata);
	unsigned int x, y;

	/* for use_loop_interp */
	BMLoop *((*larr_x_a)[2]), *((*larr_x_b)[2]), *((*larr_y_a)[2]), *((*larr_y_b)[2]);

	float (*weight_table)[4];

#define XY(_x, _y)  ((_x) + ((_y) * (xtot)))

#ifdef BARYCENTRIC_INTERP
	float tri_a[3][3];
	float tri_b[3][3];
	float tri_t[3][3];  /* temp */

	quad_verts_to_barycentric_tri(
	        tri_a,
	        v_grid[XY(0,        0)]->co,
	        v_grid[XY(xtot - 1, 0)]->co,
	        v_grid[XY(0,        1)]->co,
	        v_grid[XY(xtot - 1, 1)]->co,
	        NULL, NULL,
	        false);

	quad_verts_to_barycentric_tri(
	        tri_b,
	        v_grid[XY(0,        (ytot - 1))]->co,
	        v_grid[XY(xtot - 1, (ytot - 1))]->co,
	        v_grid[XY(0,        (ytot - 2))]->co,
	        v_grid[XY(xtot - 1, (ytot - 2))]->co,
	        NULL, NULL,
	        true);
#endif

	if (use_interp_simple || use_vert_interp || use_loop_interp) {
		weight_table = MEM_mallocN(sizeof(*weight_table) * (size_t)(xtot * ytot), __func__);
		barycentric_weights_v2_grid_cache(xtot, ytot, weight_table);
	}
	else {
		weight_table = NULL;
	}


	/* Store loops */
	if (use_loop_interp) {
		/* x2 because each edge connects 2 loops */
		larr_x_a = MEM_mallocN(sizeof(*larr_x_a) * (xtot - 1), __func__);
		larr_x_b = MEM_mallocN(sizeof(*larr_x_b) * (xtot - 1), __func__);

		larr_y_a = MEM_mallocN(sizeof(*larr_y_a) * (ytot - 1), __func__);
		larr_y_b = MEM_mallocN(sizeof(*larr_y_b) * (ytot - 1), __func__);

		/* fill in the loops */
		for (x = 0; x < xtot - 1; x++) {
			bm_loop_pair_from_verts(v_grid[XY(x,        0)], v_grid[XY(x + 1,        0)], larr_x_a[x]);
			bm_loop_pair_from_verts(v_grid[XY(x, ytot - 1)], v_grid[XY(x + 1, ytot - 1)], larr_x_b[x]);
			bm_loop_pair_test_copy(larr_x_a[x], larr_x_b[x]);
		}

		for (y = 0; y < ytot - 1; y++) {
			bm_loop_pair_from_verts(v_grid[XY(0,        y)], v_grid[XY(0,        y + 1)], larr_y_a[y]);
			bm_loop_pair_from_verts(v_grid[XY(xtot - 1, y)], v_grid[XY(xtot - 1, y + 1)], larr_y_b[y]);
			bm_loop_pair_test_copy(larr_y_a[y], larr_y_b[y]);
		}
	}


	/* Build Verts */
	for (y = 1; y < ytot - 1; y++) {
#ifdef BARYCENTRIC_INTERP
		quad_verts_to_barycentric_tri(
		        tri_t,
		        v_grid[XY(0,        y + 0)]->co,
		        v_grid[XY(xtot - 1, y + 0)]->co,
		        v_grid[XY(0,        y + 1)]->co,
		        v_grid[XY(xtot - 1, y + 1)]->co,
		        v_grid[XY(0,        y - 1)]->co,
		        v_grid[XY(xtot - 1, y - 1)]->co,
		        false);
#endif
		for (x = 1; x < xtot - 1; x++) {
			float co[3];
			BMVert *v;
			/* we may want to allow sparse filled arrays, but for now, ensure its empty */
			BLI_assert(v_grid[(y * xtot) + x] == NULL);

