Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bmesh_bevel.c « tools « bmesh « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 74841dc275675d4c38d02b4ac9daf5dec1f80936 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * Contributor(s):
 *         Joseph Eagar,
 *         Aleksandr Mokhov,
 *         Howard Trickey,
 *         Campbell Barton
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/bmesh/tools/bmesh_bevel.c
 *  \ingroup bmesh
 *
 * Main functions for beveling a BMesh (used by the tool and modifier)
 */

#include "MEM_guardedalloc.h"

#include "DNA_object_types.h"
#include "DNA_meshdata_types.h"

#include "BLI_array.h"
#include "BLI_alloca.h"
#include "BLI_gsqueue.h"
#include "BLI_math.h"
#include "BLI_memarena.h"

#include "BKE_customdata.h"
#include "BKE_deform.h"

#include "bmesh.h"
#include "bmesh_bevel.h"  /* own include */

#include "./intern/bmesh_private.h"

#define BEVEL_EPSILON_D  1e-6
#define BEVEL_EPSILON    1e-6f
#define BEVEL_EPSILON_SQ 1e-12f
#define BEVEL_EPSILON_BIG 1e-4f
#define BEVEL_EPSILON_BIG_SQ 1e-8f
#define BEVEL_EPSILON_ANG DEG2RADF(2.0f)
#define BEVEL_SMALL_ANG DEG2RADF(10.0f)
#define BEVEL_MAX_ADJUST_PCT 10.0f
#define BEVEL_MAX_AUTO_ADJUST_PCT 300.0f

/* happens far too often, uncomment for development */
// #define BEVEL_ASSERT_PROJECT

/* for testing */
// #pragma GCC diagnostic error "-Wpadded"

/* Constructed vertex, sometimes later instantiated as BMVert */
typedef struct NewVert {
	BMVert *v;
	float co[3];
//	int _pad;
} NewVert;

struct BoundVert;

/* Data for one end of an edge involved in a bevel */
typedef struct EdgeHalf {
	struct EdgeHalf *next, *prev;   /* in CCW order */
	BMEdge *e;                  /* original mesh edge */
	BMFace *fprev;              /* face between this edge and previous, if any */
	BMFace *fnext;              /* face between this edge and next, if any */
	struct BoundVert *leftv;    /* left boundary vert (looking along edge to end) */
	struct BoundVert *rightv;   /* right boundary vert, if beveled */
	int   seg;                  /* how many segments for the bevel */
	float offset_l;             /* offset for this edge, on left side */
	float offset_r;             /* offset for this edge, on right side */
	float offset_l_spec;        /* user specification for offset_l */
	float offset_r_spec;        /* user specification for offset_r */
	bool is_bev;                /* is this edge beveled? */
	bool is_rev;                /* is e->v2 the vertex at this end? */
	bool is_seam;               /* is e a seam for custom loopdata (e.g., UVs)? */
//	int _pad;
} EdgeHalf;

/* Profile specification.
 * Many interesting profiles are in family of superellipses:
 *     (abs(x/a))^r + abs(y/b))^r = 1
 * r==2 => ellipse; r==1 => line; r < 1 => concave; r > 1 => bulging out.
 * Special cases: let r==0 mean straight-inward, and r==4 mean straight outward.
 * The profile is an arc with control points coa, midco,
 * projected onto a plane (plane_no is normal, plane_co is a point on it)
 * via lines in a given direction (proj_dir).
 * After the parameters are all set, the actual profile points are calculated
 * and point in prof_co. We also may need profile points for a higher resolution
 * number of segments, in order to make the vertex mesh pattern, and that goes
 * in prof_co_2.
 */
typedef struct Profile {
	float super_r;       /* superellipse r parameter */
	float coa[3];        /* start control point for profile */
	float midco[3];      /* mid control point for profile */
	float cob[3];        /* end control point for profile */
	float plane_no[3];   /* normal of plane to project to */
	float plane_co[3];   /* coordinate on plane to project to */
	float proj_dir[3];   /* direction of projection line */
	float *prof_co;      /* seg+1 profile coordinates (triples of floats) */
	float *prof_co_2;    /* like prof_co, but for seg power of 2 >= seg */
} Profile;
#define PRO_SQUARE_R 4.0f
#define PRO_CIRCLE_R 2.0f
#define PRO_LINE_R 1.0f
#define PRO_SQUARE_IN_R 0.0f

/* Cache result of expensive calculation of u parameter values to
 * get even spacing on superellipse for current BevelParams seg
 * and pro_super_r. */
typedef struct ProfileSpacing {
	float *uvals;       /* seg+1 u values */
	float *uvals_2;     /* seg_2+1 u values, seg_2 = power of 2 >= seg */
	int seg_2;          /* the seg_2 value */
} ProfileSpacing;

/* An element in a cyclic boundary of a Vertex Mesh (VMesh) */
typedef struct BoundVert {
	struct BoundVert *next, *prev;  /* in CCW order */
	NewVert nv;
	EdgeHalf *efirst;   /* first of edges attached here: in CCW order */
	EdgeHalf *elast;
	EdgeHalf *ebev;     /* beveled edge whose left side is attached here, if any */
	int index;          /* used for vmesh indexing */
	Profile profile;    /* edge profile between this and next BoundVert */
	bool any_seam;      /* are any of the edges attached here seams? */
//	int _pad;
} BoundVert;	

/* Mesh structure replacing a vertex */
typedef struct VMesh {
	NewVert *mesh;           /* allocated array - size and structure depends on kind */
	BoundVert *boundstart;   /* start of boundary double-linked list */
	int count;               /* number of vertices in the boundary */
	int seg;                 /* common # of segments for segmented edges */
	enum {
		M_NONE,         /* no polygon mesh needed */
		M_POLY,         /* a simple polygon */
		M_ADJ,          /* "adjacent edges" mesh pattern */
		M_TRI_FAN,      /* a simple polygon - fan filled */
		M_QUAD_STRIP,   /* a simple polygon - cut into parallel strips */
	} mesh_kind;
//	int _pad;
} VMesh;

/* Data for a vertex involved in a bevel */
typedef struct BevVert {
	BMVert *v;          /* original mesh vertex */
	int edgecount;          /* total number of edges around the vertex (excluding wire edges if edge beveling) */
	int selcount;           /* number of selected edges around the vertex */
	int wirecount;			/* count of wire edges */
	float offset;           /* offset for this vertex, if vertex_only bevel */
	bool any_seam;			/* any seams on attached edges? */
	bool visited;           /* used in graph traversal */
	EdgeHalf *edges;        /* array of size edgecount; CCW order from vertex normal side */
	BMEdge **wire_edges;	/* array of size wirecount of wire edges */
	VMesh *vmesh;           /* mesh structure for replacing vertex */
} BevVert;

/* Bevel parameters and state */
typedef struct BevelParams {
	/* hash of BevVert for each vertex involved in bevel
	 * GHash: (key=(BMVert *), value=(BevVert *)) */
	GHash    *vert_hash;
	MemArena *mem_arena;    /* use for all allocs while bevel runs, if we need to free we can switch to mempool */
	ProfileSpacing pro_spacing; /* parameter values for evenly spaced profiles */

	float offset;           /* blender units to offset each side of a beveled edge */
	int offset_type;        /* how offset is measured; enum defined in bmesh_operators.h */
	int seg;                /* number of segments in beveled edge profile */
	float pro_super_r;      /* superellipse parameter for edge profile */
	bool vertex_only;       /* bevel vertices only */
	bool use_weights;       /* bevel amount affected by weights on edges or verts */
	bool loop_slide;	    /* should bevel prefer to slide along edges rather than keep widths spec? */
	bool limit_offset;      /* should offsets be limited by collisions? */
	const struct MDeformVert *dvert; /* vertex group array, maybe set if vertex_only */
	int vertex_group;       /* vertex group index, maybe set if vertex_only */
	int mat_nr;             /* if >= 0, material number for bevel; else material comes from adjacent faces */
} BevelParams;

// #pragma GCC diagnostic ignored "-Wpadded"

// #include "bevdebug.c"

/* some flags to re-enable old behavior for a while, in case fixes broke things not caught by regression tests */
static int bev_debug_flags = 0;
#define DEBUG_OLD_PLANE_SPECIAL (bev_debug_flags & 1)
#define DEBUG_OLD_PROJ_TO_PERP_PLANE (bev_debug_flags & 2)
#define DEBUG_OLD_FLAT_MID (bev_debug_flags & 4)

/* Are d1 and d2 parallel or nearly so? */
static bool nearly_parallel(const float d1[3], const float d2[3])
{
	float ang;

	ang = angle_v3v3(d1, d2);
	return (fabsf(ang) < BEVEL_EPSILON_ANG) || (fabsf(ang - M_PI) < BEVEL_EPSILON_ANG);
}

/* Make a new BoundVert of the given kind, insert it at the end of the circular linked
 * list with entry point bv->boundstart, and return it. */
static BoundVert *add_new_bound_vert(MemArena *mem_arena, VMesh *vm, const float co[3])
{
	BoundVert *ans = (BoundVert *)BLI_memarena_alloc(mem_arena, sizeof(BoundVert));

	copy_v3_v3(ans->nv.co, co);
	if (!vm->boundstart) {
		ans->index = 0;
		vm->boundstart = ans;
		ans->next = ans->prev = ans;
	}
	else {
		BoundVert *tail = vm->boundstart->prev;
		ans->index = tail->index + 1;
		ans->prev = tail;
		ans->next = vm->boundstart;
		tail->next = ans;
		vm->boundstart->prev = ans;
	}
	ans->profile.super_r = PRO_LINE_R;
	vm->count++;
	return ans;
}

BLI_INLINE void adjust_bound_vert(BoundVert *bv, const float co[3])
{
	copy_v3_v3(bv->nv.co, co);
}

/* Mesh verts are indexed (i, j, k) where
 * i = boundvert index (0 <= i < nv)
 * j = ring index (0 <= j <= ns2)
 * k = segment index (0 <= k <= ns)
 * Not all of these are used, and some will share BMVerts */
static NewVert *mesh_vert(VMesh *vm, int i, int j, int k)
{
	int nj = (vm->seg / 2) + 1;
	int nk = vm->seg + 1;

	return &vm->mesh[i * nk * nj  + j * nk + k];
}

static void create_mesh_bmvert(BMesh *bm, VMesh *vm, int i, int j, int k, BMVert *eg)
{
	NewVert *nv = mesh_vert(vm, i, j, k);
	nv->v = BM_vert_create(bm, nv->co, eg, BM_CREATE_NOP);
	BM_elem_flag_disable(nv->v, BM_ELEM_TAG);
}

static void copy_mesh_vert(
        VMesh *vm, int ito, int jto, int kto,
        int ifrom, int jfrom, int kfrom)
{
	NewVert *nvto, *nvfrom;

	nvto = mesh_vert(vm, ito, jto, kto);
	nvfrom = mesh_vert(vm, ifrom, jfrom, kfrom);
	nvto->v = nvfrom->v;
	copy_v3_v3(nvto->co, nvfrom->co);
}

/* find the EdgeHalf in bv's array that has edge bme */
static EdgeHalf *find_edge_half(BevVert *bv, BMEdge *bme)
{
	int i;

	for (i = 0; i < bv->edgecount; i++) {
		if (bv->edges[i].e == bme)
			return &bv->edges[i];
	}
	return NULL;
}

/* find the BevVert corresponding to BMVert bmv */
static BevVert *find_bevvert(BevelParams *bp, BMVert *bmv)
{
	return BLI_ghash_lookup(bp->vert_hash, bmv);
}

/* Find the EdgeHalf representing the other end of e->e.
 * Return other end's BevVert in *bvother, if r_bvother is provided.
 * That may not have been constructed yet, in which case return NULL. */
static EdgeHalf *find_other_end_edge_half(BevelParams *bp, EdgeHalf *e, BevVert **r_bvother)
{
	BevVert *bvo;
	EdgeHalf *eother;

	bvo = find_bevvert(bp, e->is_rev ? e->e->v1 : e->e->v2);
	if (bvo) {
		if (r_bvother)
			*r_bvother = bvo;
		eother = find_edge_half(bvo, e->e);
		BLI_assert(eother != NULL);
		return eother;
	}
	else if (r_bvother) {
		*r_bvother = NULL;
	}
	return NULL;
}

static bool other_edge_half_visited(BevelParams *bp, EdgeHalf *e)
{
	BevVert *bvo;

	bvo = find_bevvert(bp, e->is_rev ? e->e->v1 : e->e->v2);
	if (bvo)
		return bvo->visited;
	else
		return false;
}

static bool edge_half_offset_changed(EdgeHalf *e)
{
	return e->offset_l != e->offset_l_spec ||
	       e->offset_r != e->offset_r_spec;
}

static float adjusted_rel_change(float val, float spec)
{
	float relchg;

	relchg = 0.0f;
	if (val != spec) {
		if (spec == 0)
			relchg = 1000.0f;  /* arbitrary large value */
		else
			relchg = fabsf((val - spec) / spec);
	}
	return relchg;
}

static float max_edge_half_offset_rel_change(BevVert *bv)
{
	int i;
	float max_rel_change;
	EdgeHalf *e;

	max_rel_change = 0.0f;
	for (i = 0; i < bv->edgecount; i++) {
		e = &bv->edges[i];
		max_rel_change = max_ff(max_rel_change, adjusted_rel_change(e->offset_l, e->offset_l_spec));
		max_rel_change = max_ff(max_rel_change, adjusted_rel_change(e->offset_r, e->offset_r_spec));
	}
	return max_rel_change;
}

/* Return the next EdgeHalf after from_e that is beveled.
 * If from_e is NULL, find the first beveled edge. */
static EdgeHalf *next_bev(BevVert *bv, EdgeHalf *from_e)
{
	EdgeHalf *e;

	if (from_e == NULL)
		from_e = &bv->edges[bv->edgecount - 1];
	e = from_e;
	do {
		if (e->is_bev) {
			return e;
		}
	} while ((e = e->next) != from_e);
	return NULL;
}

/* return count of edges between e1 and e2 when going around bv CCW */
static int count_ccw_edges_between(EdgeHalf *e1, EdgeHalf *e2)
{
	int cnt = 0;
	EdgeHalf *e = e1;

	do {
		if (e == e2)
			break;
		e = e->next;
		cnt++;
	} while (e != e1);
	return cnt;
}

/* Assume bme1 and bme2 both share some vert. Do they share a face?
 * If they share a face then there is some loop around bme1 that is in a face
 * where the next or previous edge in the face must be bme2. */
static bool edges_face_connected_at_vert(BMEdge *bme1, BMEdge *bme2)
{
	BMLoop *l;
	BMIter iter;

	BM_ITER_ELEM(l, &iter, bme1, BM_LOOPS_OF_EDGE) {
		if (l->prev->e == bme2 || l->next->e == bme2)
			return true;
	}
	return false;
}

/* Return a good representative face (for materials, etc.) for faces
 * created around/near BoundVert v.
 * Sometimes care about a second choice, if there is one.
 * If r_fother parameter is non-NULL and there is another, different,
 * possible frep, return the other one in that parameter. */
static BMFace *boundvert_rep_face(BoundVert *v, BMFace **r_fother)
{
	BMFace *frep, *frep2;

	frep2 = NULL;
	if (v->ebev) {
		frep = v->ebev->fprev;
		if (v->efirst->fprev != frep)
			frep2 = v->efirst->fprev;
	}
	else {
		frep = v->efirst->fprev;
		if (frep) {
			if (v->elast->fnext != frep)
				frep2 = v->elast->fnext;
			else if (v->efirst->fnext != frep)
				frep2 = v->efirst->fnext;
			else if (v->elast->fprev != frep)
				frep2 = v->efirst->fprev;
		}
		else if (v->efirst->fnext) {
			frep = v->efirst->fnext;
			if (v->elast->fnext != frep)
				frep2 = v->elast->fnext;
		}
		else if (v->elast->fprev) {
			frep = v->elast->fprev;
		}
	}
	if (r_fother)
		*r_fother = frep2;
	return frep;
}

/**
 * Make ngon from verts alone.
 * Make sure to properly copy face attributes and do custom data interpolation from
 * corresponding elements of face_arr, if that is non-NULL, else from facerep.
 * If edge_arr is non-NULL, then for interpolation purposes only, the corresponding
 * elements of vert_arr are snapped to any non-NULL edges in that array.
 * If mat_nr >= 0 then the material of the face is set to that.
 *
 * \note ALL face creation goes through this function, this is important to keep!
 */
static BMFace *bev_create_ngon(
        BMesh *bm, BMVert **vert_arr, const int totv,
        BMFace **face_arr, BMFace *facerep, BMEdge **edge_arr,
        int mat_nr, bool do_interp)
{
	BMIter iter;
	BMLoop *l;
	BMFace *f, *interp_f;
	BMEdge *bme;
	float save_co[3];
	int i;

	f = BM_face_create_verts(bm, vert_arr, totv, facerep, BM_CREATE_NOP, true);

	if ((facerep || (face_arr && face_arr[0])) && f) {
		BM_elem_attrs_copy(bm, bm, facerep ? facerep : face_arr[0], f);
		if (do_interp) {
			i = 0;
			BM_ITER_ELEM (l, &iter, f, BM_LOOPS_OF_FACE) {
				if (face_arr) {
					/* assume loops of created face are in same order as verts */
					BLI_assert(l->v == vert_arr[i]);
					interp_f = face_arr[i];
				}
				else {
					interp_f = facerep;
				}
				if (interp_f) {
					bme = NULL;
					if (edge_arr)
						bme = edge_arr[i];
					if (bme) {
						copy_v3_v3(save_co, l->v->co);
						closest_to_line_segment_v3(l->v->co, save_co, bme->v1->co, bme->v2->co);
					}
					BM_loop_interp_from_face(bm, l, interp_f, true, true);
					if (bme) {
						copy_v3_v3(l->v->co, save_co);
					}
				}
				i++;
			}
		}
	}

	/* not essential for bevels own internal logic,
	 * this is done so the operator can select newly created faces */
	if (f) {
		BM_elem_flag_enable(f, BM_ELEM_TAG);
	}

	if (mat_nr >= 0)
		f->mat_nr = mat_nr;
	return f;
}

static BMFace *bev_create_quad(
        BMesh *bm, BMVert *v1, BMVert *v2, BMVert *v3, BMVert *v4,
        BMFace *f1, BMFace *f2, BMFace *f3, BMFace *f4, 
        int mat_nr)
{
	BMVert *varr[4] = {v1, v2, v3, v4};
	BMFace *farr[4] = {f1, f2, f3, f4};
	return bev_create_ngon(bm, varr, 4, farr, f1, NULL, mat_nr, true);
}

static BMFace *bev_create_quad_ex(
        BMesh *bm, BMVert *v1, BMVert *v2, BMVert *v3, BMVert *v4,
        BMFace *f1, BMFace *f2, BMFace *f3, BMFace *f4, 
        BMEdge *e1, BMEdge *e2, BMEdge *e3, BMEdge *e4,
        int mat_nr)
{
	BMVert *varr[4] = {v1, v2, v3, v4};
	BMFace *farr[4] = {f1, f2, f3, f4};
	BMEdge *earr[4] = {e1, e2, e3, e4};
	return bev_create_ngon(bm, varr, 4, farr, f1, earr, mat_nr, true);
}

/* Is Loop layer layer_index contiguous across shared vertex of l1 and l2? */
static bool contig_ldata_across_loops(
        BMesh *bm, BMLoop *l1, BMLoop *l2,
        int layer_index)
{
	const int offset = bm->ldata.layers[layer_index].offset;
	const int type = bm->ldata.layers[layer_index].type;

	return CustomData_data_equals(type,
	                              (char *)l1->head.data + offset,
	                              (char *)l2->head.data + offset);
}

/* Are all loop layers with have math (e.g., UVs) contiguous from face f1 to face f2 across edge e? */
static bool contig_ldata_across_edge(BMesh *bm, BMEdge *e, BMFace *f1, BMFace *f2)
{
	BMLoop *lef1, *lef2;
	BMLoop *lv1f1, *lv1f2, *lv2f1, *lv2f2;
	BMVert *v1, *v2;
	int i;

	if (bm->ldata.totlayer == 0)
		return true;

	v1 = e->v1;
	v2 = e->v2;
	if (!BM_edge_loop_pair(e, &lef1, &lef2))
		return false;
	if (lef1->f == f2) {
		SWAP(BMLoop *, lef1, lef2);
	}

	if (lef1->v == v1) {
		lv1f1 = lef1;
		lv2f1 = BM_face_other_edge_loop(f1, e, v2);
	}
	else {
		lv2f1 = lef1;
		lv1f1 = BM_face_other_edge_loop(f1, e, v1);
	}

	if (lef2->v == v1) {
		lv1f2 = lef2;
		lv2f2 = BM_face_other_edge_loop(f2, e, v2);
	}
	else {
		lv2f2 = lef2;
		lv1f2 = BM_face_other_edge_loop(f2, e, v1);
	}

	for (i = 0; i < bm->ldata.totlayer; i++) {
		if (CustomData_layer_has_math(&bm->ldata, i) &&
		    (!contig_ldata_across_loops(bm, lv1f1, lv1f2, i) ||
		     !contig_ldata_across_loops(bm, lv2f1, lv2f2, i)))
		{
			return false;
		}
	}
	return true;
}

/* Merge (using average) all the UV values for loops of v's faces.
 * Caller should ensure that no seams are violated by doing this. */
static void bev_merge_uvs(BMesh *bm, BMVert *v)
{
	BMIter iter;
	MLoopUV *luv;
	BMLoop *l;
	float uv[2];
	int n;
	int num_of_uv_layers = CustomData_number_of_layers(&bm->ldata, CD_MLOOPUV);
	int i;

	for (i = 0; i < num_of_uv_layers; i++) {
		int cd_loop_uv_offset = CustomData_get_n_offset(&bm->ldata, CD_MLOOPUV, i);

		if (cd_loop_uv_offset == -1)
			return;

		n = 0;
		zero_v2(uv);
		BM_ITER_ELEM (l, &iter, v, BM_LOOPS_OF_VERT) {
			luv = BM_ELEM_CD_GET_VOID_P(l, cd_loop_uv_offset);
			add_v2_v2(uv, luv->uv);
			n++;
		}
		if (n > 1) {
			mul_v2_fl(uv, 1.0f / (float)n);
			BM_ITER_ELEM (l, &iter, v, BM_LOOPS_OF_VERT) {
				luv = BM_ELEM_CD_GET_VOID_P(l, cd_loop_uv_offset);
				copy_v2_v2(luv->uv, uv);
			}
		}
	}
}

