Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bmo_rotate_edges.c « operators « bmesh « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 10dd9dcc9b71e712e14ceaf8f959b894c294895c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/** \file
 * \ingroup bmesh
 *
 * Rotate edges topology that share two faces.
 */

#include "MEM_guardedalloc.h"

#include "BLI_heap.h"
#include "BLI_math.h"

#include "bmesh.h"

#include "intern/bmesh_operators_private.h" /* own include */

#define EDGE_OUT 1
#define FACE_MARK 1

/**
 * Rotate edges where every edge has its own faces (we can rotate in any order).
 */
static void bm_rotate_edges_simple(BMesh *bm,
                                   BMOperator *op,
                                   const short check_flag,
                                   const bool use_ccw)
{
  BMOIter siter;
  BMEdge *e;

  BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
    /**
     * this ends up being called twice, could add option to not to call check in
     * #BM_edge_rotate to get some extra speed */
    if (BM_edge_rotate_check(e)) {
      BMEdge *e_rotate = BM_edge_rotate(bm, e, use_ccw, check_flag);
      if (e_rotate != NULL) {
        BMO_edge_flag_enable(bm, e_rotate, EDGE_OUT);
      }
    }
  }
}

/**
 * Edge length is just a way of ordering that's independent of order in the edges argument,
 * we could use some other method since ideally all edges will be rotated,
 * this just happens to be simple to calculate.
 */
static float bm_edge_calc_rotate_cost(const BMEdge *e)
{
  return -BM_edge_calc_length_squared(e);
}

/**
 * Check if this edge is a boundary: Are more than one of the connected faces edges rotating too?
 */
static float bm_edge_rotate_is_boundary(const BMEdge *e)
{
  /* Number of adjacent shared faces. */
  int count = 0;
  BMLoop *l_radial_iter = e->l;
  do {
    /* Skip this edge. */
    BMLoop *l_iter = l_radial_iter->next;
    do {
      BMEdge *e_iter = l_iter->e;
      const int e_iter_index = BM_elem_index_get(e_iter);
      if ((e_iter_index != -1)) {
        if (count == 1) {
          return false;
        }
        count += 1;
        break;
      }
    } while ((l_iter = l_iter->next) != l_radial_iter);
  } while ((l_radial_iter = l_radial_iter->radial_next) != e->l);
  return true;
}

/**
 * Rotate edges where edges share faces,
 * edges which could not rotate need to be re-considered after neighbors are rotated.
 */
static void bm_rotate_edges_shared(
    BMesh *bm, BMOperator *op, short check_flag, const bool use_ccw, const int edges_len)
{
  Heap *heap = BLI_heap_new_ex(edges_len);
  HeapNode **eheap_table = MEM_mallocN(sizeof(*eheap_table) * edges_len, __func__);
  int edges_len_rotate = 0;

  {
    BMIter iter;
    BMEdge *e;
    BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
      BM_elem_index_set(e, -1); /* set_dirty! */
    }
    bm->elem_index_dirty |= BM_EDGE;
  }

  {
    BMOIter siter;
    BMEdge *e;
    uint i;
    BMO_ITER_INDEX (e, &siter, op->slots_in, "edges", BM_EDGE, i) {
      BM_elem_index_set(e, BM_edge_is_manifold(e) ? i : -1); /* set_dirty! */
      eheap_table[i] = NULL;
    }
  }

  /* First operate on boundary edges, this is often all that's needed,
   * regions that have no boundaries are handles after. */
  enum {
    PASS_TYPE_BOUNDARY = 0,
    PASS_TYPE_ALL = 1,
    PASS_TYPE_DONE = 2,
  };
  uint pass_type = PASS_TYPE_BOUNDARY;

  while ((pass_type != PASS_TYPE_DONE) && (edges_len_rotate != edges_len)) {
    BLI_assert(BLI_heap_is_empty(heap));
    {
      BMOIter siter;
      BMEdge *e;
      uint i;
      BMO_ITER_INDEX (e, &siter, op->slots_in, "edges", BM_EDGE, i) {
        BLI_assert(eheap_table[i] == NULL);

        bool ok = (BM_elem_index_get(e) != -1) && BM_edge_rotate_check(e);

        if (ok) {
          if (pass_type == PASS_TYPE_BOUNDARY) {
            ok = bm_edge_rotate_is_boundary(e);
          }
        }