			/* place the vertex */
#ifdef BARYCENTRIC_INTERP
			if (use_interp_simple == false) {
				float co_a[3], co_b[3];

				barycentric_transform(
				            co_a,
				            v_grid[x]->co,
				            tri_t[0], tri_t[1], tri_t[2],
				            tri_a[0], tri_a[1], tri_a[2]);
				barycentric_transform(
				            co_b,
				            v_grid[(xtot * ytot) + (x - xtot)]->co,
				            tri_t[0], tri_t[1], tri_t[2],
				            tri_b[0], tri_b[1], tri_b[2]);

				interp_v3_v3v3(co, co_a, co_b, (float)y / ((float)ytot - 1));
			}
			else
#endif
			{
				const float *w = weight_table[XY(x, y)];

				zero_v3(co);
				madd_v3_v3fl(co, v_grid[XY(x,        0)]->co, w[0]);
				madd_v3_v3fl(co, v_grid[XY(0,        y)]->co, w[1]);
				madd_v3_v3fl(co, v_grid[XY(x, ytot - 1)]->co, w[2]);
				madd_v3_v3fl(co, v_grid[XY(xtot - 1, y)]->co, w[3]);
			}

			v = BM_vert_create(bm, co, NULL, BM_CREATE_NOP);
			v_grid[(y * xtot) + x] = v;

			/* interpolate only along one axis, this could be changed
			 * but from user pov gives predictable results since these are selected loop */
			if (use_vert_interp) {
				const float *w = weight_table[XY(x, y)];

				void *v_cdata[4] = {
				    v_grid[XY(x,        0)]->head.data,
				    v_grid[XY(0,        y)]->head.data,
				    v_grid[XY(x, ytot - 1)]->head.data,
				    v_grid[XY(xtot - 1, y)]->head.data,
				};

				CustomData_bmesh_interp(&bm->vdata, v_cdata, w, NULL, 4, v->head.data);
			}

		}
	}

	/* Build Faces */
	for (x = 0; x < xtot - 1; x++) {
		for (y = 0; y < ytot - 1; y++) {
			BMFace *f;

			if (use_flip) {
				f = BM_face_create_quad_tri(
				        bm,
				        v_grid[XY(x,     y + 0)],  /* BL */
				        v_grid[XY(x,     y + 1)],  /* TL */
				        v_grid[XY(x + 1, y + 1)],  /* TR */
				        v_grid[XY(x + 1, y + 0)],  /* BR */
				        NULL,
				        BM_CREATE_NOP);
			}
			else {
				f = BM_face_create_quad_tri(
				        bm,
				        v_grid[XY(x + 1, y + 0)],  /* BR */
				        v_grid[XY(x + 1, y + 1)],  /* TR */
				        v_grid[XY(x,     y + 1)],  /* TL */
				        v_grid[XY(x,     y + 0)],  /* BL */
				        NULL,
				        BM_CREATE_NOP);
			}


			if (use_loop_interp && (larr_x_a[x][0] || larr_y_a[y][0])) {
				/* bottom/left/top/right */
				BMLoop *l_quad[4];
				BMLoop *l_bound[4];
				BMLoop *l_tmp;
				unsigned int x_side, y_side, i;
				char interp_from;


				if (larr_x_a[x][0] && larr_y_a[y][0]) {
					interp_from = 'B';  /* B == both */
					l_tmp = larr_x_a[x][0];
				}
				else if (larr_x_a[x][0]) {
					interp_from = 'X';
					l_tmp = larr_x_a[x][0];
				}
				else {
					interp_from = 'Y';
					l_tmp = larr_y_a[y][0];
				}

				BM_elem_attrs_copy(bm, bm, l_tmp->f, f);