/* Merge (using average) the UV values for two specific loops of v: those for faces containing v,
 * and part of faces that share edge bme */
static void bev_merge_edge_uvs(BMesh *bm, BMEdge *bme, BMVert *v)
{
	BMIter iter;
	MLoopUV *luv;
	BMLoop *l, *l1, *l2;
	float uv[2];
	int num_of_uv_layers = CustomData_number_of_layers(&bm->ldata, CD_MLOOPUV);
	int i;

	l1 = NULL;
	l2 = NULL;
	BM_ITER_ELEM (l, &iter, v, BM_LOOPS_OF_VERT) {
		if (l->e == bme)
			l1 = l;
		else if (l->prev->e == bme)
			l2 = l;
	}
	if (l1 == NULL || l2 == NULL)
		return;

	for (i = 0; i < num_of_uv_layers; i++) {
		int cd_loop_uv_offset = CustomData_get_n_offset(&bm->ldata, CD_MLOOPUV, i);

		if (cd_loop_uv_offset == -1)
			return;

		zero_v2(uv);
		luv = BM_ELEM_CD_GET_VOID_P(l1, cd_loop_uv_offset);
		add_v2_v2(uv, luv->uv);
		luv = BM_ELEM_CD_GET_VOID_P(l2, cd_loop_uv_offset);
		add_v2_v2(uv, luv->uv);
		mul_v2_fl(uv, 0.5f);
		luv = BM_ELEM_CD_GET_VOID_P(l1, cd_loop_uv_offset);
		copy_v2_v2(luv->uv, uv);
		luv = BM_ELEM_CD_GET_VOID_P(l2, cd_loop_uv_offset);
		copy_v2_v2(luv->uv, uv);
	}
}

/* Calculate coordinates of a point a distance d from v on e->e and return it in slideco */
static void slide_dist(EdgeHalf *e, BMVert *v, float d, float slideco[3])
{
	float dir[3], len;

	sub_v3_v3v3(dir, v->co, BM_edge_other_vert(e->e, v)->co);
	len = normalize_v3(dir);
	if (d > len)
		d = len - (float)(50.0 * BEVEL_EPSILON_D);
	copy_v3_v3(slideco, v->co);
	madd_v3_v3fl(slideco, dir, -d);
}

/* Is co not on the edge e? if not, return the closer end of e in ret_closer_v */
static bool is_outside_edge(EdgeHalf *e, const float co[3], BMVert **ret_closer_v)
{
	float d_squared;

	d_squared = dist_squared_to_line_segment_v3(co, e->e->v1->co, e->e->v2->co);
	if (d_squared > BEVEL_EPSILON_BIG * BEVEL_EPSILON_BIG) {
		if (len_squared_v3v3(co, e->e->v1->co) > len_squared_v3v3(co, e->e->v2->co))
			*ret_closer_v = e->e->v2;
		else
			*ret_closer_v = e->e->v1;
		return true;
	}
	else {
		return false;
	}
}

/* co should be approximately on the plane between e1 and e2, which share common vert v
 * and common face f (which cannot be NULL).
 * Is it between those edges, sweeping CCW? */
static bool point_between_edges(float co[3], BMVert *v, BMFace *f, EdgeHalf *e1, EdgeHalf *e2)
{
	BMVert *v1, *v2;
	float dir1[3], dir2[3], dirco[3], no[3];
	float ang11, ang1co;

	v1 = BM_edge_other_vert(e1->e, v);
	v2 = BM_edge_other_vert(e2->e, v);
	sub_v3_v3v3(dir1, v->co, v1->co);
	sub_v3_v3v3(dir2, v->co, v2->co);
	sub_v3_v3v3(dirco, v->co, co);
	normalize_v3(dir1);
	normalize_v3(dir2);
	normalize_v3(dirco);
	ang11 = angle_normalized_v3v3(dir1, dir2);
	ang1co = angle_normalized_v3v3(dir1, dirco);
	/* angles are in [0,pi]. need to compare cross product with normal to see if they are reflex */
	cross_v3_v3v3(no, dir1, dir2);
	if (dot_v3v3(no, f->no) < 0.0f)
		ang11 = (float)(M_PI * 2.0) - ang11;
	cross_v3_v3v3(no, dir1, dirco);
	if (dot_v3v3(no, f->no) < 0.0f)
		ang1co = (float)(M_PI * 2.0) - ang1co;
	return (ang11 - ang1co > -BEVEL_EPSILON_ANG);
}

/*
 * Calculate the meeting point between the offset edges for e1 and e2, putting answer in meetco.
 * e1 and e2 share vertex v and face f (may be NULL) and viewed from the normal side of
 * the bevel vertex,  e1 precedes e2 in CCW order.
 * Except: if edges_between is true, there are edges between e1 and e2 in CCW order so they
 * don't share a common face. We want the meeting point to be on an existing face so it
 * should be dropped onto one of the intermediate faces, if possible.
 * Offset edge is on right of both edges, where e1 enters v and e2 leave it.
 * When offsets are equal, the new point is on the edge bisector, with length offset/sin(angle/2),
 * but if the offsets are not equal (allowing for this, as bevel modifier has edge weights that may
 * lead to different offsets) then meeting point can be found be intersecting offset lines.
 * If making the meeting point significantly changes the left or right offset from the user spec,
 * record the change in offset_l (or offset_r); later we can tell that a change has happened because
 * the offset will differ from its original value in offset_l_spec (or offset_r_spec).
 */
static void offset_meet(EdgeHalf *e1, EdgeHalf *e2, BMVert *v, BMFace *f, bool edges_between, float meetco[3])
{
	float dir1[3], dir2[3], dir1n[3], dir2p[3], norm_v[3], norm_v1[3], norm_v2[3],
		norm_perp1[3], norm_perp2[3], off1a[3], off1b[3], off2a[3], off2b[3],
		isect2[3], dropco[3], plane[4], ang, d;
	BMVert *closer_v;
	EdgeHalf *e, *e1next, *e2prev;
	BMFace *ff;
	int isect_kind;

	/* get direction vectors for two offset lines */
	sub_v3_v3v3(dir1, v->co, BM_edge_other_vert(e1->e, v)->co);
	sub_v3_v3v3(dir2, BM_edge_other_vert(e2->e, v)->co, v->co);

	if (edges_between) {
		e1next = e1->next;
		e2prev = e2->prev;
		sub_v3_v3v3(dir1n, BM_edge_other_vert(e1next->e, v)->co, v->co);
		sub_v3_v3v3(dir2p, v->co, BM_edge_other_vert(e2prev->e, v)->co);
	}

	ang = angle_v3v3(dir1, dir2);
	if (ang < BEVEL_EPSILON_ANG) {
		/* special case: e1 and e2 are parallel; put offset point perp to both, from v.
		 * need to find a suitable plane.
		 * if offsets are different, we're out of luck:
		 * use the max of the two (so get consistent looking results if the same situation
		 * arises elsewhere in the object but with opposite roles for e1 and e2 */
		if (f)
			copy_v3_v3(norm_v, f->no);
		else
			copy_v3_v3(norm_v, v->no);
		cross_v3_v3v3(norm_perp1, dir1, norm_v);
		normalize_v3(norm_perp1);
		copy_v3_v3(off1a, v->co);
		d = max_ff(e1->offset_r, e2->offset_l);
		madd_v3_v3fl(off1a, norm_perp1, d);
		if (e1->offset_r != d)
			e1->offset_r = d;
		else if (e2->offset_l != d)
			e2->offset_l = d;
		copy_v3_v3(meetco, off1a);
	}
	else if (fabsf(ang - (float)M_PI) < BEVEL_EPSILON_ANG) {
		/* special case e1 and e2 are antiparallel, so bevel is into
		 * a zero-area face.  Just make the offset point on the
		 * common line, at offset distance from v. */
		d = max_ff(e1->offset_r, e2->offset_l);
		slide_dist(e2, v, d, meetco);
		if (e1->offset_r != d)
			e1->offset_r = d;
		else if (e2->offset_l != d)
			e2->offset_l = d;
	}
	else {
		/* Get normal to plane where meet point should be,
		 * using cross product instead of f->no in case f is non-planar.
		 * Except: sometimes locally there can be a small angle
		 * between dir1 and dir2 that leads to a normal that is actually almost
		 * perpendicular to the face normal; in this case it looks wrong to use
		 * the local (cross-product) normal, so use the face normal if the angle
		 * between dir1 and dir2 is smallish.
		 * If e1-v-e2 is a reflex angle (viewed from vertex normal side), need to flip.
		 * Use f->no to figure out which side to look at angle from, as even if
		 * f is non-planar, will be more accurate than vertex normal */
		if (f && ang < BEVEL_SMALL_ANG) {
			copy_v3_v3(norm_v1, f->no);
			copy_v3_v3(norm_v2, f->no);
		}
		else if (!edges_between) {
			cross_v3_v3v3(norm_v1, dir2, dir1);
			normalize_v3(norm_v1);
			if (dot_v3v3(norm_v1, f ? f->no : v->no) < 0.0f)
				negate_v3(norm_v1);
			copy_v3_v3(norm_v2, norm_v1);
		}
		else {
			/* separate faces; get face norms at corners for each separately */
			cross_v3_v3v3(norm_v1, dir1n, dir1);
			normalize_v3(norm_v1);
			f = e1->fnext;
			if (dot_v3v3(norm_v1, f ? f->no : v->no) < 0.0f)
				negate_v3(norm_v1);
			cross_v3_v3v3(norm_v2, dir2, dir2p);
			normalize_v3(norm_v2);
			f = e2->fprev;
			if (dot_v3v3(norm_v2, f ? f->no : v->no) < 0.0f)
				negate_v3(norm_v2);
		}


		/* get vectors perp to each edge, perp to norm_v, and pointing into face */
		cross_v3_v3v3(norm_perp1, dir1, norm_v1);
		cross_v3_v3v3(norm_perp2, dir2, norm_v2);
		normalize_v3(norm_perp1);
		normalize_v3(norm_perp2);

		/* get points that are offset distances from each line, then another point on each line */
		copy_v3_v3(off1a, v->co);
		madd_v3_v3fl(off1a, norm_perp1, e1->offset_r);
		add_v3_v3v3(off1b, off1a, dir1);
		copy_v3_v3(off2a, v->co);
		madd_v3_v3fl(off2a, norm_perp2, e2->offset_l);
		add_v3_v3v3(off2b, off2a, dir2);

		/* intersect the lines */
		isect_kind = isect_line_line_v3(off1a, off1b, off2a, off2b, meetco, isect2);
		if (isect_kind == 0) {
			/* lines are collinear: we already tested for this, but this used a different epsilon */
			copy_v3_v3(meetco, off1a);  /* just to do something */
			d = dist_to_line_v3(meetco, v->co, BM_edge_other_vert(e2->e, v)->co);
			if (fabsf(d - e2->offset_l) > BEVEL_EPSILON)
				e2->offset_l = d;
		}
		else {
			/* The lines intersect, but is it at a reasonable place?
			 * One problem to check: if one of the offsets is 0, then don't
			 * want an intersection that is outside that edge itself.
			 * This can happen if angle between them is > 180 degrees,
			 * or if the offset amount is > the edge length*/
			if (e1->offset_r == 0.0f && is_outside_edge(e1, meetco, &closer_v)) {
				copy_v3_v3(meetco, closer_v->co);
				e2->offset_l = len_v3v3(meetco, v->co);
			}
			if (e2->offset_l == 0.0f && is_outside_edge(e2, meetco, &closer_v)) {
				copy_v3_v3(meetco, closer_v->co);
				e1->offset_r = len_v3v3(meetco, v->co);
			}
			if (edges_between && e1->offset_r > 0.0f && e2->offset_l > 0.0f) {
				/* Try to drop meetco to a face between e1 and e2 */
				if (isect_kind == 2) {
					/* lines didn't meet in 3d: get average of meetco and isect2 */
					mid_v3_v3v3(meetco, meetco, isect2);
				}
				for (e = e1; e != e2; e = e->next) {
					ff = e->fnext;
					if (!ff)
						continue;
					plane_from_point_normal_v3(plane, v->co, ff->no);
					closest_to_plane_normalized_v3(dropco, plane, meetco);
					if (point_between_edges(dropco, v, ff, e, e->next)) {
						copy_v3_v3(meetco, dropco);
						break;
					}
				}
				e1->offset_r = dist_to_line_v3(meetco, v->co, BM_edge_other_vert(e1->e, v)->co);
				e2->offset_l = dist_to_line_v3(meetco, v->co, BM_edge_other_vert(e2->e, v)->co);
			}
		}
	}
}

/* chosen so that 1/sin(BEVEL_GOOD_ANGLE) is about 4, giving that expansion factor to bevel width */
#define BEVEL_GOOD_ANGLE 0.25f

/* Calculate the meeting point between e1 and e2 (one of which should have zero offsets),
 * where e1 precedes e2 in CCW order around their common vertex v (viewed from normal side).
 * If r_angle is provided, return the angle between e and emeet in *r_angle.
 * If the angle is 0, or it is 180 degrees or larger, there will be no meeting point;
 * return false in that case, else true. */
static bool offset_meet_edge(EdgeHalf *e1, EdgeHalf *e2, BMVert *v,  float meetco[3], float *r_angle)
{
	float dir1[3], dir2[3], fno[3], ang, sinang;

	sub_v3_v3v3(dir1, BM_edge_other_vert(e1->e, v)->co, v->co);
	sub_v3_v3v3(dir2, BM_edge_other_vert(e2->e, v)->co, v->co);
	normalize_v3(dir1);
	normalize_v3(dir2);

	/* find angle from dir1 to dir2 as viewed from vertex normal side */
	ang = angle_normalized_v3v3(dir1, dir2);
	if (fabsf(ang) < BEVEL_GOOD_ANGLE) {
		if (r_angle)
			*r_angle = 0.0f;
		return false;
	}
	cross_v3_v3v3(fno, dir1, dir2);
	if (dot_v3v3(fno, v->no) < 0.0f) {
		ang = 2.0f * (float)M_PI - ang;  /* angle is reflex */
		if (r_angle)
			*r_angle = ang;
		return false;
	}
	if (r_angle)
		*r_angle = ang;

	if (fabsf(ang - (float)M_PI) < BEVEL_GOOD_ANGLE)
		return false;

	sinang = sinf(ang);

	copy_v3_v3(meetco, v->co);
	if (e1->offset_r == 0.0f)
		madd_v3_v3fl(meetco, dir1, e2->offset_l / sinang);
	else
		madd_v3_v3fl(meetco, dir2, e1->offset_r / sinang);
	return true;
}

/* Return true if it will look good to put the meeting point where offset_on_edge_between
 * would put it. This means that neither side sees a reflex angle */
static bool good_offset_on_edge_between(EdgeHalf *e1, EdgeHalf *e2, EdgeHalf *emid, BMVert *v)
{
	float ang;
	float meet[3];

	return offset_meet_edge(e1, emid, v, meet, &ang) &&
	       offset_meet_edge(emid, e2, v, meet, &ang);
}

/* Calculate the best place for a meeting point for the offsets from edges e1 and e2
 * on the in-between edge emid.  Viewed from the vertex normal side, the CCW
 * order of these edges is e1, emid, e2.
 * The offsets probably do not meet at a common point on emid, so need to pick
 * one that causes the least problems. If the other end of one of e1 or e2 has been visited
 * already, prefer to keep the offset the same on this end.
 * Otherwise, pick a point between the two intersection points on emid that minimizes
 * the sum of squares of errors from desired offset. */
static void offset_on_edge_between(
        BevelParams *bp, EdgeHalf *e1, EdgeHalf *e2, EdgeHalf *emid,
        BMVert *v, float meetco[3])
{
	float d, ang1, ang2, sina1, sina2, lambda;
	float meet1[3], meet2[3];
	bool visited1, visited2, ok1, ok2;

	BLI_assert(e1->is_bev && e2->is_bev && !emid->is_bev);

	visited1 = other_edge_half_visited(bp, e1);
	visited2 = other_edge_half_visited(bp, e2);

	ok1 = offset_meet_edge(e1, emid, v, meet1, &ang1);
	ok2 = offset_meet_edge(emid, e2, v, meet2, &ang2);
	if (ok1 && ok2) {
		if (visited1 && !visited2) {
			copy_v3_v3(meetco, meet1);
		}
		else if (!visited1 && visited2) {
			copy_v3_v3(meetco, meet2);
		}
		else {
			/* find best compromise meet point */
			sina1 = sinf(ang1);
			sina2 = sinf(ang2);
			lambda = sina2 * sina2 / (sina1 * sina1 + sina2 * sina2);
			interp_v3_v3v3(meetco, meet1, meet2, lambda);
		}
	}
	else if (ok1 && !ok2) {
		copy_v3_v3(meetco, meet1);
	}
	else if (!ok1 && ok2) {
		copy_v3_v3(meetco, meet2);
	}
	else {
		/* Neither offset line met emid.
		 * This should only happen if all three lines are on top of each other */
		slide_dist(emid, v, e1->offset_r, meetco);
	}

	/* offsets may have changed now */
	d = dist_to_line_v3(meetco, v->co, BM_edge_other_vert(e1->e, v)->co);
	if (fabsf(d - e1->offset_r) > BEVEL_EPSILON)
		e1->offset_r = d;
	d = dist_to_line_v3(meetco, v->co, BM_edge_other_vert(e2->e, v)->co);
	if (fabsf(d - e2->offset_l) > BEVEL_EPSILON)
		e2->offset_l = d;
}

/* Offset by e->offset in plane with normal plane_no, on left if left==true,
 * else on right.  If no is NULL, choose an arbitrary plane different
 * from eh's direction. */
static void offset_in_plane(EdgeHalf *e, const float plane_no[3], bool left, float r[3])
{
	float dir[3], no[3], fdir[3];
	BMVert *v;

	v = e->is_rev ? e->e->v2 : e->e->v1;

	sub_v3_v3v3(dir, BM_edge_other_vert(e->e, v)->co, v->co);
	normalize_v3(dir);
	if (plane_no) {
		copy_v3_v3(no, plane_no);
	}
	else {
		zero_v3(no);
		if (fabsf(dir[0]) < fabsf(dir[1]))
			no[0] = 1.0f;
		else
			no[1] = 1.0f;
	}
	if (left)
		cross_v3_v3v3(fdir, dir, no);
	else
		cross_v3_v3v3(fdir, no, dir);
	normalize_v3(fdir);
	copy_v3_v3(r, v->co);
	madd_v3_v3fl(r, fdir, left ? e->offset_l : e->offset_r);
}

/* Calculate the point on e where line (co_a, co_b) comes closest to and return it in projco */
static void project_to_edge(BMEdge *e, const float co_a[3], const float co_b[3], float projco[3])
{
	float otherco[3];

	if (!isect_line_line_v3(e->v1->co, e->v2->co, co_a, co_b, projco, otherco)) {
#ifdef BEVEL_ASSERT_PROJECT
		BLI_assert(!"project meet failure");
#endif
		copy_v3_v3(projco, e->v1->co);
	}
}

/* If there is a bndv->ebev edge, find the mid control point if necessary.
 * It is the closest point on the beveled edge to the line segment between
 * bndv and bndv->next.  */
static void set_profile_params(BevelParams *bp, BevVert *bv, BoundVert *bndv)
{
	EdgeHalf *e;
	Profile *pro;
	float co1[3], co2[3], co3[3], d1[3], d2[3];
	bool do_linear_interp;

	copy_v3_v3(co1, bndv->nv.co);
	copy_v3_v3(co2, bndv->next->nv.co);
	pro = &bndv->profile;
	e = bndv->ebev;
	do_linear_interp = true;
	if (e) {
		do_linear_interp = false;
		pro->super_r = bp->pro_super_r;
		/* projection direction is direction of the edge */
		sub_v3_v3v3(pro->proj_dir, e->e->v1->co, e->e->v2->co);
		normalize_v3(pro->proj_dir);
		project_to_edge(e->e, co1, co2, pro->midco);
		if (DEBUG_OLD_PROJ_TO_PERP_PLANE) {
			/* put arc endpoints on plane with normal proj_dir, containing midco */
			add_v3_v3v3(co3, co1, pro->proj_dir);
			if (!isect_line_plane_v3(pro->coa, co1, co3, pro->midco, pro->proj_dir)) {
				/* shouldn't happen */
				copy_v3_v3(pro->coa, co1);
			}
			add_v3_v3v3(co3, co2, pro->proj_dir);
			if (!isect_line_plane_v3(pro->cob, co2, co3, pro->midco, pro->proj_dir)) {
				/* shouldn't happen */
				copy_v3_v3(pro->cob, co2);
			}
		}
		else {
			copy_v3_v3(pro->coa, co1);
			copy_v3_v3(pro->cob, co2);
		}
		/* default plane to project onto is the one with triangle co1 - midco - co2 in it */
		sub_v3_v3v3(d1, pro->midco, co1);
		sub_v3_v3v3(d2, pro->midco, co2);
		normalize_v3(d1);
		normalize_v3(d2);
		cross_v3_v3v3(pro->plane_no, d1, d2);
		normalize_v3(pro->plane_no);
		if (nearly_parallel(d1, d2)) {
			/* co1 - midco -co2 are collinear.
			 * Should be case that beveled edge is coplanar with two boundary verts.
			 * We want to move the profile to that common plane, if possible.
			 * That makes the multi-segment bevels curve nicely in that plane, as users expect.
			 * The new midco should be either v (when neighbor edges are unbeveled)
			 * or the intersection of the offset lines (if they are).
			 * If the profile is going to lead into unbeveled edges on each side
			 * (that is, both BoundVerts are "on-edge" points on non-beveled edges)
			 */
			if (DEBUG_OLD_PLANE_SPECIAL && (e->prev->is_bev || e->next->is_bev)) {
				do_linear_interp = true;
			}
			else {
				if (DEBUG_OLD_PROJ_TO_PERP_PLANE) {
					copy_v3_v3(pro->coa, co1);
					copy_v3_v3(pro->cob, co2);
				}
				if (DEBUG_OLD_FLAT_MID) {
					copy_v3_v3(pro->midco, bv->v->co);
				}
				else {
					copy_v3_v3(pro->midco, bv->v->co);
					if (e->prev->is_bev && e->next->is_bev && bv->selcount >= 3) {
						/* want mid at the meet point of next and prev offset edges */
						float d3[3], d4[3], co4[3], meetco[3], isect2[3];
						int isect_kind;

						sub_v3_v3v3(d3, e->prev->e->v1->co, e->prev->e->v2->co);
						sub_v3_v3v3(d4, e->next->e->v1->co, e->next->e->v2->co);
						normalize_v3(d3);
						normalize_v3(d4);
						if (nearly_parallel(d3, d4)) {
							/* offset lines are collinear - want linear interpolation */
							mid_v3_v3v3(pro->midco, co1, co2);
							do_linear_interp = true;
						}
						else {
							add_v3_v3v3(co3, co1, d3);
							add_v3_v3v3(co4, co2, d4);
							isect_kind = isect_line_line_v3(co1, co3, co2, co4, meetco, isect2);
							if (isect_kind != 0) {
								copy_v3_v3(pro->midco, meetco);
							}
							else {
								/* offset lines don't intersect - want linear interpolation */
								mid_v3_v3v3(pro->midco, co1, co2);
								do_linear_interp = true;
							}
						}
					}
				}
				copy_v3_v3(pro->cob, co2);
				sub_v3_v3v3(d1, pro->midco, co1);
				normalize_v3(d1);
				sub_v3_v3v3(d2, pro->midco, co2);
				normalize_v3(d2);
				cross_v3_v3v3(pro->plane_no, d1, d2);
				normalize_v3(pro->plane_no);
				if (nearly_parallel(d1, d2)) {
					/* whole profile is collinear with edge: just interpolate */
					do_linear_interp = true;
				}
				else {
					copy_v3_v3(pro->plane_co, bv->v->co);
					copy_v3_v3(pro->proj_dir, pro->plane_no);
				}
			}
		}
		copy_v3_v3(pro->plane_co, co1);
	}
	if (do_linear_interp) {
		pro->super_r = PRO_LINE_R;
		copy_v3_v3(pro->coa, co1);
		copy_v3_v3(pro->cob, co2);
		mid_v3_v3v3(pro->midco, co1, co2);
		/* won't use projection for this line profile */
		zero_v3(pro->plane_co);
		zero_v3(pro->plane_no);
		zero_v3(pro->proj_dir);
	}
}