        if (ok) {
          float cost = bm_edge_calc_rotate_cost(e);
          if (pass_type == PASS_TYPE_BOUNDARY) {
            /* Trick to ensure once started,
             * non boundaries are handled before other boundary edges.
             * This means the first longest boundary defines the starting point which is rotated
             * until all its connected edges are exhausted
             * and the next boundary is popped off the heap.
             *
             * Without this we may rotate from different starting points and meet in the middle
             * with obviously uneven topology.
             *
             * Move from negative to positive value,
             * inverting so large values are still handled first.
             */
            cost = cost != 0.0f ? -1.0f / cost : FLT_MAX;
          }
          eheap_table[i] = BLI_heap_insert(heap, cost, e);
        }
      }
    }

    if (BLI_heap_is_empty(heap)) {
      pass_type += 1;
      continue;
    }

    const int edges_len_rotate_prev = edges_len_rotate;
    while (!BLI_heap_is_empty(heap)) {
      BMEdge *e_best = BLI_heap_pop_min(heap);
      eheap_table[BM_elem_index_get(e_best)] = NULL;

      /* No problem if this fails, re-evaluate if faces connected to this edge are touched. */
      if (BM_edge_rotate_check(e_best)) {
        BMEdge *e_rotate = BM_edge_rotate(bm, e_best, use_ccw, check_flag);
        if (e_rotate != NULL) {
          BMO_edge_flag_enable(bm, e_rotate, EDGE_OUT);

          /* invalidate so we don't try touch this again. */
          BM_elem_index_set(e_rotate, -1); /* set_dirty! */

          edges_len_rotate += 1;

          /* NOTE: we could validate all edges which have not been rotated
           * (not just previously degenerate edges).
           * However there is no real need -
           * they can be left until they're popped off the queue. */

          /* We don't know the exact topology after rotating the edge,
           * so loop over all faces attached to the new edge,
           * typically this will only be two faces. */
          BMLoop *l_radial_iter = e_rotate->l;
          do {
            /* Skip this edge. */
            BMLoop *l_iter = l_radial_iter->next;
            do {
              BMEdge *e_iter = l_iter->e;
              const int e_iter_index = BM_elem_index_get(e_iter);
              if ((e_iter_index != -1) && (eheap_table[e_iter_index] == NULL)) {
                if (BM_edge_rotate_check(e_iter)) {
                  /* Previously degenerate, now valid. */
                  float cost = bm_edge_calc_rotate_cost(e_iter);
                  eheap_table[e_iter_index] = BLI_heap_insert(heap, cost, e_iter);
                }
              }
            } while ((l_iter = l_iter->next) != l_radial_iter);
          } while ((l_radial_iter = l_radial_iter->radial_next) != e_rotate->l);
        }
      }
    }

    /* If no actions were taken, move onto the next pass. */
    if (edges_len_rotate == edges_len_rotate_prev) {
      pass_type += 1;
      continue;
    }
  }

  BLI_heap_free(heap, NULL);
  MEM_freeN(eheap_table);
}

void bmo_rotate_edges_exec(BMesh *bm, BMOperator *op)
{
  BMOIter siter;
  BMEdge *e;
  const int edges_len = BMO_slot_buffer_len(op->slots_in, "edges");
  const bool use_ccw = BMO_slot_bool_get(op->slots_in, "use_ccw");
  const bool is_single = (edges_len == 1);
  short check_flag = is_single ? BM_EDGEROT_CHECK_EXISTS :
                                 BM_EDGEROT_CHECK_EXISTS | BM_EDGEROT_CHECK_DEGENERATE;

  bool is_simple = true;
  if (is_single == false) {
    BMO_ITER (e, &siter, op->slots_in, "edges", BM_EDGE) {
      BMFace *f_pair[2];
      if (BM_edge_face_pair(e, &f_pair[0], &f_pair[1])) {
        for (uint i = 0; i < ARRAY_SIZE(f_pair); i += 1) {
          if (BMO_face_flag_test(bm, f_pair[i], FACE_MARK)) {
            is_simple = false;
            break;
          }
          BMO_face_flag_enable(bm, f_pair[i], FACE_MARK);
        }
        if (is_simple == false) {
          break;
        }
      }
    }
  }

  if (is_simple) {
    bm_rotate_edges_simple(bm, op, check_flag, use_ccw);
  }
  else {
    bm_rotate_edges_shared(bm, op, check_flag, use_ccw, edges_len);
  }

  BMO_slot_buffer_from_enabled_flag(bm, op, op->slots_out, "edges.out", BM_EDGE, EDGE_OUT);
}