				BM_face_as_array_loop_quad(f, l_quad);

				l_tmp = BM_FACE_FIRST_LOOP(f);

				if (use_flip) {
					l_quad[0] = l_tmp; l_tmp = l_tmp->next;
					l_quad[1] = l_tmp; l_tmp = l_tmp->next;
					l_quad[3] = l_tmp; l_tmp = l_tmp->next;
					l_quad[2] = l_tmp;
				}
				else {
					l_quad[2] = l_tmp; l_tmp = l_tmp->next;
					l_quad[3] = l_tmp; l_tmp = l_tmp->next;
					l_quad[1] = l_tmp; l_tmp = l_tmp->next;
					l_quad[0] = l_tmp;
				}

				i = 0;

				for (x_side = 0; x_side < 2; x_side++) {
					for (y_side = 0; y_side < 2; y_side++) {
						if (interp_from == 'B') {
							const float *w = weight_table[XY(x + x_side, y + y_side)];
							l_bound[0] = larr_x_a[x][x_side];  /* B */
							l_bound[1] = larr_y_a[y][y_side];  /* L */
							l_bound[2] = larr_x_b[x][x_side];  /* T */
							l_bound[3] = larr_y_b[y][y_side];  /* R */

							bm_loop_interp_from_grid_boundary_4(bm, l_quad[i++], l_bound, w);
						}
						else if (interp_from == 'X') {
							const float t = (float)(y + y_side) / (float)(ytot - 1);
							l_bound[0] = larr_x_a[x][x_side];  /* B */
							l_bound[1] = larr_x_b[x][x_side];  /* T */

							bm_loop_interp_from_grid_boundary_2(bm, l_quad[i++], l_bound, t);
						}
						else if (interp_from == 'Y') {
							const float t = (float)(x + x_side) / (float)(xtot - 1);
							l_bound[0] = larr_y_a[y][y_side];  /* L */
							l_bound[1] = larr_y_b[y][y_side];  /* R */

							bm_loop_interp_from_grid_boundary_2(bm, l_quad[i++], l_bound, t);
						}
						else {
							BLI_assert(0);
						}
					}
				}
			}
			/* end interp */


			BMO_elem_flag_enable(bm, f, FACE_OUT);
			f->mat_nr = mat_nr;
			if (use_smooth) {
				BM_elem_flag_enable(f, BM_ELEM_SMOOTH);
			}
		}
	}

	if (use_loop_interp) {
		MEM_freeN(larr_x_a);
		MEM_freeN(larr_y_a);
		MEM_freeN(larr_x_b);
		MEM_freeN(larr_y_b);
	}

	if (weight_table) {
		MEM_freeN(weight_table);
	}

#undef XY
}

static void bm_grid_fill(BMesh *bm,
                         struct BMEdgeLoopStore *estore_a,      struct BMEdgeLoopStore *estore_b,
                         struct BMEdgeLoopStore *estore_rail_a, struct BMEdgeLoopStore *estore_rail_b,
                         const short mat_nr, const bool use_smooth, const bool use_interp_simple)
{
#define USE_FLIP_DETECT

	const unsigned int xtot = (unsigned int)BM_edgeloop_length_get(estore_a);
	const unsigned int ytot = (unsigned int)BM_edgeloop_length_get(estore_rail_a);
	//BMVert *v;
	unsigned int i;
#ifdef DEBUG
	unsigned int x, y;
#endif
	LinkData *el;
	bool use_flip = false;

	ListBase *lb_a = BM_edgeloop_verts_get(estore_a);
	ListBase *lb_b = BM_edgeloop_verts_get(estore_b);

	ListBase *lb_rail_a = BM_edgeloop_verts_get(estore_rail_a);
	ListBase *lb_rail_b = BM_edgeloop_verts_get(estore_rail_b);

	BMVert **v_grid = MEM_callocN(sizeof(BMVert *) * (size_t)(xtot * ytot), __func__);
	/**
	 * <pre>
	 *           estore_b
	 *          +------------------+
	 *       ^  |                  |
	 *   end |  |                  |
	 *       |  |                  |
	 *       |  |estore_rail_a     |estore_rail_b
	 *       |  |                  |
	 * start |  |                  |
	 *          |estore_a          |
	 *          +------------------+
	 *                --->
	 *             start -> end
	 * </pre>
	 */