/* Move the profile plane for bndv to the plane containing e1 and e2, which share a vert */
static void move_profile_plane(BoundVert *bndv, EdgeHalf *e1, EdgeHalf *e2)
{
	float d1[3], d2[3], no[3], no2[3], dot;

	/* only do this if projecting, and e1, e2, and proj_dir are not coplanar */
	if (is_zero_v3(bndv->profile.proj_dir))
		return;
	sub_v3_v3v3(d1, e1->e->v1->co, e1->e->v2->co);
	sub_v3_v3v3(d2, e2->e->v1->co, e2->e->v2->co);
	cross_v3_v3v3(no, d1, d2);
	cross_v3_v3v3(no2, d1, bndv->profile.proj_dir);
	if (normalize_v3(no) > BEVEL_EPSILON_BIG && normalize_v3(no2) > BEVEL_EPSILON_BIG) {
		dot = fabsf(dot_v3v3(no, no2));
		if (fabsf(dot - 1.0f) > BEVEL_EPSILON_BIG)
			copy_v3_v3(bndv->profile.plane_no, no);
	}
}

/* Move the profile plane for the two BoundVerts involved in a weld.
 * We want the plane that is most likely to have the intersections of the
 * two edges' profile projections on it. bndv1 and bndv2 are by
 * construction the intersection points of the outside parts of the profiles.
 * The original vertex should form a third point of the desired plane. */
static void move_weld_profile_planes(BevVert *bv, BoundVert *bndv1, BoundVert *bndv2)
{
	float d1[3], d2[3], no[3], no2[3], no3[3], dot1, dot2, l1, l2, l3;

	/* only do this if projecting, and d1, d2, and proj_dir are not coplanar */
	if (is_zero_v3(bndv1->profile.proj_dir) || is_zero_v3(bndv2->profile.proj_dir))
		return;
	sub_v3_v3v3(d1, bv->v->co, bndv1->nv.co);
	sub_v3_v3v3(d2, bv->v->co, bndv2->nv.co);
	cross_v3_v3v3(no, d1, d2);
	l1 = normalize_v3(no);
	/* "no" is new normal projection plane, but don't move if
	 * it is coplanar with both of the projection dirs */
	cross_v3_v3v3(no2, d1, bndv1->profile.proj_dir);
	l2 = normalize_v3(no2);
	cross_v3_v3v3(no3, d2, bndv2->profile.proj_dir);
	l3 = normalize_v3(no3);
	if (l1 > BEVEL_EPSILON && (l2 > BEVEL_EPSILON || l3 > BEVEL_EPSILON)) {
		dot1 = fabsf(dot_v3v3(no, no2));
		dot2 = fabsf(dot_v3v3(no, no3));
		if (fabsf(dot1 - 1.0f) > BEVEL_EPSILON)
			copy_v3_v3(bndv1->profile.plane_no, no);
		if (fabsf(dot2 - 1.0f) > BEVEL_EPSILON)
			copy_v3_v3(bndv2->profile.plane_no, no);
	}
}

/* return 1 if a and b are in CCW order on the normal side of f,
 * and -1 if they are reversed, and 0 if there is no shared face f */
static int bev_ccw_test(BMEdge *a, BMEdge *b, BMFace *f)
{
	BMLoop *la, *lb;

	if (!f)
		return 0;
	la = BM_face_edge_share_loop(f, a);
	lb = BM_face_edge_share_loop(f, b);
	if (!la || !lb)
		return 0;
	return lb->next == la ? 1 : -1;
}

/* Fill matrix r_mat so that a point in the sheared parallelogram with corners
 * va, vmid, vb (and the 4th that is implied by it being a parallelogram)
 * is the result of transforming the unit square by multiplication with r_mat.
 * If it can't be done because the parallelogram is degenerate, return false
 * else return true.
 * Method:
 * Find vo, the origin of the parallelogram with other three points va, vmid, vb.
 * Also find vd, which is in direction normal to parallelogram and 1 unit away
 * from the origin.
 * The quarter circle in first quadrant of unit square will be mapped to the
 * quadrant of a sheared ellipse in the parallelogram, using a matrix.
 * The matrix mat is calculated to map:
 *    (0,1,0) -> va
 *    (1,1,0) -> vmid
 *    (1,0,0) -> vb
 *    (0,1,1) -> vd
 * We want M to make M*A=B where A has the left side above, as columns
 * and B has the right side as columns - both extended into homogeneous coords.
 * So M = B*(Ainverse).  Doing Ainverse by hand gives the code below.
 */
static bool make_unit_square_map(
        const float va[3], const float vmid[3], const float vb[3],
        float r_mat[4][4])
{
	float vo[3], vd[3], vb_vmid[3], va_vmid[3], vddir[3];

	sub_v3_v3v3(va_vmid, vmid, va);
	sub_v3_v3v3(vb_vmid, vmid, vb);
	if (fabsf(angle_v3v3(va_vmid, vb_vmid) - (float)M_PI) > BEVEL_EPSILON_ANG) {
		sub_v3_v3v3(vo, va, vb_vmid);
		cross_v3_v3v3(vddir, vb_vmid, va_vmid);
		normalize_v3(vddir);
		add_v3_v3v3(vd, vo, vddir);

		/* The cols of m are: {vmid - va, vmid - vb, vmid + vd - va -vb, va + vb - vmid;
		 * blender transform matrices are stored such that m[i][*] is ith column;
		 * the last elements of each col remain as they are in unity matrix */
		sub_v3_v3v3(&r_mat[0][0], vmid, va);
		r_mat[0][3] = 0.0f;
		sub_v3_v3v3(&r_mat[1][0], vmid, vb);
		r_mat[1][3] = 0.0f;
		add_v3_v3v3(&r_mat[2][0], vmid, vd);
		sub_v3_v3(&r_mat[2][0], va);
		sub_v3_v3(&r_mat[2][0], vb);
		r_mat[2][3] = 0.0f;
		add_v3_v3v3(&r_mat[3][0], va, vb);
		sub_v3_v3(&r_mat[3][0], vmid);
		r_mat[3][3] = 1.0f;

		return true;
	}
	else
		return false;
}

/* Like make_unit_square_map, but this one makes a matrix that transforms the
 * (1,1,1) corner of a unit cube into an arbitrary corner with corner vert d
 * and verts around it a, b, c (in ccw order, viewed from d normal dir).
 * The matrix mat is calculated to map:
 *    (1,0,0) -> va
 *    (0,1,0) -> vb
 *    (0,0,1) -> vc
 *    (1,1,1) -> vd
 * We want M to make M*A=B where A has the left side above, as columns
 * and B has the right side as columns - both extended into homogeneous coords.
 * So M = B*(Ainverse).  Doing Ainverse by hand gives the code below.
 * The cols of M are 1/2{va-vb+vc-vd}, 1/2{-va+vb-vc+vd}, 1/2{-va-vb+vc+vd},
 * and 1/2{va+vb+vc-vd}
 * and Blender matrices have cols at m[i][*].
 */
static void make_unit_cube_map(
        const float va[3], const float vb[3], const float vc[3],
        const float vd[3], float r_mat[4][4])
{
	copy_v3_v3(r_mat[0], va);
	sub_v3_v3(r_mat[0], vb);
	sub_v3_v3(r_mat[0], vc);
	add_v3_v3(r_mat[0], vd);
	mul_v3_fl(r_mat[0], 0.5f);
	r_mat[0][3] = 0.0f;
	copy_v3_v3(r_mat[1], vb);
	sub_v3_v3(r_mat[1], va);
	sub_v3_v3(r_mat[1], vc);
	add_v3_v3(r_mat[1], vd);
	mul_v3_fl(r_mat[1], 0.5f);
	r_mat[1][3] = 0.0f;
	copy_v3_v3(r_mat[2], vc);
	sub_v3_v3(r_mat[2], va);
	sub_v3_v3(r_mat[2], vb);
	add_v3_v3(r_mat[2], vd);
	mul_v3_fl(r_mat[2], 0.5f);
	r_mat[2][3] = 0.0f;
	copy_v3_v3(r_mat[3], va);
	add_v3_v3(r_mat[3], vb);
	add_v3_v3(r_mat[3], vc);
	sub_v3_v3(r_mat[3], vd);
	mul_v3_fl(r_mat[3], 0.5f);
	r_mat[3][3] = 1.0f;
}

/* Get the coordinate on the superellipse (exponent r),
 * at parameter value u.  u goes from u to 2 as the
 * superellipse moves on the quadrant (0,1) to (1,0). */
static void superellipse_co(float u, float r, float r_co[2])
{
	float t;
	
	if (u <= 0.0f) {
		r_co[0] = 0.0f;
		r_co[1] = 1.0f;
	}
	else if (u >= 2.0f) {
		r_co[0] = 1.0f;
		r_co[1] = 0.0f;
	}
	else if (r == PRO_LINE_R) {
		t = u / 2.0f;
		r_co[0] = t;
		r_co[1] = 1.0f - t;
		
	}
	else if (r == PRO_SQUARE_IN_R) {
		if (u < 1.0f) {
			r_co[0] = 0.0f;
			r_co[1] = 1.0f - u;
		}
		else {
			r_co[0] = u - 1.0f;
			r_co[1] = 0.0f;
		}
	}
	else if (r == PRO_SQUARE_R) {
		if (u < 1.0f) {
			r_co[0] = u;
			r_co[1] = 1.0f;
		}
		else {
			r_co[0] = 1.0f;
			r_co[1] = 2.0f - u;
		}
		
	}
	else {
		t = u * (float)M_PI / 4.0f;  /* angle from y axis */
		r_co[0] = sinf(t);
		r_co[1] = cosf(t);
		if (r != PRO_SQUARE_R) {
			r_co[0] = pow(r_co[0], 2.0f / r);
			r_co[1] = pow(r_co[1], 2.0f / r);
		}
	}
}

/* Find the point on given profile at parameter i which goes from 0 to n as
 * the profile is moved from pro->coa to pro->cob.
 * We assume that n is either the global seg number or a power of 2 less than
 * or equal to the power of 2 >= seg.
 * In the latter case, we subsample the profile for seg_2, which will not necessarily
 * give equal spaced chords, but is in fact more what is desired by the cubic subdivision
 * method used to make the vmesh pattern. */
static void get_profile_point(BevelParams *bp, const Profile *pro, int i, int n, float r_co[3])
{
	int d;

	if (bp->seg == 1) {
		if (i == 0)
			copy_v3_v3(r_co, pro->coa);
		else
			copy_v3_v3(r_co, pro->cob);
	}
	
	else {
		if (n == bp->seg) {
			BLI_assert(pro->prof_co != NULL);
			copy_v3_v3(r_co, pro->prof_co + 3 * i);
		}
		else {
			BLI_assert(is_power_of_2_i(n) && n <= bp->pro_spacing.seg_2);
			/* set d to spacing in prof_co_2 between subsamples */
			d = bp->pro_spacing.seg_2 / n;
			copy_v3_v3(r_co, pro->prof_co_2 + 3 * i * d);
		}
	}
}

/* Calculate the actual coordinate values for bndv's profile.
 * This is only needed if bp->seg > 1.
 * Allocate the space for them if that hasn't been done already.
 * If bp->seg is not a power of 2, also need to calculate
 * the coordinate values for the power of 2 >= bp->seg,
 * because the ADJ pattern needs power-of-2 boundaries
 * during construction. */
static void calculate_profile(BevelParams *bp, BoundVert *bndv)
{
	int i, k, ns;
	const float *uvals;
	float co[3], co2[3], p[3], m[4][4];
	float *prof_co, *prof_co_k;
	float r;
	bool need_2, map_ok;
	Profile *pro = &bndv->profile;

	if (bp->seg == 1)
		return;

	need_2 = bp->seg != bp->pro_spacing.seg_2;
	if (!pro->prof_co) {
		pro->prof_co = (float *)BLI_memarena_alloc(bp->mem_arena, (bp->seg + 1) * 3 * sizeof(float));
		if (need_2)
			pro->prof_co_2 = (float *)BLI_memarena_alloc(bp->mem_arena, (bp->pro_spacing.seg_2 + 1) * 3 *sizeof(float));
		else
			pro->prof_co_2 = pro->prof_co;
	}
	r = pro->super_r;
	if (r == PRO_LINE_R)
		map_ok = false;
	else
		map_ok = make_unit_square_map(pro->coa, pro->midco, pro->cob, m);
	for (i = 0; i < 2; i++) {
		if (i == 0) {
			ns = bp->seg;
			uvals = bp->pro_spacing.uvals;
			prof_co = pro->prof_co;
		}
		else {
			if (!need_2)
				break;  /* shares coords with pro->prof_co */
			ns = bp->pro_spacing.seg_2;
			uvals = bp->pro_spacing.uvals_2;
			prof_co = pro->prof_co_2;
		}
		BLI_assert((r == PRO_LINE_R || uvals != NULL) && prof_co != NULL);
		for (k = 0; k <= ns; k++) {
			if (k == 0)
				copy_v3_v3(co, pro->coa);
			else if (k == ns)
				copy_v3_v3(co, pro->cob);
			else {
				if (map_ok) {
					superellipse_co(uvals[k], r, p);
					p[2] = 0.0f;
					mul_v3_m4v3(co, m, p);
				}
				else {
					interp_v3_v3v3(co, pro->coa, pro->cob, (float)k / (float)ns);
				}
			}
			/* project co onto final profile plane */
			prof_co_k = prof_co + 3 * k;
			if (!is_zero_v3(pro->proj_dir)) {
				add_v3_v3v3(co2, co, pro->proj_dir);
				if (!isect_line_plane_v3(prof_co_k, co, co2, pro->plane_co, pro->plane_no)) {
					/* shouldn't happen */
					copy_v3_v3(prof_co_k, co);
				}
			}
			else {
				copy_v3_v3(prof_co_k, co);
			}
		}
	}
}

/* Snap a direction co to a superellipsoid with parameter super_r.
 * For square profiles, midline says whether or not to snap to both planes. */
static void snap_to_superellipsoid(float co[3], const float super_r, bool midline)
{
	float a, b, c, x, y, z, r, rinv, dx, dy;

	r = super_r;
	if (r == PRO_CIRCLE_R) {
		normalize_v3(co);
		return;
	}

	x = a = max_ff(0.0f, co[0]);
	y = b = max_ff(0.0f, co[1]);
	z = c = max_ff(0.0f, co[2]);
	if (r == PRO_SQUARE_R || r == PRO_SQUARE_IN_R) {
		/* will only be called for 2d profile */
		BLI_assert(fabsf(z) < BEVEL_EPSILON);
		z = 0.0f;
		x = min_ff(1.0f, x);
		y = min_ff(1.0f, y);
		if (r == PRO_SQUARE_R) {
			/* snap to closer of x==1 and y==1 lines, or maybe both */
			dx = 1.0f - x;
			dy = 1.0f - y;
			if (dx < dy) {
				x = 1.0f;
				y = midline ? 1.0f : y;
			}
			else {
				y = 1.0f;
				x = midline ? 1.0f : x;
			}
		}
		else {
			/* snap to closer of x==0 and y==0 lines, or maybe both */
			if (x < y) {
				x = 0.0f;
				y = midline ? 0.0f : y;
			}
			else {
				y = 0.0f;
				x = midline ? 0.0f : x;
			}
		}
	}
	else {
		rinv = 1.0f / r;
		if (a == 0.0f) {
			if (b == 0.0f) {
				x = 0.0f;
				y = 0.0f;
				z = powf(c, rinv);
			}
			else {
				x = 0.0f;
				y = powf(1.0f / (1.0f + powf(c / b, r)), rinv);
				z = c * y / b;
			}
		}
		else {
			x = powf(1.0f / (1.0f + powf(b / a, r) + powf(c / a, r)), rinv);
			y = b * x / a;
			z = c * x / a;
		}
	}
	co[0] = x;
	co[1] = y;
	co[2] = z;
}

/* Set the any_seam property for a BevVert and all its BoundVerts */
static void set_bound_vert_seams(BevVert *bv)
{
	BoundVert *v;
	EdgeHalf *e;

	bv->any_seam = false;
	v = bv->vmesh->boundstart;
	do {
		v->any_seam = false;
		for (e = v->efirst; e; e = e->next) {
			v->any_seam |= e->is_seam;
			if (e == v->elast)
				break;
		}
		bv->any_seam |= v->any_seam;
	} while ((v = v->next) != bv->vmesh->boundstart);
}

static int count_bound_vert_seams(BevVert *bv)
{
	int ans, i;

	if (!bv->any_seam)
		return 0;

	ans = 0;
	for (i = 0; i < bv->edgecount; i++)
		if (bv->edges[i].is_seam)
			ans++;
	return ans;
}

/* Is e between two planes where angle between is 180? */
static bool eh_on_plane(EdgeHalf *e)
{
	float dot;

	if (e->fprev && e->fnext) {
		dot = dot_v3v3(e->fprev->no, e->fnext->no);
		if (fabsf(dot) <= BEVEL_EPSILON_BIG ||
		    fabsf(dot - 1.0f) <= BEVEL_EPSILON_BIG)
		{
			return true;
		}
	}
	return false;
}

/* Calculate the profiles for all the BoundVerts of VMesh vm */
static void calculate_vm_profiles(BevelParams *bp, BevVert *bv, VMesh *vm)
{
	BoundVert *v;

	v = vm->boundstart;
	do {
		set_profile_params(bp, bv, v);
		calculate_profile(bp, v);
	} while ((v = v->next) != vm->boundstart);
}

/* Implements build_boundary for vertex-only case */
static void build_boundary_vertex_only(BevelParams *bp, BevVert *bv, bool construct)
{
	VMesh *vm = bv->vmesh;
	EdgeHalf *efirst, *e;
	BoundVert *v;
	float co[3];

	BLI_assert(bp->vertex_only);

	e = efirst = &bv->edges[0];
	do {
		slide_dist(e, bv->v, e->offset_l, co);
		if (construct) {
			v = add_new_bound_vert(bp->mem_arena, vm, co);
			v->efirst = v->elast = e;
			e->leftv = e->rightv = v;
		}
		else {
			adjust_bound_vert(e->leftv, co);
		}
	} while ((e = e->next) != efirst);

	calculate_vm_profiles(bp, bv, vm);

	if (construct) {
		set_bound_vert_seams(bv);
		if (vm->count == 2)
			vm->mesh_kind = M_NONE;
		else if (bp->seg == 1)
			vm->mesh_kind = M_POLY;
		else
			vm->mesh_kind = M_ADJ;
	}
}

/**
 * Special case of build_boundary when a single edge is beveled.
 * The 'width adjust' part of build_boundary has been done already,
 * and \a efirst is the first beveled edge at vertex \a bv.
*/
static void build_boundary_terminal_edge(BevelParams *bp, BevVert *bv, EdgeHalf *efirst, bool construct)
{
	MemArena *mem_arena = bp->mem_arena;
	VMesh *vm = bv->vmesh;
	BoundVert *v;
	EdgeHalf *e;
	const float *no;
	float co[3], d;

	e = efirst;
	if (bv->edgecount == 2) {
		/* only 2 edges in, so terminate the edge with an artificial vertex on the unbeveled edge */
		no = e->fprev ? e->fprev->no : (e->fnext ? e->fnext->no : NULL);
		offset_in_plane(e, no, true, co);
		if (construct) {
			v = add_new_bound_vert(mem_arena, vm, co);
			v->efirst = v->elast = v->ebev = e;
			e->leftv = v;
		}
		else {
			adjust_bound_vert(e->leftv, co);
		}
		no = e->fnext ? e->fnext->no : (e->fprev ? e->fprev->no : NULL);
		offset_in_plane(e, no, false, co);
		if (construct) {
			v = add_new_bound_vert(mem_arena, vm, co);
			v->efirst = v->elast = e;
			e->rightv = v;
		}
		else {
			adjust_bound_vert(e->rightv, co);
		}
		/* make artifical extra point along unbeveled edge, and form triangle */
		slide_dist(e->next, bv->v, e->offset_l, co);
		if (construct) {
			v = add_new_bound_vert(mem_arena, vm, co);
			v->efirst = v->elast = e->next;
			e->next->leftv = e->next->rightv = v;
			/* could use M_POLY too, but tri-fan looks nicer)*/
			vm->mesh_kind = M_TRI_FAN;
			set_bound_vert_seams(bv);
		}
		else {
			adjust_bound_vert(e->next->leftv, co);
		}
	}
	else {
		/* More than 2 edges in. Put on-edge verts on all the other edges
		 * and join with the beveled edge to make a poly or adj mesh,
		 * Because e->prev has offset 0, offset_meet will put co on that edge. */
		/* TODO: should do something else if angle between e and e->prev > 180 */
		offset_meet(e->prev, e, bv->v, e->fprev, false, co);
		if (construct) {
			v = add_new_bound_vert(mem_arena, vm, co);
			v->efirst = e->prev;
			v->elast = v->ebev = e;
			e->leftv = v;
			e->prev->leftv = e->prev->rightv = v;
		}
		else {
			adjust_bound_vert(e->leftv, co);
		}
		e = e->next;
		offset_meet(e->prev, e, bv->v, e->fprev, false, co);
		if (construct) {
			v = add_new_bound_vert(mem_arena, vm, co);
			v->efirst = e->prev;
			v->elast = e;
			e->leftv = e->rightv = v;
			e->prev->rightv = v;
		}
		else {
			adjust_bound_vert(e->leftv, co);
		}
		/* For the edges not adjacent to the beveled edge, slide the bevel amount along. */
		d = efirst->offset_l_spec;
		for (e = e->next; e->next != efirst; e = e->next) {
			slide_dist(e, bv->v, d, co);
			if (construct) {
				v = add_new_bound_vert(mem_arena, vm, co);
				v->efirst = v->elast = e;
				e->leftv = e->rightv = v;
			}
			else {
				adjust_bound_vert(e->leftv, co);
			}
		}
	}
	calculate_vm_profiles(bp, bv, vm);

	if (bv->edgecount >= 3) {
		/* special case: snap profile to plane of adjacent two edges */
		v = vm->boundstart;
		BLI_assert(v->ebev != NULL);
		move_profile_plane(v, v->efirst, v->next->elast);
		calculate_profile(bp, v);
	}

	if (construct) {
		set_bound_vert_seams(bv);

		if (vm->count == 2 && bv->edgecount == 3) {
			vm->mesh_kind = M_NONE;
		}
		else if (vm->count == 3) {
			vm->mesh_kind = M_TRI_FAN;
		}
		else {
			vm->mesh_kind = M_POLY;
		}
	}
}

/* Return a value that is v if v is within BEVEL_MAX_ADJUST_PCT of the spec (assumed positive),
 * else clamp to make it at most that far away from spec */
static float clamp_adjust(float v, float spec)
{
	float allowed_delta = spec * (BEVEL_MAX_ADJUST_PCT / 100.0f);

	if (v - spec > allowed_delta)
		return spec + allowed_delta;
	else if (spec - v > allowed_delta)
		return spec - allowed_delta;
	else
		return v;
}

/* Make a circular list of BoundVerts for bv, each of which has the coordinates
 * of a vertex on the boundary of the beveled vertex bv->v.
 * This may adjust some EdgeHalf widths, and there might have to be
 * a subsequent pass to make the widths as consistent as possible.
 * The first time through, construct will be true and we are making the BoundVerts
 * and setting up the BoundVert and EdgeHalf pointers appropriately.
 * For a width consistency path, we just recalculate the coordinates of the
 * BoundVerts. If the other ends have been (re)built already, then we
 * copy the offsets from there to match, else we use the ideal (user-specified)
 * widths.
 * Also, if construct, decide on the mesh pattern that will be used inside the boundary.
 * Doesn't make the actual BMVerts */
static void build_boundary(BevelParams *bp, BevVert *bv, bool construct)
{
	MemArena *mem_arena = bp->mem_arena;
	EdgeHalf *efirst, *e, *e2, *e3, *enip, *eip, *eother;
	BoundVert *v;
	BevVert *bvother;
	VMesh *vm;
	float co[3];
	int nip, nnip;

	/* Current bevel does nothing if only one edge into a vertex */
	if (bv->edgecount <= 1)
		return;

	if (bp->vertex_only) {
		build_boundary_vertex_only(bp, bv, construct);
		return;
	}

	vm = bv->vmesh;

	/* Find a beveled edge to be efirst. Then for each edge, try matching widths to other end. */
	e = efirst = next_bev(bv, NULL);
	BLI_assert(e->is_bev);
	do {
		eother = find_other_end_edge_half(bp, e, &bvother);
		if (eother && bvother->visited && bp->offset_type != BEVEL_AMT_PERCENT) {
			/* try to keep bevel even by matching other end offsets */
			/* sometimes, adjustment can accumulate errors so use the bp->limit_offset to
			 * let user limit the adjustment to within a reasonable range around spec */
			if (bp->limit_offset) {
				e->offset_l = clamp_adjust(eother->offset_r, e->offset_l_spec);
				e->offset_r = clamp_adjust(eother->offset_l, e->offset_r_spec);
			}
			else {
				e->offset_l = eother->offset_r;
				e->offset_r = eother->offset_l;
			}
		}
		else {
			/* reset to user spec */
			e->offset_l = e->offset_l_spec;
			e->offset_r = e->offset_r_spec;
		}
	} while ((e = e->next) != efirst);

	if (bv->selcount == 1) {
		/* special case: only one beveled edge in */
		build_boundary_terminal_edge(bp, bv, efirst, construct);
		return;
	}

	/* Here: there is more than one beveled edge.
	 * We make BoundVerts to connect the sides of the beveled edges.
	 * Non-beveled edges in between will just join to the appropriate juncture point. */
	e = efirst;
	do {
		BLI_assert(e->is_bev);
		/* Make the BoundVert for the right side of e; other side will be made
		 * when the beveled edge to the left of e is handled.
		 * Analyze edges until next beveled edge.
		 * They are either "in plane" (preceding and subsequent faces are coplanar)
		 * or not. The "non-in-plane" edges effect silhouette and we prefer to slide
		 * along one of those if possible. */
		nip = nnip = 0;        /* counts of in-plane / not-in-plane */
		enip = eip = NULL;     /* representatives of each */
		for (e2 = e->next; !e2->is_bev; e2 = e2->next) {
			if (eh_on_plane(e2)) {
				nip++;
				eip = e2;
			}
			else {
				nnip++;
				enip = e2;
			}
		}
		if (nip == 0 && nnip == 0) {
			offset_meet(e, e2, bv->v, e->fnext, false, co);
		}
		else if (nnip > 0) {
			if (bp->loop_slide && nnip == 1 && good_offset_on_edge_between(e, e2, enip, bv->v)) {
				offset_on_edge_between(bp, e, e2, enip, bv->v, co);
			}
			else {
				offset_meet(e, e2, bv->v, NULL, true, co);
			}
		}
		else {
			/* nip > 0 and nnip == 0 */
			if (bp->loop_slide && nip == 1 && good_offset_on_edge_between(e, e2, eip, bv->v)) {
				offset_on_edge_between(bp, e, e2, eip, bv->v, co);
			}
			else {
				offset_meet(e, e2, bv->v, e->fnext, true, co);
			}
		}
		if (construct) {
			v = add_new_bound_vert(mem_arena, vm, co);
			v->efirst = e;
			v->elast = e2;
			v->ebev = e2;
			e->rightv = v;
			e2->leftv = v;
			for (e3 = e->next; e3 != e2; e3 = e3->next) {
				e3->leftv = e3->rightv = v;
			}
		}
		else {
			adjust_bound_vert(e->rightv, co);
		}
		e = e2;
	} while (e != efirst);

	calculate_vm_profiles(bp, bv, vm);

	if (construct) {
		set_bound_vert_seams(bv);

		if (vm->count == 2) {
			vm->mesh_kind = M_NONE;
		}
		else if (efirst->seg == 1) {
			vm->mesh_kind = M_POLY;
		}
		else {
			vm->mesh_kind = M_ADJ;
		}
	}
}

/* Do a global pass to try to make offsets as even as possible.
 * Consider this graph:
 *   nodes = BevVerts
 *   edges = { (u,v) } where u and v are nodes such that u and v
 *        are connected by a mesh edge that has at least one end
 *        whose offset does not match the user spec.
 *
 * Do a breadth-first search on this graph, starting from nodes
 * that have any_adjust=true, and changing all
 * not-already-changed offsets on EdgeHalfs to match the
 * corresponding ones that changed on the other end.
 * The graph is dynamic in the sense that having an offset that
 * doesn't meet the user spec can be added as the search proceeds.
 * We want this search to be deterministic (not dependent
 * on order of processing through hash table), so as to avoid
 * flicker to to different decisions made if search is different
 * while dragging the offset number in the UI.  So look for the
 * lower vertex number when there is a choice of where to start.
 *
 * Note that this might not process all BevVerts, only the ones
 * that need adjustment.
 */
static void adjust_offsets(BevelParams *bp)
{
	BevVert *bv, *searchbv, *bvother;
	int i, searchi;
	GHashIterator giter;
	EdgeHalf *e, *efirst, *eother;
	GSQueue *q;
	float max_rel_adj;

	BLI_assert(!bp->vertex_only);
	GHASH_ITER(giter, bp->vert_hash) {
		bv = BLI_ghashIterator_getValue(&giter);
		bv->visited = false;
	}

	q = BLI_gsqueue_new(sizeof(BevVert *));
	/* the following loop terminates because at least one node is visited each time */
	for (;;) {
		/* look for root of a connected component in search graph */
		searchbv = NULL;
		searchi = -1;
		GHASH_ITER(giter, bp->vert_hash) {
			bv = BLI_ghashIterator_getValue(&giter);
			if (!bv->visited && max_edge_half_offset_rel_change(bv) > 0.0f) {
				i = BM_elem_index_get(bv->v);
				if (!searchbv || i < searchi) {
					searchbv = bv;
					searchi = i;
				}
			}
		}
		if (searchbv == NULL)
			break;

		BLI_gsqueue_push(q, &searchbv);
		while (!BLI_gsqueue_is_empty(q)) {
			BLI_gsqueue_pop(q, &bv);
			/* If do this check, don't have to check for already-on-queue before push, below */
			if (bv->visited)
				continue;
			bv->visited = true;
			build_boundary(bp, bv, false);

			e = efirst = &bv->edges[0];
			do {
				eother = find_other_end_edge_half(bp, e, &bvother);
				if (eother && !bvother->visited && edge_half_offset_changed(e)) {
					BLI_gsqueue_push(q, &bvother);
				}
			} while ((e = e->next) != efirst);
		}
	}
	BLI_gsqueue_free(q);

	/* Should we auto-limit the error accumulation? Typically, spirals can lead to 100x relative adjustments,
	 * and somewhat hacky mechanism of using bp->limit_offset to indicate "clamp the adjustments" is not
	 * obvious to users, who almost certainaly want clamping in this situation.
	 * The reason not to clamp always is that some models work better without it (e.g., Bent_test in regression
	 * suite, where relative adjust maximum is about .6). */
	if (!bp->limit_offset) {
		max_rel_adj = 0.0f;
		GHASH_ITER(giter, bp->vert_hash) {
			bv = BLI_ghashIterator_getValue(&giter);
			max_rel_adj = max_ff(max_rel_adj, max_edge_half_offset_rel_change(bv));
		}
		if (max_rel_adj > BEVEL_MAX_AUTO_ADJUST_PCT / 100.0f) {
			bp->limit_offset = true;
			adjust_offsets(bp);
			bp->limit_offset = false;
		}
	}
}

/* Do the edges at bv form a "pipe"?
 * Current definition: 3 or 4 beveled edges, 2 in line with each other,
 * with other edges on opposite sides of the pipe if there are 4.
 * Also, the vertex boundary should have 3 or 4 vertices in it,
 * and all of the faces involved should be parallel to the pipe edges.
 * Return the boundary vert whose ebev is one of the pipe edges, and
 * whose next boundary vert has a beveled, non-pipe edge. */
static BoundVert *pipe_test(BevVert *bv)
{
	EdgeHalf *e, *epipe;
	VMesh *vm;
	BoundVert *v1, *v2, *v3;
	float dir1[3], dir3[3];

	vm = bv->vmesh;
	if (vm->count < 3 || vm->count > 4 || bv->selcount < 3 || bv->selcount > 4)
		return NULL;

	/* find v1, v2, v3 all with beveled edges, where v1 and v3 have collinear edges */
	epipe = NULL;
	v1 = vm->boundstart;
	do {
		v2 = v1->next;
		v3 = v2->next;
		if (v1->ebev && v2->ebev && v3->ebev) {
			sub_v3_v3v3(dir1, bv->v->co, BM_edge_other_vert(v1->ebev->e, bv->v)->co);
			sub_v3_v3v3(dir3, BM_edge_other_vert(v3->ebev->e, bv->v)->co, bv->v->co);
			normalize_v3(dir1);
			normalize_v3(dir3);
			if (angle_normalized_v3v3(dir1, dir3) < BEVEL_EPSILON_ANG) {
				epipe =  v1->ebev;
				break;
			}
		}
	} while ((v1 = v1->next) != vm->boundstart);

	if (!epipe)
		return NULL;

	/* check face planes: all should have normals perpendicular to epipe */
	for (e = &bv->edges[0]; e != &bv->edges[bv->edgecount]; e++) {
		if (e->fnext) {
			if (dot_v3v3(dir1, e->fnext->no) > BEVEL_EPSILON_BIG)
				return NULL;
		}
	}
	return v1;
}

static VMesh *new_adj_vmesh(MemArena *mem_arena, int count, int seg, BoundVert *bounds)
{
	VMesh *vm;

	vm = (VMesh *)BLI_memarena_alloc(mem_arena, sizeof(VMesh));
	vm->count = count;
	vm->seg = seg;
	vm->boundstart = bounds;
	vm->mesh = (NewVert *)BLI_memarena_alloc(mem_arena, count * (1 + seg / 2) * (1 + seg) * sizeof(NewVert));
	vm->mesh_kind = M_ADJ;
	return vm;
}

/* VMesh verts for vertex i have data for (i, 0 <= j <= ns2, 0 <= k <= ns), where ns2 = floor(nseg / 2).
 * But these overlap data from previous and next i: there are some forced equivalences.
 * Let's call these indices the canonical ones: we will just calculate data for these
 *    0 <= j <= ns2, 0 <= k < ns2  (for odd ns2)
 *    0 <= j < ns2, 0 <= k <= ns2  (for even ns2)
 *        also (j=ns2, k=ns2) at i=0 (for even ns2)
 * This function returns the canonical one for any i, j, k in [0,n],[0,ns],[0,ns] */
static NewVert *mesh_vert_canon(VMesh *vm, int i, int j, int k)
{
	int n, ns, ns2, odd;
	NewVert *ans;

	n = vm->count;
	ns = vm->seg;
	ns2 = ns / 2;
	odd = ns % 2;
	BLI_assert(0 <= i && i <= n && 0 <= j && j <= ns && 0 <= k && k <= ns);

	if (!odd && j == ns2 && k == ns2)
		ans = mesh_vert(vm, 0, j, k);
	else if (j <= ns2 - 1 + odd && k <= ns2)
		ans = mesh_vert(vm, i, j, k);
	else if (k <= ns2)
		ans = mesh_vert(vm, (i + n - 1) % n, k, ns - j);
	else
		ans = mesh_vert(vm, (i + 1) % n, ns - k, j);
	return ans;
}

static bool is_canon(VMesh *vm, int i, int j, int k)
{
	int ns2 = vm->seg / 2;
	if (vm->seg % 2 == 1)
		return (j <= ns2 && k <= ns2);
	else
		return ((j < ns2 && k <= ns2) || (j == ns2 && k == ns2 && i == 0));
}

/* Copy the vertex data to all of vm verts from canonical ones */
static void vmesh_copy_equiv_verts(VMesh *vm)
{
	int n, ns, ns2, i, j, k;
	NewVert *v0, *v1;

	n = vm->count;
	ns = vm->seg;
	ns2 = ns / 2;
	for (i = 0; i < n; i++) {
		for (j = 0; j <= ns2; j++) {
			for (k = 0; k <= ns; k++) {
				if (is_canon(vm, i, j, k))
					continue;
				v1 = mesh_vert(vm, i, j, k);
				v0 = mesh_vert_canon(vm, i, j, k);
				copy_v3_v3(v1->co, v0->co);
				v1->v = v0->v;
			}
		}
	}
}

/* Calculate and return in r_cent the centroid of the center poly */
static void vmesh_center(VMesh *vm, float r_cent[3])
{
	int n, ns2, i;

	n = vm->count;
	ns2 = vm->seg / 2;
	if (vm->seg % 2) {
		zero_v3(r_cent);
		for (i = 0; i < n; i++) {
			add_v3_v3(r_cent, mesh_vert(vm, i, ns2, ns2)->co);
		}
		mul_v3_fl(r_cent, 1.0f / (float) n);
	}
	else {
		copy_v3_v3(r_cent, mesh_vert(vm, 0, ns2, ns2)->co);
	}
}

static void avg4(
        float co[3],
        const NewVert *v0, const NewVert *v1,
        const NewVert *v2, const NewVert *v3)
{
	add_v3_v3v3(co, v0->co, v1->co);
	add_v3_v3(co, v2->co);
	add_v3_v3(co, v3->co);
	mul_v3_fl(co, 0.25f);
}

/* gamma needed for smooth Catmull-Clark, Sabin modification */
static float sabin_gamma(int n)
{
	double ans, k, k2, k4, k6, x, y;

	/* precalculated for common cases of n */
	if (n < 3)
		return 0.0f;
	else if (n == 3)
		ans = 0.065247584f;
	else if (n == 4)
		ans = 0.25f;
	else if (n == 5)
		ans = 0.401983447f;
	else if (n == 6)
		ans = 0.523423277f;
	else {
		k = cos(M_PI / (double)n);
		/* need x, real root of x^3 + (4k^2 - 3)x - 2k = 0.
		 * answer calculated via Wolfram Alpha */
		k2 = k * k;
		k4 = k2 * k2;
		k6 = k4 * k2;
		y = pow(M_SQRT3 * sqrt(64.0 * k6 - 144.0 * k4 + 135.0 * k2 - 27.0) + 9.0 * k,
		        1.0 / 3.0);
		x = 0.480749856769136 * y - (0.231120424783545 * (12.0 * k2 - 9.0)) / y;
		ans = (k * x + 2.0 * k2 - 1.0) / (x * x * (k * x + 1.0));
	}
	return (float)ans;
}

/* Fill frac with fractions of way along ring 0 for vertex i, for use with interp_range function */
static void fill_vmesh_fracs(VMesh *vm, float *frac, int i)
{
	int k, ns;
	float total = 0.0f;

	ns = vm->seg;
	frac[0] = 0.0f;
	for (k = 0; k < ns; k++) {
		total += len_v3v3(mesh_vert(vm, i, 0, k)->co, mesh_vert(vm, i, 0, k + 1)->co);
		frac[k + 1] = total;
	}
	if (total > 0.0f) {
		for (k = 1; k <= ns; k++)
			frac[k] /= total;
	}
	else {
		frac[ns] = 1.0f;
	}
}

/* Like fill_vmesh_fracs but want fractions for profile points of bndv, with ns segments */
static void fill_profile_fracs(BevelParams *bp, BoundVert *bndv, float *frac, int ns)
{
	int k;
	float co[3], nextco[3];
	float total = 0.0f;

	frac[0] = 0.0f;
	copy_v3_v3(co, bndv->nv.co);
	for (k = 0; k < ns; k++) {
		get_profile_point(bp, &bndv->profile, k + 1, ns, nextco);
		total += len_v3v3(co, nextco);
		frac[k + 1] = total;
		copy_v3_v3(co, nextco);
	}
	if (total > 0.0f) {
		for (k = 1; k <= ns; k++) {
			frac[k] /= total;
		}
	}
	else {
		frac[ns] = 1.0f;
	}
}

/* Return i such that frac[i] <= f <= frac[i + 1], where frac[n] == 1.0
 * and put fraction of rest of way between frac[i] and frac[i + 1] into r_rest */
static int interp_range(const float *frac, int n, const float f, float *r_rest)
{
	int i;
	float rest;

	/* could binary search in frac, but expect n to be reasonably small */
	for (i = 0; i < n; i++) {
		if (f <= frac[i + 1]) {
			rest = f - frac[i];
			if (rest == 0)
				*r_rest = 0.0f;
			else
				*r_rest = rest / (frac[i + 1] - frac[i]);
			if (i == n - 1 && *r_rest == 1.0f) {
				i = n;
				*r_rest = 0.0f;
			}
			return i;
		}
	}
	*r_rest = 0.0f;
	return n;
}