	BLI_assert(((LinkData *)lb_a->first)->data == ((LinkData *)lb_rail_a->first)->data);  /* BL */
	BLI_assert(((LinkData *)lb_b->first)->data == ((LinkData *)lb_rail_a->last)->data);   /* TL */
	BLI_assert(((LinkData *)lb_b->last)->data  == ((LinkData *)lb_rail_b->last)->data);   /* TR */
	BLI_assert(((LinkData *)lb_a->last)->data  == ((LinkData *)lb_rail_b->first)->data);  /* BR */

	for (el = lb_a->first,      i = 0; el; el = el->next, i++) { v_grid[i]                          = el->data; }
	for (el = lb_b->first,      i = 0; el; el = el->next, i++) { v_grid[(ytot * xtot) + (i - xtot)] = el->data; }
	for (el = lb_rail_a->first, i = 0; el; el = el->next, i++) { v_grid[xtot * i]                   = el->data; }
	for (el = lb_rail_b->first, i = 0; el; el = el->next, i++) { v_grid[(xtot * i) + (xtot - 1)]    = el->data; }
#ifdef DEBUG
	for (x = 1; x < xtot - 1; x++) { for (y = 1; y < ytot - 1; y++) { BLI_assert(v_grid[(y * xtot) + x] == NULL); }}
#endif

#ifdef USE_FLIP_DETECT
	{
		ListBase *lb_iter[4] = {lb_a, lb_b, lb_rail_a, lb_rail_b};
		const int lb_iter_dir[4] = {-1, 1, 1, -1};
		int winding_votes = 0;

		for (i = 0; i < 4; i++) {
			LinkData *el_next;
			for (el = lb_iter[i]->first; el && (el_next = el->next); el = el->next) {
				BMEdge *e = BM_edge_exists(el->data, el_next->data);
				if (BM_edge_is_boundary(e)) {
					winding_votes += (e->l->v == el->data) ? lb_iter_dir[i] : -lb_iter_dir[i];
				}
			}
		}
		use_flip = (winding_votes < 0);
	}
#endif


	bm_grid_fill_array(bm, v_grid, xtot, ytot, mat_nr, use_smooth, use_flip, use_interp_simple);
	MEM_freeN(v_grid);

#undef USE_FLIP_DETECT
}

static bool bm_edge_test_cb(BMEdge *e, void *bm_v)
{
	return BMO_elem_flag_test_bool((BMesh *)bm_v, e, EDGE_MARK);
}

static bool bm_edge_test_rail_cb(BMEdge *e, void *UNUSED(bm_v))
{
	/* normally operators dont check for hidden state
	 * but alternative would be to pass slot of rail edges */
	if (BM_elem_flag_test(e, BM_ELEM_HIDDEN)) {
		return false;
	}
	return BM_edge_is_wire(e) || BM_edge_is_boundary(e);
}

void bmo_grid_fill_exec(BMesh *bm, BMOperator *op)
{
	ListBase eloops = {NULL, NULL};
	ListBase eloops_rail = {NULL, NULL};
	struct BMEdgeLoopStore *estore_a, *estore_b;
	struct BMEdgeLoopStore *estore_rail_a, *estore_rail_b;
	BMVert *v_a_first, *v_a_last;
	BMVert *v_b_first, *v_b_last;
	const short mat_nr = (short)BMO_slot_int_get(op->slots_in,  "mat_nr");
	const bool use_smooth = BMO_slot_bool_get(op->slots_in, "use_smooth");
	const bool use_interp_simple = BMO_slot_bool_get(op->slots_in, "use_interp_simple");

	int count;
	bool changed = false;
	BMO_slot_buffer_flag_enable(bm, op->slots_in, "edges", BM_EDGE, EDGE_MARK);

	count = BM_mesh_edgeloops_find(bm, &eloops, bm_edge_test_cb, (void *)bm);