/* Interpolate given vmesh to make one with target nseg border vertices on the profiles */
static VMesh *interp_vmesh(BevelParams *bp, VMesh *vm0, int nseg)
{
	int n, ns0, nseg2, odd, i, j, k, j0, k0, k0prev, j0inc, k0inc;
	float *prev_frac, *frac, *new_frac, *prev_new_frac;
	float f, restj, restk, restkprev;
	float quad[4][3], co[3], center[3];
	VMesh *vm1;
	BoundVert *bndv;

	n = vm0->count;
	ns0 = vm0->seg;
	nseg2 = nseg / 2;
	odd = nseg % 2;
	vm1 = new_adj_vmesh(bp->mem_arena, n, nseg, vm0->boundstart);

	prev_frac = BLI_array_alloca(prev_frac, (ns0 + 1));
	frac = BLI_array_alloca(frac, (ns0 + 1));
	new_frac = BLI_array_alloca(new_frac, (nseg + 1));
	prev_new_frac = BLI_array_alloca(prev_new_frac, (nseg + 1));

	fill_vmesh_fracs(vm0, prev_frac, n - 1);
	bndv = vm0->boundstart;
	fill_profile_fracs(bp, bndv->prev, prev_new_frac, nseg);
	for (i = 0; i < n; i++) {
		fill_vmesh_fracs(vm0, frac, i);
		fill_profile_fracs(bp, bndv, new_frac, nseg);
		for (j = 0; j <= nseg2 - 1 + odd; j++) {
			for (k = 0; k <= nseg2; k++) {
				f = new_frac[k];
				k0 = interp_range(frac, ns0, f, &restk);
				f = prev_new_frac[nseg - j];
				k0prev = interp_range(prev_frac, ns0, f, &restkprev);
				j0 = ns0 - k0prev;
				restj = -restkprev;
				if (restj > -BEVEL_EPSILON) {
					restj = 0.0f;
				}
				else {
					j0 = j0 - 1;
					restj = 1.0f + restj;
				}
				/* Use bilinear interpolation within the source quad; could be smarter here */
				if (restj < BEVEL_EPSILON && restk < BEVEL_EPSILON) {
					copy_v3_v3(co, mesh_vert_canon(vm0, i, j0, k0)->co);
				}
				else {
					j0inc = (restj < BEVEL_EPSILON || j0 == ns0) ? 0 : 1;
					k0inc = (restk < BEVEL_EPSILON || k0 == ns0) ? 0 : 1;
					copy_v3_v3(quad[0], mesh_vert_canon(vm0, i, j0, k0)->co);
					copy_v3_v3(quad[1], mesh_vert_canon(vm0, i, j0, k0 + k0inc)->co);
					copy_v3_v3(quad[2], mesh_vert_canon(vm0, i, j0 + j0inc, k0 + k0inc)->co);
					copy_v3_v3(quad[3], mesh_vert_canon(vm0, i, j0 + j0inc, k0)->co);
					interp_bilinear_quad_v3(quad, restk, restj, co);
				}
				copy_v3_v3(mesh_vert(vm1, i, j, k)->co, co);
			}
		}
		bndv = bndv->next;
		memcpy(prev_frac, frac, (ns0 + 1) * sizeof(float));
		memcpy(prev_new_frac, new_frac, (nseg + 1) * sizeof(float));
	}
	if (!odd) {
		vmesh_center(vm0, center);
		copy_v3_v3(mesh_vert(vm1, 0, nseg2, nseg2)->co, center);
	}
	vmesh_copy_equiv_verts(vm1);
	return vm1;
}

/* Do one step of cubic subdivision (Catmull-Clark), with special rules at boundaries.
 * For now, this is written assuming vm0->nseg is even and > 0.
 * We are allowed to modify vm0, as it will not be used after this call.
 * See Levin 1999 paper: "Filling an N-sided hole using combined subdivision schemes". */
static VMesh *cubic_subdiv(BevelParams *bp, VMesh *vm0)
{
	int n, ns0, ns20, ns1;
	int i, j, k, inext;
	float co[3], co1[3], co2[3], acc[3];
	float beta, gamma;
	VMesh *vm1;
	BoundVert *bndv;
	
	n = vm0->count;
	ns0 = vm0->seg;
	ns20 = ns0 / 2;
	BLI_assert(ns0 % 2 == 0);
	ns1 = 2 * ns0;
	vm1 = new_adj_vmesh(bp->mem_arena, n, ns1, vm0->boundstart);

	/* First we adjust the boundary vertices of the input mesh, storing in output mesh */
	for (i = 0; i < n; i++) {
		copy_v3_v3(mesh_vert(vm1, i, 0, 0)->co, mesh_vert(vm0, i, 0, 0)->co);
		for (k = 1; k < ns0; k++) {
			/* smooth boundary rule */
			copy_v3_v3(co, mesh_vert(vm0, i, 0, k)->co);
			copy_v3_v3(co1, mesh_vert(vm0, i, 0, k - 1)->co);
			copy_v3_v3(co2, mesh_vert(vm0, i, 0, k + 1)->co);

			add_v3_v3v3(acc, co1, co2);
			madd_v3_v3fl(acc, co, -2.0f);
			madd_v3_v3fl(co, acc, -1.0f / 6.0f);
			
			copy_v3_v3(mesh_vert_canon(vm1, i, 0, 2 * k)->co, co);
		}
	}
	/* now do odd ones in output mesh, based on even ones */
	bndv = vm1->boundstart;
	for (i = 0; i < n; i++) {
		for (k = 1; k < ns1; k += 2) {
			get_profile_point(bp, &bndv->profile, k, ns1, co);
			copy_v3_v3(co1, mesh_vert_canon(vm1, i, 0, k - 1)->co);
			copy_v3_v3(co2, mesh_vert_canon(vm1, i, 0, k + 1)->co);

			add_v3_v3v3(acc, co1, co2);
			madd_v3_v3fl(acc, co, -2.0f);
			madd_v3_v3fl(co, acc, -1.0f / 6.0f);
			
			copy_v3_v3(mesh_vert_canon(vm1, i, 0, k)->co, co);
		}
		bndv = bndv->next;
	}
	vmesh_copy_equiv_verts(vm1);

	/* Copy adjusted verts back into vm0 */
	for (i = 0; i < n; i++) {
		for (k = 0; k < ns0; k++) {
			copy_v3_v3(mesh_vert(vm0, i, 0, k)->co,
			           mesh_vert(vm1, i, 0, 2 * k)->co);
		}
	}

	vmesh_copy_equiv_verts(vm0);

	/* Now we do the internal vertices, using standard Catmull-Clark
	 * and assuming all boundary vertices have valence 4 */
	
	/* The new face vertices */
	for (i = 0; i < n; i++) {
		for (j = 0; j < ns20; j++) {
			for (k = 0; k < ns20; k++) {
				/* face up and right from (j, k) */
				avg4(co,
				     mesh_vert(vm0, i, j, k),
				     mesh_vert(vm0, i, j, k + 1),
				     mesh_vert(vm0, i, j + 1, k),
				     mesh_vert(vm0, i, j + 1, k + 1));
				copy_v3_v3(mesh_vert(vm1, i, 2 * j + 1, 2 * k + 1)->co, co);
			}
		}
	}

	/* The new vertical edge vertices  */
	for (i = 0; i < n; i++) {
		for (j = 0; j < ns20; j++) {
			for (k = 1; k <= ns20; k++) {
				/* vertical edge between (j, k) and (j+1, k) */
				avg4(co, mesh_vert(vm0, i, j, k),
				         mesh_vert(vm0, i, j + 1, k),
				         mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k - 1),
				         mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k + 1));
				copy_v3_v3(mesh_vert(vm1, i, 2 * j + 1, 2 * k)->co, co);
			}
		}
	}

	/* The new horizontal edge vertices  */
	for (i = 0; i < n; i++) {
		for (j = 1; j < ns20; j++) {
			for (k = 0; k < ns20; k++) {
				/* horizontal edge between (j, k) and (j, k+1) */
				avg4(co, mesh_vert(vm0, i, j, k),
				         mesh_vert(vm0, i, j, k + 1),
				         mesh_vert_canon(vm1, i, 2 * j - 1, 2 * k + 1),
				         mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k + 1));
				copy_v3_v3(mesh_vert(vm1, i, 2 * j, 2 * k + 1)->co, co);
			}
		}
	}

	/* The new vertices, not on border */
	gamma = 0.25f;
	beta = -gamma;
	for (i = 0; i < n; i++) {
		for (j = 1; j < ns20; j++) {
			for (k = 1; k <= ns20; k++) {
				/* co1 = centroid of adjacent new edge verts */
				avg4(co1, mesh_vert_canon(vm1, i, 2 * j, 2 * k - 1),
				          mesh_vert_canon(vm1, i, 2 * j, 2 * k + 1),
				          mesh_vert_canon(vm1, i, 2 * j - 1, 2 * k),
				          mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k));
				/* co2 = centroid of adjacent new face verts */
				avg4(co2, mesh_vert_canon(vm1, i, 2 * j - 1, 2 * k - 1),
				          mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k - 1),
				          mesh_vert_canon(vm1, i, 2 * j - 1, 2 * k + 1),
				          mesh_vert_canon(vm1, i, 2 * j + 1, 2 * k + 1));
				/* combine with original vert with alpha, beta, gamma factors */
				copy_v3_v3(co, co1);  /* alpha = 1.0 */
				madd_v3_v3fl(co, co2, beta);
				madd_v3_v3fl(co, mesh_vert(vm0, i, j, k)->co, gamma);
				copy_v3_v3(mesh_vert(vm1, i, 2 * j, 2 * k)->co, co);
			}
		}
	}

	vmesh_copy_equiv_verts(vm1);

	/* The center vertex is special */
	gamma = sabin_gamma(n);
	beta = -gamma;
	/* accumulate edge verts in co1, face verts in co2 */
	zero_v3(co1);
	zero_v3(co2);
	for (i = 0; i < n; i++) {
		add_v3_v3(co1, mesh_vert(vm1, i, ns0, ns0 - 1)->co);
		add_v3_v3(co2, mesh_vert(vm1, i, ns0 - 1, ns0 - 1)->co);
		add_v3_v3(co2, mesh_vert(vm1, i, ns0 - 1, ns0 + 1)->co);
	}
	copy_v3_v3(co, co1);
	mul_v3_fl(co, 1.0f / (float)n);
	madd_v3_v3fl(co, co2, beta / (2.0f * (float)n));
	madd_v3_v3fl(co, mesh_vert(vm0, 0, ns20, ns20)->co, gamma);
	for (i = 0; i < n; i++)
		copy_v3_v3(mesh_vert(vm1, i, ns0, ns0)->co, co);

	/* Final step: sample the boundary vertices at even parameter spacing */
	bndv = vm1->boundstart;
	for (i = 0; i < n; i++) {
		inext = (i + 1) % n;
		for (k = 0; k <= ns1; k++) {
			get_profile_point(bp, &bndv->profile, k, ns1, co);
			copy_v3_v3(mesh_vert(vm1, i, 0, k)->co, co);
			if (k >= ns0 && k < ns1) {
				copy_v3_v3(mesh_vert(vm1, inext, ns1 - k, 0)->co, co);
			}
		}
		bndv = bndv->next;
	}

	return vm1;
}

/* Special case for cube corner, when r is PRO_SQUARE_R,
 * meaning straight sides */
static VMesh *make_cube_corner_straight(MemArena *mem_arena, int nseg)
{
	VMesh *vm;
	float co[3];
	int i, j, k, ns2;

	ns2 = nseg / 2;
	vm = new_adj_vmesh(mem_arena, 3, nseg, NULL);
	vm->count = 0;  // reset, so following loop will end up with correct count
	for (i = 0; i < 3; i++) {
		zero_v3(co);
		co[i] = 1.0f;
		add_new_bound_vert(mem_arena, vm, co);
	}
	for (i = 0; i < 3; i++) {
		for (j = 0; j <= ns2; j++) {
			for (k = 0; k <= ns2; k++) {
				if (!is_canon(vm, i, j, k))
					continue;
				co[i] = 1.0f;
				co[(i + 1) % 3] = (float)k * 2.0f / (float)nseg;
				co[(i + 2) % 3] = (float)j * 2.0f / (float)nseg;
				copy_v3_v3(mesh_vert(vm, i, j, k)->co, co);
			}
		}
	}
	vmesh_copy_equiv_verts(vm);
	return vm;
}

/* Make a VMesh with nseg segments that covers the unit radius sphere octant
 * with center at (0,0,0).
 * This has BoundVerts at (1,0,0), (0,1,0) and (0,0,1), with quarter circle arcs
 * on the faces for the orthogonal planes through the origin.
 */
static VMesh *make_cube_corner_adj_vmesh(BevelParams *bp)
{
	MemArena *mem_arena = bp->mem_arena;
	int nseg = bp->seg;
	float r = bp->pro_super_r;
	VMesh *vm0, *vm1;
	BoundVert *bndv;
	int i, j, k, ns2;
	float co[3], coc[3];

	if (r == PRO_SQUARE_R)
		return make_cube_corner_straight(mem_arena, nseg);

	/* initial mesh has 3 sides, 2 segments */
	vm0 = new_adj_vmesh(mem_arena, 3, 2, NULL);
	vm0->count = 0;  // reset, so following loop will end up with correct count
	for (i = 0; i < 3; i++) {
		zero_v3(co);
		co[i] = 1.0f;
		add_new_bound_vert(mem_arena, vm0, co);
	}
	bndv = vm0->boundstart;
	for (i = 0; i < 3; i++) {
		/* Get point, 1/2 of the way around profile, on arc between this and next */
		coc[i] = 1.0f;
		coc[(i + 1) % 3] = 1.0f;
		coc[(i + 2) % 3] = 0.0f;
		bndv->profile.super_r = r;
		copy_v3_v3(bndv->profile.coa, bndv->nv.co);
		copy_v3_v3(bndv->profile.cob, bndv->next->nv.co);
		copy_v3_v3(bndv->profile.midco, coc);
		copy_v3_v3(mesh_vert(vm0, i, 0, 0)->co, bndv->profile.coa);
		copy_v3_v3(bndv->profile.plane_co, bndv->profile.coa);
		cross_v3_v3v3(bndv->profile.plane_no, bndv->profile.coa, bndv->profile.cob);
		copy_v3_v3(bndv->profile.proj_dir, bndv->profile.plane_no);
		calculate_profile(bp, bndv);
		get_profile_point(bp, &bndv->profile, 1, 2, mesh_vert(vm0, i, 0, 1)->co);
		
		bndv = bndv->next;
	}
	/* center vertex */
	copy_v3_fl(co, M_SQRT1_3);

	if (nseg > 2) {
		if (r > 1.5f)
			mul_v3_fl(co, 1.4f);
		else if (r < 0.75f)
			mul_v3_fl(co, 0.6f);
	}
	copy_v3_v3(mesh_vert(vm0, 0, 1, 1)->co, co);

	vmesh_copy_equiv_verts(vm0);

	vm1 = vm0;
	while (vm1->seg < nseg) {
		vm1 = cubic_subdiv(bp, vm1);
	}
	if (vm1->seg != nseg)
		vm1 = interp_vmesh(bp, vm1, nseg);

	/* Now snap each vertex to the superellipsoid */
	ns2 = nseg / 2;
	for (i = 0; i < 3; i++) {
		for (j = 0; j <= ns2; j++) {
			for (k = 0; k <= nseg; k++) {
				snap_to_superellipsoid(mesh_vert(vm1, i, j, k)->co, r, false);
			}
		}
	}
	return vm1;
}

/* Is this a good candidate for using tri_corner_adj_vmesh? */
static bool tri_corner_test(BevelParams *bp, BevVert *bv)
{
	float ang, totang, angdiff;
	EdgeHalf *e;
	int i;

	if (bv->edgecount != 3 || bv->selcount != 3)
		return false;
	totang = 0.0f;
	for (i = 0; i < 3; i++) {
		e = &bv->edges[i];
		ang = BM_edge_calc_face_angle_signed_ex(e->e, 0.0f);
		if (ang <= (float) M_PI_4 || ang >= 3.0f * (float) M_PI_4)
			return false;
		totang += ang;
	}
	angdiff = fabsf(totang - 3.0f * (float)M_PI_2);
	if ((bp->pro_super_r == PRO_SQUARE_R && angdiff > (float)M_PI / 16.0f) ||
	    (angdiff > (float)M_PI_4))
	{
		return false;
	}
	return true;
}

static VMesh *tri_corner_adj_vmesh(BevelParams *bp, BevVert *bv)
{
	int i, j, k, ns, ns2;
	float co0[3], co1[3], co2[3];
	float mat[4][4], v[4];
	VMesh *vm;
	BoundVert *bndv;

	BLI_assert(bv->edgecount == 3 && bv->selcount == 3);
	bndv = bv->vmesh->boundstart;
	copy_v3_v3(co0, bndv->nv.co);
	bndv = bndv->next;
	copy_v3_v3(co1, bndv->nv.co);
	bndv = bndv->next;
	copy_v3_v3(co2, bndv->nv.co);
	make_unit_cube_map(co0, co1, co2, bv->v->co, mat);
	ns = bp->seg;
	ns2 = ns / 2;
	vm = make_cube_corner_adj_vmesh(bp);
	for (i = 0; i < 3; i++) {
		for (j = 0; j <= ns2; j++) {
			for (k = 0; k <= ns; k++) {
				copy_v3_v3(v, mesh_vert(vm, i, j, k)->co);
				v[3] = 1.0f;
				mul_m4_v4(mat, v);
				copy_v3_v3(mesh_vert(vm, i, j, k)->co, v);
			}
		}
	}

	return vm;
}

static VMesh *adj_vmesh(BevelParams *bp, BevVert *bv)
{
	int n, ns, i;
	VMesh *vm0, *vm1;
	float co[3], coa[3], cob[3], dir[3];
	BoundVert *bndv;
	MemArena *mem_arena = bp->mem_arena;
	float r, fac, fullness;

	/* First construct an initial control mesh, with nseg==2 */
	n = bv->vmesh->count;
	ns = bv->vmesh->seg;
	vm0 = new_adj_vmesh(mem_arena, n, 2, bv->vmesh->boundstart);

	bndv = vm0->boundstart;
	zero_v3(co);
	for (i = 0; i < n; i++) {
		/* Boundaries just divide input polygon edges into 2 even segments */
		copy_v3_v3(mesh_vert(vm0, i, 0, 0)->co, bndv->nv.co);
		get_profile_point(bp, &bndv->profile, 1, 2, mesh_vert(vm0, i, 0, 1)->co);
		add_v3_v3(co, bndv->nv.co);
		bndv = bndv->next;
	}
	/* To place center vertex:
	 * coa is original vertex
	 * co is centroid of boundary corners
	 * cob is reflection of coa in across co.
	 * Calculate 'fullness' = fraction of way
	 * from co to coa (if positive) or to cob (if negative).
	 */
	copy_v3_v3(coa, bv->v->co);
	mul_v3_fl(co, 1.0f / (float)n);
	sub_v3_v3v3(cob, co, coa);
	add_v3_v3(cob, co);
	r = bp->pro_super_r;
	if (r == 1.0f)
		fullness = 0.0f;
	else if (r > 1.0f) {
		if (bp->vertex_only)
			fac = 0.25f;
		else if (r == PRO_SQUARE_R)
			fac = -2.0;
		else
			fac = 0.5f;
		fullness = 1.0f - fac / r;
	}
	else {
		fullness = r - 1.0f;
	}
	sub_v3_v3v3(dir, coa, co);
	if (len_squared_v3(dir) > BEVEL_EPSILON_SQ)
		madd_v3_v3fl(co, dir, fullness);
	copy_v3_v3(mesh_vert(vm0, 0, 1, 1)->co, co);
	vmesh_copy_equiv_verts(vm0);

	vm1 = vm0;
	do {
		vm1 = cubic_subdiv(bp, vm1);
	} while (vm1->seg < ns);
	if (vm1->seg != ns)
		vm1 = interp_vmesh(bp, vm1, ns);
	return vm1;
}

/* Snap co to the closest point on the profile for vpipe projected onto the plane
 * containing co with normal in the direction of edge vpipe->ebev.
 * For the square profiles, need to decide whether to snap to just one plane
 * or to the midpoint of the profile; do so if midline is true. */
static void snap_to_pipe_profile(BoundVert *vpipe, bool midline, float co[3])
{
	float va[3], vb[3], edir[3], va0[3], vb0[3], vmid0[3];
	float plane[4], m[4][4], minv[4][4], p[3], snap[3];
	Profile *pro = &vpipe->profile;
	EdgeHalf *e = vpipe->ebev;

	copy_v3_v3(va, pro->coa);
	copy_v3_v3(vb, pro->cob);

	sub_v3_v3v3(edir, e->e->v1->co, e->e->v2->co);

	plane_from_point_normal_v3(plane, co, edir);
	closest_to_plane_v3(va0, plane, va);
	closest_to_plane_v3(vb0, plane, vb);
	closest_to_plane_v3(vmid0, plane, pro->midco);
	if (make_unit_square_map(va0, vmid0, vb0, m)) {
		/* Transform co and project it onto superellipse */
		if (!invert_m4_m4(minv, m)) {
			/* shouldn't happen */
			BLI_assert(!"failed inverse during pipe profile snap");
			return;
		}
		mul_v3_m4v3(p, minv, co);
		snap_to_superellipsoid(p, pro->super_r, midline);
		mul_v3_m4v3(snap, m, p);
		copy_v3_v3(co, snap);
	}
	else {
		/* planar case: just snap to line va0--vb0 */
		closest_to_line_segment_v3(p, co, va0, vb0);
		copy_v3_v3(co, p);
	}
}

/* See pipe_test for conditions that make 'pipe'; vpipe is the return value from that.
 * We want to make an ADJ mesh but then snap the vertices to the profile in a plane
 * perpendicular to the pipes.
 * A tricky case is for the 'square' profiles and an even nseg: we want certain vertices
 * to snap to the midline on the pipe, not just to one plane or the other. */
static VMesh *pipe_adj_vmesh(BevelParams *bp, BevVert *bv, BoundVert *vpipe)
{
	int i, j, k, n, ns, ns2, ipipe1, ipipe2;
	VMesh *vm;
	bool even, midline;

	vm = adj_vmesh(bp, bv);

	/* Now snap all interior coordinates to be on the epipe profile */
	n = bv->vmesh->count;
	ns = bv->vmesh->seg;
	ns2 = ns / 2;
	even = (ns % 2) == 0;
	ipipe1 = vpipe->index;
	ipipe2 = vpipe->next->next->index;
	for (i = 0; i < n; i++) {
		for (j = 1; j <= ns2; j++) {
			for (k = 0; k <= ns2; k++) {
				if (!is_canon(vm, i, j, k))
					continue;
				midline = even && k == ns2 &&
				          ((i == 0 && j == ns2) || (i == ipipe1 || i == ipipe2));
				snap_to_pipe_profile(vpipe, midline, mesh_vert(vm, i, j, k)->co);
			}
		}
	}

	return vm;
}

static void get_incident_edges(BMFace *f, BMVert *v, BMEdge **r_e1, BMEdge **r_e2)
{
	BMIter iter;
	BMEdge *e;

	*r_e1 = NULL;
	*r_e2 = NULL;
	if (!f)
		return;
	BM_ITER_ELEM (e, &iter, f, BM_EDGES_OF_FACE) {
		if (e->v1 == v || e->v2 == v) {
			if (*r_e1 == NULL)
				*r_e1 = e;
			else if (*r_e2 == NULL)
				*r_e2 = e;
		}
	}
}

static BMEdge *find_closer_edge(float *co, BMEdge *e1, BMEdge *e2)
{
	float dsq1, dsq2;

	BLI_assert(e1 != NULL && e2 != NULL);
	dsq1 = dist_squared_to_line_segment_v3(co, e1->v1->co, e1->v2->co);
	dsq2 = dist_squared_to_line_segment_v3(co, e2->v1->co, e2->v2->co);
	if (dsq1 < dsq2)
		return e1;
	else
		return e2;
}

/* Snap co to the closest edge of face f. Return the edge in *r_snap_e,
 * the coordinates of snap point in r_ snap_co,
 * and the distance squared to the snap point as function return */
static float snap_face_dist_squared(float *co, BMFace *f, BMEdge **r_snap_e, float *r_snap_co)
{
	BMIter iter;
	BMEdge *beste = NULL;
	float d2, beste_d2;
	BMEdge *e;
	float closest[3];

	beste_d2 = 1e20;
	BM_ITER_ELEM(e, &iter, f, BM_EDGES_OF_FACE) {
		closest_to_line_segment_v3(closest, co, e->v1->co, e->v2->co);
		d2 = len_squared_v3v3(closest, co);
		if (d2 < beste_d2) {
			beste_d2 = d2;
			beste = e;
			copy_v3_v3(r_snap_co, closest);
		}
	}
	*r_snap_e = beste;
	return beste_d2;
}

/*
 * Given that the boundary is built and the boundary BMVerts have been made,
 * calculate the positions of the interior mesh points for the M_ADJ pattern,
 * using cubic subdivision, then make the BMVerts and the new faces. */
static void bevel_build_rings(BevelParams *bp, BMesh *bm, BevVert *bv)
{
	int n, ns, ns2, odd, i, j, k, ring;
	VMesh *vm1, *vm;
	BoundVert *v;
	BMVert *bmv1, *bmv2, *bmv3, *bmv4;
	BMFace *f, *f2;
	BMEdge *bme, *bme1, *bme2, *bme3;
	EdgeHalf *e;
	BoundVert *vpipe;
	int mat_nr = bp->mat_nr;

	n = bv->vmesh->count;
	ns = bv->vmesh->seg;
	ns2 = ns / 2;
	odd = ns % 2;
	BLI_assert(n >= 3 && ns > 1);

	vpipe = pipe_test(bv);

	if (vpipe)
		vm1 = pipe_adj_vmesh(bp, bv, vpipe);
	else if (tri_corner_test(bp, bv))
		vm1 = tri_corner_adj_vmesh(bp, bv);
	else
		vm1 = adj_vmesh(bp, bv);

	/* copy final vmesh into bv->vmesh, make BMVerts and BMFaces */
	vm = bv->vmesh;
	for (i = 0; i < n; i++) {
		for (j = 0; j <= ns2; j++) {
			for (k = 0; k <= ns; k++) {
				if (j == 0 && (k == 0 || k == ns))
					continue;  /* boundary corners already made */
				if (!is_canon(vm, i, j, k))
					continue;
				copy_v3_v3(mesh_vert(vm, i, j, k)->co, mesh_vert(vm1, i, j, k)->co);
				create_mesh_bmvert(bm, vm, i, j, k, bv->v);
			}
		}
	}
	vmesh_copy_equiv_verts(vm);
	/* make the polygons */
	v = vm->boundstart;
	do {
		i = v->index;
		f = boundvert_rep_face(v, NULL);
		f2 = boundvert_rep_face(v->next, NULL);
		if (bp->vertex_only)
			e = v->efirst;
		else
			e = v->ebev;
		BLI_assert(e != NULL);
		bme = e->e;
		/* For odd ns, make polys with lower left corner at (i,j,k) for
		 *    j in [0, ns2-1], k in [0, ns2].  And then the center ngon.
		 * For even ns,
		 *    j in [0, ns2-1], k in [0, ns2-1] */
		for (j = 0; j < ns2; j++) {
			for (k = 0; k < ns2 + odd; k++) {
				bmv1 = mesh_vert(vm, i, j, k)->v;
				bmv2 = mesh_vert(vm, i, j, k + 1)->v;
				bmv3 = mesh_vert(vm, i, j + 1, k + 1)->v;
				bmv4 = mesh_vert(vm, i, j + 1, k)->v;
				BLI_assert(bmv1 && bmv2 && bmv3 && bmv4);
				if (bp->vertex_only) {
					if (j < k) {
						if (k == ns2 && j == ns2 - 1) {
							bev_create_quad_ex(bm, bmv1, bmv2, bmv3, bmv4, f2, f2, f2, f2,
							                   NULL, NULL, v->next->efirst->e, bme, mat_nr);
						}
						else {
							bev_create_quad(bm, bmv1, bmv2, bmv3, bmv4, f2, f2, f2, f2, mat_nr);
						}
					}
					else if (j > k) {
						bev_create_quad(bm, bmv1, bmv2, bmv3, bmv4, f2, f2, f2, f2, mat_nr);
					}
					else { /* j == k */
						/* only one edge attached to v, since vertex_only */
						if (e->is_seam) {
							bev_create_quad_ex(bm, bmv1, bmv2, bmv3, bmv4, f2, f2, f2, f2,
							                   bme, NULL, bme, NULL, mat_nr);
						}
						else {
							bev_create_quad_ex(bm, bmv1, bmv2, bmv3, bmv4, f2, f2, f2, f,
							                   bme, NULL, bme, NULL, mat_nr);
						}
					}
				}
				else { /* edge bevel */
					if (odd) {
						if (k == ns2) {
							if (e->is_seam) {
								bev_create_quad_ex(bm, bmv1, bmv2, bmv3, bmv4, f, f, f, f,
								                   NULL, bme, bme, NULL, mat_nr);
							}
							else {
								bev_create_quad(bm, bmv1, bmv2, bmv3, bmv4, f, f2, f2, f, mat_nr);
							}
						}
						else {
							bev_create_quad(bm, bmv1, bmv2, bmv3, bmv4, f, f, f, f, mat_nr);
						}
					}
					else {
						bme1 = k == ns2 - 1 ? bme : NULL;
						bme3 = j == ns2 - 1 ? v->prev->ebev->e : NULL;
						bme2 = bme1 != NULL ? bme1 : bme3;
						bev_create_quad_ex(bm, bmv1, bmv2, bmv3, bmv4, f, f, f, f,
						                   NULL, bme1, bme2, bme3, mat_nr);
					}
				}
			}
		}
	} while ((v = v->next) != vm->boundstart);

	/* Fix UVs along center lines if even number of segments */
	if (!odd) {
		v = vm->boundstart;
		do {
			i = v->index;
			if (!v->any_seam) {
				for (ring = 1; ring < ns2; ring++) {
					BMVert *v_uv = mesh_vert(vm, i, ring, ns2)->v;
					if (v_uv) {
						bev_merge_uvs(bm, v_uv);
					}
				}
			}
		} while ((v = v->next) != vm->boundstart);
		bmv1 = mesh_vert(vm, 0, ns2, ns2)->v;
		if (bp->vertex_only || count_bound_vert_seams(bv) <= 1)
			bev_merge_uvs(bm, bmv1);
	}

	/* center ngon */
	if (odd) {
		BMFace *frep;
		BMEdge *frep_e1, *frep_e2, *frep_e;
		BMVert **vv = NULL;
		BMFace **vf = NULL;
		BMEdge **ve = NULL;
		BLI_array_staticdeclare(vv, BM_DEFAULT_NGON_STACK_SIZE);
		BLI_array_staticdeclare(vf, BM_DEFAULT_NGON_STACK_SIZE);
		BLI_array_staticdeclare(ve, BM_DEFAULT_NGON_STACK_SIZE);

		if (bv->any_seam) {
			frep = boundvert_rep_face(vm->boundstart, NULL);
			get_incident_edges(frep, bv->v, &frep_e1, &frep_e2);
		}
		else {
			frep = NULL;
			frep_e1 = frep_e2 = NULL;
		}
		v = vm->boundstart;
		do {
			i = v->index;
			BLI_array_append(vv, mesh_vert(vm, i, ns2, ns2)->v);
			if (frep) {
				BLI_array_append(vf, frep);
				frep_e = find_closer_edge(mesh_vert(vm, i, ns2, ns2)->v->co, frep_e1, frep_e2);
				BLI_array_append(ve, v == vm->boundstart ? NULL : frep_e);
			}
			else {
				BLI_array_append(vf, boundvert_rep_face(v, NULL));
				BLI_array_append(ve, NULL);
			}
		} while ((v = v->next) != vm->boundstart);
		bev_create_ngon(bm, vv, BLI_array_count(vv), vf, frep, ve, mat_nr, true);

		BLI_array_free(vv);
		BLI_array_free(vf);
		BLI_array_free(ve);
	}
}

/* If we make a poly out of verts around bv, snapping to rep frep, will uv poly have zero area?
 * The uv poly is made by snapping all outside-of-frep vertices to the closest edge in frep.
 * Assume that this funciton is called when the only inside-of-frep vertex is vm->boundstart.
 * The poly will have zero area if the distance of that first vertex to some edge e is zero, and all
 * the other vertices snap to e or snap to an edge at a point that is essentially on e too.  */
static bool is_bad_uv_poly(BevVert *bv, BMFace *frep)
{
	BoundVert *v;
	BMEdge *snape, *firste;
	float co[3];
	VMesh *vm = bv->vmesh;
	float d2;

	v = vm->boundstart;
	d2 = snap_face_dist_squared(v->nv.v->co, frep, &firste, co);
	if (d2 > BEVEL_EPSILON_BIG_SQ || firste == NULL)
		return false;

	for (v = v->next; v != vm->boundstart; v = v->next) {
		snap_face_dist_squared(v->nv.v->co, frep, &snape, co);
		if (snape  != firste) {
			d2 = dist_to_line_v3(co, firste->v1->co, firste->v2->co);
			if (d2 > BEVEL_EPSILON_BIG_SQ)
				return false;
		}
	}
	return true;
}

static BMFace *bevel_build_poly(BevelParams *bp, BMesh *bm, BevVert *bv)
{
	BMFace *f, *frep, *frep2;
	int n, k;
	VMesh *vm = bv->vmesh;
	BoundVert *v;
	BMEdge *frep_e1, *frep_e2, *frep_e;
	BMVert **vv = NULL;
	BMFace **vf = NULL;
	BMEdge **ve = NULL;
	BLI_array_staticdeclare(vv, BM_DEFAULT_NGON_STACK_SIZE);
	BLI_array_staticdeclare(vf, BM_DEFAULT_NGON_STACK_SIZE);
	BLI_array_staticdeclare(ve, BM_DEFAULT_NGON_STACK_SIZE);

	if (bv->any_seam) {
		frep = boundvert_rep_face(vm->boundstart, &frep2);
		if (frep2 && frep && is_bad_uv_poly(bv, frep)) {
			frep = frep2;
		}
		get_incident_edges(frep, bv->v, &frep_e1, &frep_e2);
	}
	else {
		frep = NULL;
		frep_e1 = frep_e2 = NULL;
	}
	v = vm->boundstart;
	n = 0;
	do {
		/* accumulate vertices for vertex ngon */
		/* also accumulate faces in which uv interpolation is to happen for each */
		BLI_array_append(vv, v->nv.v);
		if (frep) {
			BLI_array_append(vf, frep);
			frep_e = find_closer_edge(v->nv.v->co, frep_e1, frep_e2);
			BLI_array_append(ve, n > 0 ? frep_e : NULL);
		}
		else {
			BLI_array_append(vf, boundvert_rep_face(v, NULL));
			BLI_array_append(ve, NULL);
		}
		n++;
		if (v->ebev && v->ebev->seg > 1) {
			for (k = 1; k < v->ebev->seg; k++) {
				BLI_array_append(vv, mesh_vert(vm, v->index, 0, k)->v);
				if (frep) {
					BLI_array_append(vf, frep);
					frep_e = find_closer_edge(mesh_vert(vm, v->index, 0, k)->v->co, frep_e1, frep_e2);
					BLI_array_append(ve, k < v->ebev->seg / 2 ? NULL : frep_e);
				}
				else {
					BLI_array_append(vf, boundvert_rep_face(v, NULL));
					BLI_array_append(ve, NULL);
				}
				n++;
			}
		}
	} while ((v = v->next) != vm->boundstart);
	if (n > 2) {
		f = bev_create_ngon(bm, vv, n, vf, frep, ve, bp->mat_nr, true);
	}
	else {
		f = NULL;
	}
	BLI_array_free(vv);
	BLI_array_free(vf);
	BLI_array_free(ve);
	return f;
}

static void bevel_build_trifan(BevelParams *bp, BMesh *bm, BevVert *bv)
{
	BMFace *f;
	BLI_assert(next_bev(bv, NULL)->seg == 1 || bv->selcount == 1);

	f = bevel_build_poly(bp, bm, bv);

	if (f) {
		/* we have a polygon which we know starts at the previous vertex, make it into a fan */
		BMLoop *l_fan = BM_FACE_FIRST_LOOP(f)->prev;
		BMVert *v_fan = l_fan->v;

		while (f->len > 3) {
			BMLoop *l_new;
			BMFace *f_new;
			BLI_assert(v_fan == l_fan->v);
			f_new = BM_face_split(bm, f, l_fan, l_fan->next->next, &l_new, NULL, false);

			if (f_new->len > f->len) {
				f = f_new;
				if      (l_new->v       == v_fan) { l_fan = l_new; }
				else if (l_new->next->v == v_fan) { l_fan = l_new->next; }
				else if (l_new->prev->v == v_fan) { l_fan = l_new->prev; }
				else { BLI_assert(0); }
			}
			else {
				if      (l_fan->v       == v_fan) { /* l_fan = l_fan; */ }
				else if (l_fan->next->v == v_fan) { l_fan = l_fan->next; }
				else if (l_fan->prev->v == v_fan) { l_fan = l_fan->prev; }
				else { BLI_assert(0); }
			}
		}
	}
}

static void bevel_build_quadstrip(BevelParams *bp, BMesh *bm, BevVert *bv)
{
	BMFace *f;
	BLI_assert(bv->selcount == 2);

	f = bevel_build_poly(bp, bm, bv);

	if (f) {
		/* we have a polygon which we know starts at this vertex, make it into strips */
		EdgeHalf *eh_a = bv->vmesh->boundstart->elast;
		EdgeHalf *eh_b = next_bev(bv, eh_a->next);  /* since (selcount == 2) we know this is valid */
		BMLoop *l_a = BM_face_vert_share_loop(f, eh_a->rightv->nv.v);
		BMLoop *l_b = BM_face_vert_share_loop(f, eh_b->leftv->nv.v);
		int split_count = bv->vmesh->seg + 1;  /* ensure we don't walk past the segments */

		while (f->len > 4 && split_count > 0) {
			BMLoop *l_new;
			BLI_assert(l_a->f == f);
			BLI_assert(l_b->f == f);

			if (l_a-> v == l_b->v || l_a->next == l_b) {
				/* l_a->v and l_b->v can be the same or such that we'd make a 2-vertex poly */
				l_a = l_a->prev;
				l_b = l_b->next;
			}
			else {
				BM_face_split(bm, f, l_a, l_b, &l_new, NULL, false);
				f = l_new->f;

				/* walk around the new face to get the next verts to split */
				l_a = l_new->prev;
				l_b = l_new->next->next;
			}
			split_count--;
		}
	}
}

/* Special case: vertex bevel with only two boundary verts.
 * Want to make a curved edge if seg > 0.
 * If there are no faces in the original mesh at the original vertex,
 * there will be no rebuilt face to make the edge between the boundary verts,
 * we have to make it here. */
static void bevel_vert_two_edges(BevelParams *bp, BMesh *bm, BevVert *bv)
{
	VMesh *vm = bv->vmesh;
	BMVert *v1, *v2;
	BMEdge *e_eg;
	Profile *pro;
	float co[3];
	BoundVert *bndv;
	int ns, k;

	BLI_assert(vm->count == 2 && bp->vertex_only);

	v1 = mesh_vert(vm, 0, 0, 0)->v;
	v2 = mesh_vert(vm, 1, 0, 0)->v;

	ns = vm->seg;
	if (ns > 1) {
		/* Set up profile parameters */
		bndv = vm->boundstart;
		pro = &bndv->profile;
		pro->super_r = bp->pro_super_r;
		copy_v3_v3(pro->coa, v1->co);
		copy_v3_v3(pro->cob, v2->co);
		copy_v3_v3(pro->midco, bv->v->co);
		/* don't use projection */
		zero_v3(pro->plane_co);
		zero_v3(pro->plane_no);
		zero_v3(pro->proj_dir);
		calculate_profile(bp, bndv);
		for (k = 1; k < ns; k++) {
			get_profile_point(bp, pro, k, ns, co);
			copy_v3_v3(mesh_vert(vm, 0, 0, k)->co, co);
			create_mesh_bmvert(bm, vm, 0, 0, k, bv->v);
		}
		copy_v3_v3(mesh_vert(vm, 0, 0, ns)->co, v2->co);
		for (k = 1; k < ns; k++)
			copy_mesh_vert(vm, 1, 0, ns - k, 0, 0, k);
	}

	if (BM_vert_face_check(bv->v) == false) {
		e_eg = bv->edges[0].e;
		BLI_assert(e_eg != NULL);
		for (k = 0; k < ns; k++) {
			v1 = mesh_vert(vm, 0, 0, k)->v;
			v2 = mesh_vert(vm, 0, 0, k + 1)->v;
			BLI_assert(v1 != NULL && v2 != NULL);
			BM_edge_create(bm, v1, v2, e_eg, BM_CREATE_NO_DOUBLE);
		}
	}
}

/* Given that the boundary is built, now make the actual BMVerts
 * for the boundary and the interior of the vertex mesh. */
static void build_vmesh(BevelParams *bp, BMesh *bm, BevVert *bv)
{
	MemArena *mem_arena = bp->mem_arena;
	VMesh *vm = bv->vmesh;
	BoundVert *v, *weld1, *weld2;
	int n, ns, ns2, i, k, weld;
	float *va, *vb, co[3];

	n = vm->count;
	ns = vm->seg;
	ns2 = ns / 2;

	vm->mesh = (NewVert *)BLI_memarena_alloc(mem_arena, n * (ns2 + 1) * (ns + 1) * sizeof(NewVert));

	/* special case: two beveled ends welded together */
	weld = (bv->selcount == 2) && (vm->count == 2);
	weld1 = weld2 = NULL;   /* will hold two BoundVerts involved in weld */

	/* make (i, 0, 0) mesh verts for all i */
	v = vm->boundstart;
	do {
		i = v->index;
		copy_v3_v3(mesh_vert(vm, i, 0, 0)->co, v->nv.co);
		create_mesh_bmvert(bm, vm, i, 0, 0, bv->v);
		v->nv.v = mesh_vert(vm, i, 0, 0)->v;
		if (weld && v->ebev) {
			if (!weld1)
				weld1 = v;
			else {
				weld2 = v;
				move_weld_profile_planes(bv, weld1, weld2);
				calculate_profile(bp, weld1);
				calculate_profile(bp, weld2);
			}
		}
	} while ((v = v->next) != vm->boundstart);

	/* copy other ends to (i, 0, ns) for all i, and fill in profiles for edges */
	v = vm->boundstart;
	do {
		i = v->index;
		copy_mesh_vert(vm, i, 0, ns, v->next->index, 0, 0);
		for (k = 1; k < ns; k++) {
			if (v->ebev && vm->mesh_kind != M_ADJ) {
				get_profile_point(bp, &v->profile, k, ns, co);
				copy_v3_v3(mesh_vert(vm, i, 0, k)->co, co);
				if (!weld)
					create_mesh_bmvert(bm, vm, i, 0, k, bv->v);
			}
			else if (n == 2 && !v->ebev && vm->mesh_kind != M_ADJ) {
				/* case of one edge beveled and this is the v without ebev */
				/* want to copy the verts from other v, in reverse order */
				copy_mesh_vert(vm, i, 0, k, 1 - i, 0, ns - k);
			}
		}
	} while ((v = v->next) != vm->boundstart);

	if (weld) {
		vm->mesh_kind = M_NONE;
		for (k = 1; k < ns; k++) {
			va = mesh_vert(vm, weld1->index, 0, k)->co;
			vb = mesh_vert(vm, weld2->index, 0, ns - k)->co;
			/* if one of the profiles is on a flat plane,
			 * just use the boundary point of the other */
			if (weld1->profile.super_r == PRO_LINE_R &&
			    weld2->profile.super_r != PRO_LINE_R)
			{
				copy_v3_v3(co, vb);
			}
			else if (weld2->profile.super_r == PRO_LINE_R &&
			         weld1->profile.super_r != PRO_LINE_R)
			{
				copy_v3_v3(co, va);
			}
			else {
				mid_v3_v3v3(co, va, vb);
			}
			copy_v3_v3(mesh_vert(vm, weld1->index, 0, k)->co, co);
			create_mesh_bmvert(bm, vm, weld1->index, 0, k, bv->v);
		}
		for (k = 1; k < ns; k++)
			copy_mesh_vert(vm, weld2->index, 0, ns - k, weld1->index, 0, k);
	}

	switch (vm->mesh_kind) {
		case M_NONE:
			if  (n == 2 && bp->vertex_only)
				bevel_vert_two_edges(bp, bm, bv);
			break;
		case M_POLY:
			bevel_build_poly(bp, bm, bv);
			break;
		case M_ADJ:
			bevel_build_rings(bp, bm, bv);
			break;
		case M_TRI_FAN:
			bevel_build_trifan(bp, bm, bv);
			break;
		case M_QUAD_STRIP:
			bevel_build_quadstrip(bp, bm, bv);
			break;
	}
}

/* Return the angle between the two faces adjacent to e.
 * If there are not two, return 0. */
static float edge_face_angle(EdgeHalf *e)
{
	if (e->fprev && e->fnext) {
		/* angle between faces is supplement of angle between face normals */
		return (float)M_PI - angle_normalized_v3v3(e->fprev->no, e->fnext->no);
	}
	else {
		return 0.0f;
	}
}

/* take care, this flag isn't cleared before use, it just so happens that its not set */
#define BM_BEVEL_EDGE_TAG_ENABLE(bme)  BM_ELEM_API_FLAG_ENABLE(  (bme), _FLAG_OVERLAP)
#define BM_BEVEL_EDGE_TAG_DISABLE(bme) BM_ELEM_API_FLAG_DISABLE( (bme), _FLAG_OVERLAP)
#define BM_BEVEL_EDGE_TAG_TEST(bme)    BM_ELEM_API_FLAG_TEST(    (bme), _FLAG_OVERLAP)