	if (count != 2) {
		BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
		                "Select two edge loops");
		goto cleanup;
	}

	estore_a = eloops.first;
	estore_b = eloops.last;

	v_a_first = ((LinkData *)BM_edgeloop_verts_get(estore_a)->first)->data;
	v_a_last  = ((LinkData *)BM_edgeloop_verts_get(estore_a)->last)->data;
	v_b_first = ((LinkData *)BM_edgeloop_verts_get(estore_b)->first)->data;
	v_b_last  = ((LinkData *)BM_edgeloop_verts_get(estore_b)->last)->data;

	if (BM_edgeloop_length_get(estore_a) != BM_edgeloop_length_get(estore_b)) {
		BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
		                "Edge loop vertex count mismatch");
		goto cleanup;
	}

	if (BM_edgeloop_is_closed(estore_a) || BM_edgeloop_is_closed(estore_b)) {
		BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
		                "Closed loops unsupported");
		goto cleanup;
	}

	/* ok. all error checking done, now we can find the rail edges */

	if (BM_mesh_edgeloops_find_path(bm, &eloops_rail, bm_edge_test_rail_cb, bm, v_a_first, v_b_first) == false) {
		BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
		                "Loops are not connected by wire/boundary edges");
		goto cleanup;
	}

	/* We may find a first path, but not a second one! See geometry attached to bug [#37388]. */
	if (BM_mesh_edgeloops_find_path(bm, &eloops_rail, bm_edge_test_rail_cb, bm, v_a_first, v_b_last) == false) {
		BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
		                "Loops are not connected by wire/boundary edges");
		goto cleanup;
	}

	/* Check flipping by comparing path length */
	estore_rail_a = eloops_rail.first;
	estore_rail_b = eloops_rail.last;

	BLI_assert(BM_edgeloop_length_get(estore_rail_a) != BM_edgeloop_length_get(estore_rail_b));

	if (BM_edgeloop_length_get(estore_rail_a) < BM_edgeloop_length_get(estore_rail_b)) {
		BLI_remlink(&eloops_rail, estore_rail_b);
		BM_edgeloop_free(estore_rail_b);
		estore_rail_b = NULL;

		BM_mesh_edgeloops_find_path(bm, &eloops_rail, bm_edge_test_rail_cb, (void *)bm,
		                            v_a_last,
		                            v_b_last);
		estore_rail_b = eloops_rail.last;
	}
	else {  /* a > b */
		BLI_remlink(&eloops_rail, estore_rail_a);
		BM_edgeloop_free(estore_rail_a);
		estore_rail_a = estore_rail_b;

		/* reverse so both are sorted the same way */
		BM_edgeloop_flip(bm, estore_b);
		SWAP(BMVert *, v_b_first, v_b_last);

		BM_mesh_edgeloops_find_path(bm, &eloops_rail, bm_edge_test_rail_cb, (void *)bm,
		                            v_a_last,
		                            v_b_last);
		estore_rail_b = eloops_rail.last;
	}

	BLI_assert(estore_a != estore_b);
	BLI_assert(v_a_last != v_b_last);

	if (BM_edgeloop_length_get(estore_rail_a) != BM_edgeloop_length_get(estore_rail_b)) {
		BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
		                "Connecting edges vertex mismatch");
		goto cleanup;
	}

	if (BM_edgeloop_overlap_check(estore_rail_a, estore_rail_b)) {
		BMO_error_raise(bm, op, BMERR_INVALID_SELECTION,
		                "Connecting edge loops overlap");
		goto cleanup;
	}

	/* finally we have all edge loops needed */
	bm_grid_fill(bm, estore_a, estore_b, estore_rail_a, estore_rail_b,
	             mat_nr, use_smooth, use_interp_simple);

	changed = true;


cleanup:
	BM_mesh_edgeloops_free(&eloops);
	BM_mesh_edgeloops_free(&eloops_rail);

	if (changed) {
		BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "faces.out", BM_FACE, FACE_OUT);
	}
}