/* Try to extend the bv->edges[] array beyond i by finding more successor edges.
 * This is a possibly exponential-time search, but it is only exponential in the number
 * of "internal faces" at a vertex -- i.e., faces that bridge between the edges that naturally
 * form a manifold cap around bv. It is rare to have more than one of these, so unlikely
 * that the exponential time case will be hit in practice.
 * Returns the new index i' where bv->edges[i'] ends the best path found.
 * The path will have the tags of all of its edges set. */
static int bevel_edge_order_extend(BMesh *bm, BevVert *bv, int i)
{
	BMEdge *bme, *bme2, *nextbme;
	BMLoop *l;
	BMIter iter;
	int j, tryj, bestj, nsucs, sucindex, k;
	BMEdge **sucs = NULL;
	BMEdge **save_path = NULL;
	BLI_array_staticdeclare(sucs, 4);  /* likely very few faces attached to same edge */
	BLI_array_staticdeclare(save_path, BM_DEFAULT_NGON_STACK_SIZE);

	bme = bv->edges[i].e;
	/* fill sucs with all unmarked edges of bmes */
	BM_ITER_ELEM(l, &iter, bme, BM_LOOPS_OF_EDGE) {
		bme2 = (l->v == bv->v) ? l->prev->e : l->next->e;
		if (!BM_BEVEL_EDGE_TAG_TEST(bme2)) {
			BLI_array_append(sucs, bme2);
		}
	}
	nsucs = BLI_array_count(sucs);

	bestj = j = i;
	for (sucindex = 0; sucindex < nsucs; sucindex++) {
		nextbme = sucs[sucindex];
		BLI_assert(nextbme != NULL);
		BLI_assert(!BM_BEVEL_EDGE_TAG_TEST(nextbme));
		BLI_assert(j + 1 < bv->edgecount);
		bv->edges[j + 1].e = nextbme;
		BM_BEVEL_EDGE_TAG_ENABLE(nextbme);
		tryj = bevel_edge_order_extend(bm, bv, j + 1);
		if (tryj > bestj || (tryj == bestj && edges_face_connected_at_vert(bv->edges[tryj].e, bv->edges[0].e))) {
			bestj = tryj;
			BLI_array_empty(save_path);
			for (k = j + 1; k <= bestj; k++) {
				BLI_array_append(save_path, bv->edges[k].e);
			}
		}
		/* now reset to path only-going-to-j state */
		for (k = j + 1; k <= tryj; k++) {
			BM_BEVEL_EDGE_TAG_DISABLE(bv->edges[k].e);
			bv->edges[k].e = NULL;
		}
	}
	/* at this point we should be back at invariant on entrance: path up to j */
	if (bestj > j) {
		/* save_path should have from j + 1 to bestj inclusive edges to add to edges[] before returning */
		for (k = j + 1; k <= bestj; k++) {
			BLI_assert(save_path[k - (j + 1)] != NULL);
			bv->edges[k].e = save_path[k - (j + 1)];
			BM_BEVEL_EDGE_TAG_ENABLE(bv->edges[k].e);
		}
	}
	BLI_array_free(sucs);
	BLI_array_free(save_path);
	return bestj;
}

/* See if we have usual case for bevel edge order:
 * there is an ordering such that all the faces are between
 * successive edges and form a manifold "cap" at bv.
 * If this is the case, set bv->edges to such an order
 * and return true; else return unmark any partial path and return false.
 * Assume the first edge is already in bv->edges[0].e and it is tagged. */
#ifdef FASTER_FASTORDER
/* The alternative older code is O(n^2) where n = # of edges incident to bv->v.
 * This implementation is O(n * m) where m = average number of faces attached to an edge incident to bv->v,
 * which is almost certainly a small constant except in very strange cases. But this code produces different
 * choices of ordering than the legacy system, leading to differences in vertex orders etc. in user models,
 * so for now will continue to use the legacy code. */
static bool fast_bevel_edge_order(BevVert *bv)
{
	int j, k, nsucs;
	BMEdge *bme, *bme2, *bmenext;
	BMIter iter;
	BMLoop *l;

	for (j = 1; j < bv->edgecount; j++) {
		bme = bv->edges[j - 1].e;
		bmenext = NULL;
		nsucs = 0;
		BM_ITER_ELEM(l, &iter, bme, BM_LOOPS_OF_EDGE) {
			bme2 = (l->v == bv->v) ? l->prev->e : l->next->e;
			if (!BM_BEVEL_EDGE_TAG_TEST(bme2)) {
				nsucs++;
				if (bmenext == NULL)
					bmenext = bme2;
			}
		}
		if (nsucs == 0 || (nsucs == 2 && j != 1) || nsucs > 2 ||
		    (j == bv->edgecount - 1 && !edges_face_connected_at_vert(bmenext, bv->edges[0].e)))
		{
			for (k = 1; k < j; k++) {
				BM_BEVEL_EDGE_TAG_DISABLE(bv->edges[k].e);
				bv->edges[k].e = NULL;
			}
			return false;
		}
		bv->edges[j].e = bmenext;
		BM_BEVEL_EDGE_TAG_ENABLE(bmenext);
	}
	return true;
}
#else
static bool fast_bevel_edge_order(BevVert *bv)
{
	BMEdge *bme, *bme2, *first_suc;
	BMIter iter, iter2;
	BMFace *f;
	EdgeHalf *e;
	int i, k, ntot, num_shared_face;

	ntot = bv->edgecount;

	/* add edges to bv->edges in order that keeps adjacent edges sharing
	 * a unique face, if possible */
	e = &bv->edges[0];
	bme = e->e;
	if (!bme->l)
		return false;
	for (i = 1; i < ntot; i++) {
		/* find an unflagged edge bme2 that shares a face f with previous bme */
		num_shared_face = 0;
		first_suc = NULL;  /* keep track of first successor to match legacy behavior */
		BM_ITER_ELEM (bme2, &iter, bv->v, BM_EDGES_OF_VERT) {
			if (BM_BEVEL_EDGE_TAG_TEST(bme2))
				continue;
			BM_ITER_ELEM (f, &iter2, bme2, BM_FACES_OF_EDGE) {
				if (BM_face_edge_share_loop(f, bme)) {
					num_shared_face++;
					if (first_suc == NULL)
						first_suc = bme2;
				}
			}
			if (num_shared_face >= 3)
				break;
		}
		if (num_shared_face == 1 || (i == 1 && num_shared_face == 2)) {
			e = &bv->edges[i];
			e->e = bme = first_suc;
			BM_BEVEL_EDGE_TAG_ENABLE(bme);
		}
		else {
			for (k = 1; k < i; k++) {
				BM_BEVEL_EDGE_TAG_DISABLE(bv->edges[k].e);
				bv->edges[k].e = NULL;
			}
			return false;
		}
	}
	return true;
}
#endif

/* Fill in bv->edges with a good ordering of non-wire edges around bv->v.
 * Use only edges where BM_BEVEL_EDGE_TAG is disabled so far
 * (if edge beveling, others are wire).
 * first_bme is a good edge to start with.*/
static void find_bevel_edge_order(BMesh *bm, BevVert *bv, BMEdge *first_bme)
{
	BMEdge *bme, *bme2;
	BMIter iter;
	BMFace *f, *bestf;
	EdgeHalf *e;
	EdgeHalf *e2;
	BMLoop *l;
	int i, ntot;

	ntot = bv->edgecount;
	i = 0;
	for (;;) {
		BLI_assert(first_bme != NULL);
		bv->edges[i].e = first_bme;
		BM_BEVEL_EDGE_TAG_ENABLE(first_bme);
		if (i == 0 && fast_bevel_edge_order(bv))
			break;
		i = bevel_edge_order_extend(bm, bv, i);
		i++;
		if (i >= bv->edgecount)
			break;
		/* Not done yet: find a new first_bme */
		first_bme = NULL;
		BM_ITER_ELEM(bme, &iter, bv->v, BM_EDGES_OF_VERT) {
			if (BM_BEVEL_EDGE_TAG_TEST(bme))
				continue;
			if (!first_bme)
				first_bme = bme;
			if (BM_edge_face_count(bme) == 1) {
				first_bme = bme;
				break;
			}
		}
	}
	/* now fill in the faces ... */
	for (i = 0; i < ntot; i++) {
		e = &bv->edges[i];
		e2 = (i == bv->edgecount - 1) ? &bv->edges[0] : &bv->edges[i + 1];
		bme = e->e;
		bme2 = e2->e;
		BLI_assert(bme != NULL);
		if (e->fnext != NULL || e2->fprev != NULL)
			continue;
		/* Which faces have successive loops that are for bme and bme2?
		 * There could be more than one. E.g., in manifold ntot==2 case.
		 * Prefer one that has loop in same direction as e. */
		bestf = NULL;
		BM_ITER_ELEM(l, &iter, bme, BM_LOOPS_OF_EDGE) {
			f = l->f;
			if ((l->prev->e == bme2 || l->next->e == bme2)) {
				if (!bestf || l->v == bv->v)
					bestf = f;
			}
			if (bestf) {
				e->fnext = e2->fprev = bestf;
			}
		}
	}
}

/*
 * Construction around the vertex
 */
static BevVert *bevel_vert_construct(BMesh *bm, BevelParams *bp, BMVert *v)
{
	BMEdge *bme;
	BevVert *bv;
	BMEdge *first_bme;
	BMVert *v1, *v2;
	BMIter iter;
	EdgeHalf *e;
	float weight, z;
	int i, ccw_test_sum;
	int nsel = 0;
	int ntot = 0;
	int nwire = 0;
	int fcnt;

	/* Gather input selected edges.
	 * Only bevel selected edges that have exactly two incident faces.
	 * Want edges to be ordered so that they share faces.
	 * There may be one or more chains of shared faces broken by
	 * gaps where there are no faces.
	 * Want to ignore wire edges completely for edge beveling.
	 * TODO: make following work when more than one gap.
	 */

	first_bme = NULL;
	BM_ITER_ELEM (bme, &iter, v, BM_EDGES_OF_VERT) {
		fcnt = BM_edge_face_count(bme);
		BM_BEVEL_EDGE_TAG_DISABLE(bme);
		if (BM_elem_flag_test(bme, BM_ELEM_TAG) && !bp->vertex_only) {
			BLI_assert(fcnt == 2);
			nsel++;
			if (!first_bme)
				first_bme = bme;
		}
		if (fcnt == 1) {
			/* good to start face chain from this edge */
			first_bme = bme;
		}
		if (fcnt > 0 || bp->vertex_only)
			ntot++;
		if (BM_edge_is_wire(bme)) {
			nwire++;
			/* If edge beveling, exclude wire edges from edges array.
			 * Mark this edge as "chosen" so loop below won't choose it. */
			if (!bp->vertex_only) {
				BM_BEVEL_EDGE_TAG_ENABLE(bme);
			}
		}
	}
	if (!first_bme)
		first_bme = v->e;

	if ((nsel == 0 && !bp->vertex_only) || (ntot < 2 && bp->vertex_only)) {
		/* signal this vert isn't being beveled */
		BM_elem_flag_disable(v, BM_ELEM_TAG);
		return NULL;
	}

	bv = (BevVert *)BLI_memarena_alloc(bp->mem_arena, (sizeof(BevVert)));
	bv->v = v;
	bv->edgecount = ntot;
	bv->selcount = nsel;
	bv->wirecount = nwire;
	bv->offset = bp->offset;
	bv->edges = (EdgeHalf *)BLI_memarena_alloc(bp->mem_arena, ntot * sizeof(EdgeHalf));
	if (nwire)
		bv->wire_edges = (BMEdge **)BLI_memarena_alloc(bp->mem_arena, nwire * sizeof(BMEdge *));
	else
		bv->wire_edges = NULL;
	bv->vmesh = (VMesh *)BLI_memarena_alloc(bp->mem_arena, sizeof(VMesh));
	bv->vmesh->seg = bp->seg;

	if (bp->vertex_only) {
		/* if weighted, modify offset by weight */
		if (bp->dvert != NULL && bp->vertex_group != -1) {
			weight = defvert_find_weight(bp->dvert + BM_elem_index_get(v), bp->vertex_group);
			if (weight <= 0.0f) {
				BM_elem_flag_disable(v, BM_ELEM_TAG);
				return NULL;
			}
			bv->offset *= weight;
		}
		else if (bp->use_weights) {
			weight = BM_elem_float_data_get(&bm->vdata, v, CD_BWEIGHT);
			bv->offset *= weight;
		}
	}
	BLI_ghash_insert(bp->vert_hash, v, bv);

	find_bevel_edge_order(bm, bv, first_bme);

	/* fill in other attributes of EdgeHalfs */
	for (i = 0; i < ntot; i++) {
		e = &bv->edges[i];
		bme = e->e;
		if (BM_elem_flag_test(bme, BM_ELEM_TAG) && !bp->vertex_only) {
			e->is_bev = true;
			e->seg = bp->seg;
		}
		else {
			e->is_bev = false;
			e->seg = 0;
		}
		e->is_rev = (bme->v2 == v);
	}

	/* now done with tag flag */
	BM_ITER_ELEM (bme, &iter, v, BM_EDGES_OF_VERT) {
		BM_BEVEL_EDGE_TAG_DISABLE(bme);
	}

	/* if edge array doesn't go CCW around vertex from average normal side,
	 * reverse the array, being careful to reverse face pointers too */
	if (ntot > 1) {
		ccw_test_sum = 0;
		for (i = 0; i < ntot; i++)
			ccw_test_sum += bev_ccw_test(bv->edges[i].e, bv->edges[(i + 1) % ntot].e,
			                             bv->edges[i].fnext);
		if (ccw_test_sum < 0) {
			for (i = 0; i <= (ntot / 2) - 1; i++) {
				SWAP(EdgeHalf, bv->edges[i], bv->edges[ntot - i - 1]);
				SWAP(BMFace *, bv->edges[i].fprev, bv->edges[i].fnext);
				SWAP(BMFace *, bv->edges[ntot - i - 1].fprev, bv->edges[ntot - i - 1].fnext);
			}
			if (ntot % 2 == 1) {
				i = ntot / 2;
				SWAP(BMFace *, bv->edges[i].fprev,  bv->edges[i].fnext);
			}
		}
	}

	for (i = 0, e = bv->edges; i < ntot; i++, e++) {
		e->next = &bv->edges[(i + 1) % ntot];
		e->prev = &bv->edges[(i + ntot - 1) % ntot];

		/* set offsets  */
		if (e->is_bev) {
			/* Convert distance as specified by user into offsets along
			 * faces on left side and right side of this edgehalf.
			 * Except for percent method, offset will be same on each side. */

			switch (bp->offset_type) {
				case BEVEL_AMT_OFFSET:
					e->offset_l_spec = bp->offset;
					break;
				case BEVEL_AMT_WIDTH:
					z = fabsf(2.0f * sinf(edge_face_angle(e) / 2.0f));
					if (z < BEVEL_EPSILON)
						e->offset_l_spec = 0.01f * bp->offset; /* undefined behavior, so tiny bevel */
					else
						e->offset_l_spec = bp->offset / z;
					break;
				case BEVEL_AMT_DEPTH:
					z = fabsf(cosf(edge_face_angle(e) / 2.0f));
					if (z < BEVEL_EPSILON)
						e->offset_l_spec = 0.01f * bp->offset; /* undefined behavior, so tiny bevel */
					else
						e->offset_l_spec = bp->offset / z;
					break;
				case BEVEL_AMT_PERCENT:
					/* offset needs to be such that it meets adjacent edges at percentage of their lengths */
					v1 = BM_edge_other_vert(e->prev->e, v);
					v2 = BM_edge_other_vert(e->e, v);
					z = sinf(angle_v3v3v3(v1->co, v->co, v2->co));
					e->offset_l_spec = BM_edge_calc_length(e->prev->e) * bp->offset * z / 100.0f;
					v1 = BM_edge_other_vert(e->e, v);
					v2 = BM_edge_other_vert(e->next->e, v);
					z = sinf(angle_v3v3v3(v1->co, v->co, v2->co));
					e->offset_r_spec = BM_edge_calc_length(e->next->e) * bp->offset * z / 100.0f;
					break;
				default:
					BLI_assert(!"bad bevel offset kind");
					e->offset_l_spec = bp->offset;
					break;
			}
			if (bp->offset_type != BEVEL_AMT_PERCENT)
				e->offset_r_spec = e->offset_l_spec;
			if (bp->use_weights) {
				weight = BM_elem_float_data_get(&bm->edata, e->e, CD_BWEIGHT);
				e->offset_l_spec *= weight;
				e->offset_r_spec *= weight;
			}
		}
		else if (bp->vertex_only) {
			/* Weight has already been applied to bv->offset, if present.
			 * Transfer to e->offset_[lr]_spec and treat percent as special case */
			if (bp->offset_type == BEVEL_AMT_PERCENT) {
				v2 = BM_edge_other_vert(e->e, bv->v);
				e->offset_l_spec = BM_edge_calc_length(e->e) * bv->offset / 100.0f;
			}
			else {
				e->offset_l_spec = bv->offset;
			}
			e->offset_r_spec = e->offset_l_spec;
		}
		else {
			e->offset_l_spec = e->offset_r_spec = 0.0f;
		}
		e->offset_l = e->offset_l_spec;
		e->offset_r = e->offset_r_spec;

		if (e->fprev && e->fnext)
			e->is_seam = !contig_ldata_across_edge(bm, e->e, e->fprev, e->fnext);
		else
			e->is_seam = true;
	}

	if (nwire) {
		i = 0;
		BM_ITER_ELEM (bme, &iter, v, BM_EDGES_OF_VERT) {
			if (BM_edge_is_wire(bme)) {
				BLI_assert(i < bv->wirecount);
				bv->wire_edges[i++] = bme;
			}
		}
		BLI_assert(i == bv->wirecount);
	}

	return bv;
}

/* Face f has at least one beveled vertex.  Rebuild f */
static bool bev_rebuild_polygon(BMesh *bm, BevelParams *bp, BMFace *f)
{
	BMIter liter;
	BMLoop *l, *lprev;
	BevVert *bv;
	BoundVert *v, *vstart, *vend;
	EdgeHalf *e, *eprev;
	VMesh *vm;
	int i, k, n;
	bool do_rebuild = false;
	bool go_ccw, corner3special;
	BMVert *bmv;
	BMEdge *bme, *bme_new, *bme_prev;
	BMFace *f_new;
	BMVert **vv = NULL;
	BMVert **vv_fix = NULL;
	BMEdge **ee = NULL;
	BLI_array_staticdeclare(vv, BM_DEFAULT_NGON_STACK_SIZE);
	BLI_array_staticdeclare(vv_fix, BM_DEFAULT_NGON_STACK_SIZE);
	BLI_array_staticdeclare(ee, BM_DEFAULT_NGON_STACK_SIZE);

	BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
		if (BM_elem_flag_test(l->v, BM_ELEM_TAG)) {
			lprev = l->prev;
			bv = find_bevvert(bp, l->v);
			vm = bv->vmesh;
			e = find_edge_half(bv, l->e);
			BLI_assert(e != NULL);
			bme = e->e;
			eprev = find_edge_half(bv, lprev->e);
			BLI_assert(eprev != NULL);

			/* which direction around our vertex do we travel to match orientation of f? */
			if (e->prev == eprev) {
				if (eprev->prev == e) {
					/* valence 2 vertex: use f is one of e->fnext or e->fprev  to break tie */
					go_ccw = (e->fnext != f);
				}
				else {
					go_ccw = true;  /* going ccw around bv to trace this corner */
				}
			}
			else if (eprev->prev == e) {
				go_ccw = false;  /* going cw around bv to trace this corner */
			}
			else {
				/* edges in face are non-contiguous in our ordering around bv.
				 * Which way should we go when going from eprev to e? */
				if (count_ccw_edges_between(eprev, e) < count_ccw_edges_between(e, eprev)) {
					/* go counterclockewise from eprev to e */
					go_ccw = true;
				}
				else {
					/* go clockwise from eprev to e */
					go_ccw = false;
				}
			}
			if (go_ccw) {
				vstart = eprev->rightv;
				vend = e->leftv;
			}
			else {
				vstart = eprev->leftv;
				vend = e->rightv;
			}
			BLI_assert(vstart != NULL && vend != NULL);
			v = vstart;
			BLI_array_append(vv, v->nv.v);
			BLI_array_append(ee, bme);
			/* check for special case: multisegment 3rd face opposite a beveled edge with no vmesh */
			corner3special = (vm->mesh_kind == M_NONE && v->ebev != e && v->ebev != eprev);
			while (v != vend) {
				if (go_ccw) {
					if (vm->seg > 1) {
						if (vm->mesh_kind == M_ADJ || bp->vertex_only || corner3special) {
							i = v->index;
							for (k = 1; k < vm->seg; k++) {
								bmv = mesh_vert(vm, i, 0, k)->v;
								BLI_array_append(vv, bmv);
								BLI_array_append(ee, bme); /* TODO: maybe better edge here */
								if (corner3special && v->ebev && !v->ebev->is_seam)
									BLI_array_append(vv_fix, bmv);
							}
						}
					}
					v = v->next;
				}
				else {
					/* going cw */
					if (vm->seg > 1) {
						if (vm->mesh_kind == M_ADJ || bp->vertex_only ||
						    (vm->mesh_kind == M_NONE && v->ebev != e && v->ebev != eprev))
						{
							i = v->prev->index;
							for (k = vm->seg - 1; k > 0; k--) {
								bmv = mesh_vert(vm, i, 0, k)->v;
								BLI_array_append(vv, bmv);
								BLI_array_append(ee, bme);
								if (corner3special && v->ebev && !v->ebev->is_seam)
									BLI_array_append(vv_fix, bmv);
							}
						}
					}
					v = v->prev;
				}
				BLI_array_append(vv, v->nv.v);
				BLI_array_append(ee, bme);
			}
			do_rebuild = true;
		}
		else {
			BLI_array_append(vv, l->v);
			BLI_array_append(ee, l->e);
		}
	}
	if (do_rebuild) {
		n = BLI_array_count(vv);
		f_new = bev_create_ngon(bm, vv, n, NULL, f, NULL, -1, true);

		for (k = 0; k < BLI_array_count(vv_fix); k++) {
			bev_merge_uvs(bm, vv_fix[k]);
		}

		/* copy attributes from old edges */
		BLI_assert(n == BLI_array_count(ee));
		bme_prev = ee[n - 1];
		for (k = 0; k < n; k++) {
			bme_new = BM_edge_exists(vv[k], vv[(k + 1) % n]);
			BLI_assert(ee[k] && bme_new);
			if (ee[k] != bme_new) {
				BM_elem_attrs_copy(bm, bm, ee[k], bme_new);
				/* want to undo seam and smooth for corner segments
				 * if those attrs aren't contiguous around face */
				if (k < n - 1 && ee[k] == ee[k + 1]) {
					if (BM_elem_flag_test(ee[k], BM_ELEM_SEAM) &&
					    !BM_elem_flag_test(bme_prev, BM_ELEM_SEAM))
					{
						BM_elem_flag_disable(bme_new, BM_ELEM_SEAM);
					}
					/* actually want "sharp" to be contiguous, so reverse the test */
					if (!BM_elem_flag_test(ee[k], BM_ELEM_SMOOTH) &&
					    BM_elem_flag_test(bme_prev, BM_ELEM_SMOOTH))
					{
						BM_elem_flag_enable(bme_new, BM_ELEM_SMOOTH);
					}
				}
				else
					bme_prev = ee[k];
			}
		}

		/* don't select newly created boundary faces... */
		if (f_new) {
			BM_elem_flag_disable(f_new, BM_ELEM_TAG);
		}
	}

	BLI_array_free(vv);
	BLI_array_free(vv_fix);
	BLI_array_free(ee);
	return do_rebuild;
}

/* All polygons touching v need rebuilding because beveling v has made new vertices */
static void bevel_rebuild_existing_polygons(BMesh *bm, BevelParams *bp, BMVert *v)
{
	void    *faces_stack[BM_DEFAULT_ITER_STACK_SIZE];
	int      faces_len, f_index;
	BMFace **faces = BM_iter_as_arrayN(bm, BM_FACES_OF_VERT, v, &faces_len,
	                                   faces_stack, BM_DEFAULT_ITER_STACK_SIZE);

	if (LIKELY(faces != NULL)) {
		for (f_index = 0; f_index < faces_len; f_index++) {
			BMFace *f = faces[f_index];
			if (bev_rebuild_polygon(bm, bp, f)) {
				BM_face_kill(bm, f);
			}
		}

		if (faces != (BMFace **)faces_stack) {
			MEM_freeN(faces);
		}
	}
}

/* If there were any wire edges, they need to be reattached somewhere */
static void bevel_reattach_wires(BMesh *bm, BevelParams *bp, BMVert *v)
{
	BMEdge *e;
	BMVert *vclosest, *vother, *votherclosest;
	BevVert *bv, *bvother;
	BoundVert *bndv, *bndvother;
	float d, dclosest;
	int i;

	bv = find_bevvert(bp, v);
	if (!bv || bv->wirecount == 0 || !bv->vmesh)
		return;

	for (i = 0; i < bv->wirecount; i++) {
		e = bv->wire_edges[i];
		/* look for the new vertex closest to the other end of e */
		vclosest = NULL;
		dclosest = FLT_MAX;
		votherclosest = NULL;
		vother = BM_edge_other_vert(e, v);
		bvother = NULL;
		if (BM_elem_flag_test(vother, BM_ELEM_TAG)) {
			bvother = find_bevvert(bp, vother);
			if (!bvother || !bvother->vmesh)
				return;  /* shouldn't happen */
		}
		bndv = bv->vmesh->boundstart;
		do {
			if (bvother) {
				bndvother = bvother->vmesh->boundstart;
				do {
					d = len_squared_v3v3(bndvother->nv.co, bndv->nv.co);
					if (d < dclosest) {
						vclosest = bndv->nv.v;
						votherclosest = bndvother->nv.v;
						dclosest = d;
						
					}
				} while ((bndvother = bndvother->next) != bvother->vmesh->boundstart);
			}
			else {
				d = len_squared_v3v3(vother->co, bndv->nv.co);
				if (d < dclosest) {
					vclosest = bndv->nv.v;
					votherclosest = vother;
					dclosest = d;
				}
			}
		} while ((bndv = bndv->next) != bv->vmesh->boundstart);
		if (vclosest)
			BM_edge_create(bm, vclosest, votherclosest, e, BM_CREATE_NO_DOUBLE);
	}
}

static void bev_merge_end_uvs(BMesh *bm, BevVert *bv, EdgeHalf *e)
{
	VMesh *vm = bv->vmesh;
	int i, k, nseg;

	nseg = e->seg;
	i = e->leftv->index;
	for (k = 1; k < nseg; k++) {
		bev_merge_uvs(bm, mesh_vert(vm, i, 0, k)->v);
	}
}

/*
 * Is this BevVert the special case of a weld (no vmesh) where there are
 * four edges total, two are beveled, and the other two are on opposite sides?
 */
static bool bevvert_is_weld_cross(BevVert *bv)
{
	return (bv->edgecount == 4 && bv->selcount == 2 &&
	        ((bv->edges[0].is_bev && bv->edges[2].is_bev) ||
	         (bv->edges[1].is_bev && bv->edges[3].is_bev)));
}

/*
 * Copy edge attribute data across the non-beveled crossing edges of a cross weld.
 *
 * Situation looks like this:
 *
 *      e->next
 *        |
 * -------3-------
 * -------2-------
 * -------1------- e
 * -------0------
 *        |
 *      e->prev
 *
 * where e is the EdgeHalf of one of the beveled edges,
 * e->next and e->prev are EdgeHalfs for the unbeveled edges of the cross
 * and their attributes are to be copied to the edges 01, 12, 23.
 * The vert i is mesh_vert(vm, vmindex, 0, i)->v
 */
static void weld_cross_attrs_copy(BMesh *bm, BevVert *bv, VMesh *vm, int vmindex, EdgeHalf *e)
{
	BMEdge *bme_prev, *bme_next, *bme;
	int i, nseg;
	bool disable_seam, enable_smooth;

	bme_prev = bme_next = NULL;
	for (i = 0; i < 4; i++) {
		if (&bv->edges[i] == e) {
			bme_prev = bv->edges[(i + 3) % 4].e;
			bme_next = bv->edges[(i + 1) % 4].e;
			break;
		}
	}
	BLI_assert(bme_prev && bme_next);

	/* want seams and sharp edges to cross only if that way on both sides */
	disable_seam = BM_elem_flag_test(bme_prev, BM_ELEM_SEAM) != BM_elem_flag_test(bme_next, BM_ELEM_SEAM);
	enable_smooth = BM_elem_flag_test(bme_prev, BM_ELEM_SMOOTH) != BM_elem_flag_test(bme_next, BM_ELEM_SMOOTH);

	nseg = e->seg;
	for (i = 0; i < nseg; i++) {
		bme = BM_edge_exists(mesh_vert(vm, vmindex, 0, i)->v,
		                     mesh_vert(vm, vmindex, 0, i + 1)->v);
		BLI_assert(bme);
		BM_elem_attrs_copy(bm, bm, bme_prev, bme);
		if (disable_seam)
			BM_elem_flag_disable(bme, BM_ELEM_SEAM);
		if (enable_smooth)
			BM_elem_flag_enable(bme, BM_ELEM_SMOOTH);
	}
}

/*
 * Build the polygons along the selected Edge
 */
static void bevel_build_edge_polygons(BMesh *bm, BevelParams *bp, BMEdge *bme)
{
	BevVert *bv1, *bv2;
	BMVert *bmv1, *bmv2, *bmv3, *bmv4;
	VMesh *vm1, *vm2;
	EdgeHalf *e1, *e2;
	BMEdge *bme1, *bme2, *center_bme;
	BMFace *f1, *f2, *f;
	BMVert *verts[4];
	BMFace *faces[4];
	BMEdge *edges[4];
	int k, nseg, i1, i2, odd, mid;
	int mat_nr = bp->mat_nr;

	if (!BM_edge_is_manifold(bme))
		return;

	bv1 = find_bevvert(bp, bme->v1);
	bv2 = find_bevvert(bp, bme->v2);

	BLI_assert(bv1 && bv2);

	e1 = find_edge_half(bv1, bme);
	e2 = find_edge_half(bv2, bme);

	BLI_assert(e1 && e2);

	/*
	 *      bme->v1
	 *     / | \
	 *   v1--|--v4
	 *   |   |   |
	 *   |   |   |
	 *   v2--|--v3
	 *     \ | /
	 *      bme->v2
	 */
	nseg = e1->seg;
	BLI_assert(nseg > 0 && nseg == e2->seg);

	bmv1 = e1->leftv->nv.v;
	bmv4 = e1->rightv->nv.v;
	bmv2 = e2->rightv->nv.v;
	bmv3 = e2->leftv->nv.v;

	BLI_assert(bmv1 && bmv2 && bmv3 && bmv4);

	f1 = e1->fprev;
	f2 = e1->fnext;
	faces[0] = faces[1] = f1;
	faces[2] = faces[3] = f2;
	i1 = e1->leftv->index;
	i2 = e2->leftv->index;
	vm1 = bv1->vmesh;
	vm2 = bv2->vmesh;

	verts[0] = bmv1;
	verts[1] = bmv2;
	odd = nseg % 2;
	mid = nseg / 2;
	center_bme = NULL;
	for (k = 1; k <= nseg; k++) {
		verts[3] = mesh_vert(vm1, i1, 0, k)->v;
		verts[2] = mesh_vert(vm2, i2, 0, nseg - k)->v;
		if (odd && k == mid + 1) {
			if (e1->is_seam) {
				/* straddles a seam: choose to interpolate in f1 and snap right edge to bme */
				edges[0] = edges[1] = NULL;
				edges[2] = edges[3] = bme;
				bev_create_ngon(bm, verts, 4, NULL, f1, edges, mat_nr, true);
			}
			else {
				/* straddles but not a seam: interpolate left half in f1, right half in f2 */
				bev_create_ngon(bm, verts, 4, faces, NULL, NULL, mat_nr, true);
			}
		}
		else if (!odd && k == mid) {
			/* left poly that touches an even center line on right */
			edges[0] = edges[1] = NULL;
			edges[2] = edges[3] = bme;
			bev_create_ngon(bm, verts, 4, NULL, f1, edges, mat_nr, true);
			center_bme = BM_edge_exists(verts[2], verts[3]);
			BLI_assert(center_bme != NULL);
		}
		else if (!odd && k == mid + 1) {
			/* right poly that touches an even center line on left */
			edges[0] = edges[1] = bme;
			edges[2] = edges[3] = NULL;
			bev_create_ngon(bm, verts, 4, NULL, f2, edges, mat_nr, true);
		}
		else {
			/* doesn't cross or touch the center line, so interpolate in appropriate f1 or f2 */
			f = (k <= mid) ? f1 : f2;
			bev_create_ngon(bm, verts, 4, NULL, f, NULL, mat_nr, true);
		}
		verts[0] = verts[3];
		verts[1] = verts[2];
	}
	if (!odd) {
		if (!e1->is_seam)
			bev_merge_edge_uvs(bm, center_bme, mesh_vert(vm1, i1, 0, mid)->v);
		if (!e2->is_seam)
			bev_merge_edge_uvs(bm, center_bme, mesh_vert(vm2, i2, 0, mid)->v);
	}

	/* Fix UVs along end edge joints.  A nop unless other side built already. */
	/* TODO: if some seam, may want to do selective merge */
	if (!bv1->any_seam && bv1->vmesh->mesh_kind == M_NONE)
		bev_merge_end_uvs(bm, bv1, e1);
	if (!bv2->any_seam && bv2->vmesh->mesh_kind == M_NONE)
		bev_merge_end_uvs(bm, bv2, e2);

	/* Copy edge data to first and last edge */
	bme1 = BM_edge_exists(bmv1, bmv2);
	bme2 = BM_edge_exists(bmv3, bmv4);
	BLI_assert(bme1 && bme2);
	BM_elem_attrs_copy(bm, bm, bme, bme1);
	BM_elem_attrs_copy(bm, bm, bme, bme2);

	/* If either end is a "weld cross", want continuity of edge attributes across end edge(s) */
	if (bevvert_is_weld_cross(bv1)) {
		weld_cross_attrs_copy(bm, bv1, vm1, i1, e1);
	}
	if (bevvert_is_weld_cross(bv2)) {
		weld_cross_attrs_copy(bm, bv2, vm2, i2, e2);
	}
}

/* Returns the square of the length of the chord from parameter u0 to parameter u1
 * of superellipse_co. */
static float superellipse_chord_length_squared(float u0, float u1, float r)
{
	float a[2], b[2];

	BLI_assert(u0 >= 0.0f && u1 >= u0 && u1 <= 2.0f);
	superellipse_co(u0, r, a);
	superellipse_co(u1, r, b);
	return len_squared_v2v2(a, b);
}

/* Find parameter u >= u0 to make chord of squared length d2goal,
 * from u0 to u on superellipse with parameter r.
 * If it cannot be found, return -1.0f. */
static float find_superellipse_chord_u(float u0, float d2goal, float r)
{
	float ulow, uhigh, u, d2, d2max;
	const float dtol = 1e-4f;
	const float utol = 1e-6f;
	const float umax = 2.0f;

	if (d2goal == 0.0f)
		return u0;
	d2max = superellipse_chord_length_squared(u0, umax, r);
	if (fabsf(d2goal - d2max) <= dtol)
		return umax;
	if (d2goal - d2max > dtol)
		return -1.0f;

	/* binary search for good u value */
	ulow = u0;
	uhigh = umax;
	do {
		u = 0.5f * (ulow + uhigh);
		d2 = superellipse_chord_length_squared(u0, u, r);
		if (fabsf(d2goal - d2) <= dtol)
			break;
		if (d2 < d2goal)
			ulow = u;
		else
			uhigh = u;
	} while (fabsf(uhigh - ulow) > utol);
	return u;
}

/* Find parameters u0, u1, ..., un that divide the quarter-arc superellipse
 * with parameter r into n even chords.
 * There is no closed form way of doing this except for a few special
 * values of r, so this uses binary search to find a chord length that works.
 * Return the u's in *r_params, which should point to an array of size n+1. */
static void find_even_superellipse_params(int n, float r, float *r_params)
{
	float d2low, d2high, d2 = 0.0f, d2final, u;
	int i, j, n2;
	const int maxiters = 40;
	const float d2tol = 1e-6f;
	const float umax = 2.0f;

	if (r == PRO_CIRCLE_R || r == PRO_LINE_R ||
	    ((n % 2 == 0) && (r == PRO_SQUARE_IN_R || r == PRO_SQUARE_R)))
	{
		/* even parameter spacing works for these cases */
		for (i = 0; i <= n; i++)
			r_params[i] = i * 2.0f / (float) n;
		return;
	}
	if (r == PRO_SQUARE_IN_R || r == PRO_SQUARE_R) {
		/* n is odd, so get one corner-cut chord.
		 * Solve u == sqrt(2*(1-n2*u)^2) where n2 = floor(n/2) */
		n2 = n / 2;
		u = (2.0f * n2 - (float)M_SQRT2) / (2.0f * n2 * n2 - 1.0f);
		for (i = 0; i < n; i++)
			r_params[i] = i * u;
		r_params[n] = umax;
	}
	d2low = 2.0f / (n * n);  /* (sqrt(2)/n)**2 */
	d2high = 2 * d2low;      /* (2/n)**2 */
	for (i = 0; i < maxiters && fabsf(d2high - d2low) > d2tol; i++) {
		d2 = 0.5f * (d2low + d2high);

		/* find where we are after n-1 chords of squared length d2 */
		u = 0.0f;
		for (j = 0; j < n - 1; j++) {
			u = find_superellipse_chord_u(u, d2, r);
			if (u == -1.0f)
				break;  /* d2 is too big to go n-1 chords */
		}
		if (u == -1.0f) {
			d2high = d2;
			continue;
		}
		d2final = superellipse_chord_length_squared(u, umax, r);
		if (fabsf(d2final - d2) <= d2tol)
			break;
		if (d2final < d2)
			d2high = d2;
		else
			d2low = d2;
	}
	u = 0.0f;
	for (i = 0; i < n; i++) {
		r_params[i] = u;
		u = find_superellipse_chord_u(u, d2, r);
	}
	r_params[n] = umax;
}

/* The superellipse used for multisegment profiles does not
 * have a closed-form way to generate evenly spaced points
 * along an arc. We use an expensive search procedure to find
 * the parameter values that lead to bp->seg even chords.
 * We also want spacing for a number of segments that is
 * a power of 2 >= bp->seg (but at least 4). */
static void set_profile_spacing(BevelParams *bp)
{
	int seg, seg_2;

	seg = bp->seg;
	if (seg > 1) {
		bp->pro_spacing.uvals = (float *)BLI_memarena_alloc(bp->mem_arena, (seg + 1) * sizeof(float));
		find_even_superellipse_params(seg, bp->pro_super_r, bp->pro_spacing.uvals);
		seg_2 = power_of_2_max_i(bp->seg);
		if (seg_2 == 2)
			seg_2 = 4;
		bp->pro_spacing.seg_2 = seg_2;
		if (seg_2 == seg) {
			bp->pro_spacing.uvals_2 = bp->pro_spacing.uvals;
		}
		else {
			bp->pro_spacing.uvals_2 = (float *)BLI_memarena_alloc(bp->mem_arena, (seg_2 + 1) * sizeof(float));
			find_even_superellipse_params(seg_2, bp->pro_super_r, bp->pro_spacing.uvals_2);
		}
	}
	else {
		bp->pro_spacing.uvals = NULL;
		bp->pro_spacing.uvals_2 = NULL;
		bp->pro_spacing.seg_2 = 0;
	}
}

/*
 * Calculate and return an offset that is the lesser of the current
 * bp.offset and the maximum possible offset before geometry
 * collisions happen.
 * Currently this is a quick and dirty estimate of the max
 * possible: half the minimum edge length of any vertex involved
 * in a bevel. This is usually conservative.
 * The correct calculation is quite complicated.
 * TODO: implement this correctly.
 */
static float bevel_limit_offset(BMesh *bm, BevelParams *bp)
{
	BMVert *v;
	BMEdge *e;
	BMIter v_iter, e_iter;
	float limited_offset, half_elen;
	bool vbeveled;

	limited_offset = bp->offset;
	if (bp->offset_type == BEVEL_AMT_PERCENT) {
		if (limited_offset > 50.0f)
			limited_offset = 50.0f;
		return limited_offset;
	}
	BM_ITER_MESH (v, &v_iter, bm, BM_VERTS_OF_MESH) {
		if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
			if (bp->vertex_only) {
				vbeveled = true;
			}
			else {
				vbeveled = false;
				BM_ITER_ELEM (e, &e_iter, v, BM_EDGES_OF_VERT) {
					if (BM_elem_flag_test(BM_edge_other_vert(e, v), BM_ELEM_TAG)) {
						vbeveled = true;
						break;
					}
				}
			}
			if (vbeveled) {
				BM_ITER_ELEM (e, &e_iter, v, BM_EDGES_OF_VERT) {
					half_elen = 0.5f * BM_edge_calc_length(e);
					if (half_elen < limited_offset)
						limited_offset = half_elen;
				}
			}
		}
	}
	return limited_offset;
}

/**
 * - Currently only bevels BM_ELEM_TAG'd verts and edges.
 *
 * - Newly created faces are BM_ELEM_TAG'd too,
 *   the caller needs to ensure this is cleared before calling
 *   if its going to use this face tag.
 *
 * - If limit_offset is set, adjusts offset down if necessary
 *   to avoid geometry collisions.
 *
 * \warning all tagged edges _must_ be manifold.
 */
void BM_mesh_bevel(
        BMesh *bm, const float offset, const int offset_type,
        const float segments, const float profile,
        const bool vertex_only, const bool use_weights, const bool limit_offset,
        const struct MDeformVert *dvert, const int vertex_group, const int mat,
        const bool loop_slide)
{
	BMIter iter;
	BMVert *v, *v_next;
	BMEdge *e;
	BevVert *bv;
	BevelParams bp = {NULL};

	bp.offset = offset;
	bp.offset_type = offset_type;
	bp.seg    = segments;
	bp.pro_super_r = 4.0f * profile;  /* convert to superellipse exponent */
	bp.vertex_only = vertex_only;
	bp.use_weights = use_weights;
	bp.loop_slide = loop_slide;
	bp.limit_offset = limit_offset;
	bp.dvert = dvert;
	bp.vertex_group = vertex_group;
	bp.mat_nr = mat;

	if (bp.pro_super_r < 0.60f)
		bp.pro_super_r = 0.60f;  /* TODO: implement 0 case properly */

	if (bp.offset > 0) {
		/* primary alloc */
		bp.vert_hash = BLI_ghash_ptr_new(__func__);
		bp.mem_arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 16), __func__);
		BLI_memarena_use_calloc(bp.mem_arena);
		set_profile_spacing(&bp);

		if (limit_offset)
			bp.offset = bevel_limit_offset(bm, &bp);

		/* Analyze input vertices, sorting edges and assigning initial new vertex positions */
		BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
			if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
				bv = bevel_vert_construct(bm, &bp, v);
				if (bv)
					build_boundary(&bp, bv, true);
			}
		}

		/* Perhaps do a pass to try to even out widths */
		if (!bp.vertex_only) {
			adjust_offsets(&bp);
		}

		/* Build the meshes around vertices, now that positions are final */
		BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
			if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
				bv = find_bevvert(&bp, v);
				if (bv)
					build_vmesh(&bp, bm, bv);
			}
		}

		/* Build polygons for edges */
		if (!bp.vertex_only) {
			BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
				if (BM_elem_flag_test(e, BM_ELEM_TAG)) {
					bevel_build_edge_polygons(bm, &bp, e);
				}
			}
		}

		/* Rebuild face polygons around affected vertices */
		BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
			if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
				bevel_rebuild_existing_polygons(bm, &bp, v);
				bevel_reattach_wires(bm, &bp, v);
			}
		}

		BM_ITER_MESH_MUTABLE (v, v_next, &iter, bm, BM_VERTS_OF_MESH) {
			if (BM_elem_flag_test(v, BM_ELEM_TAG)) {
				BLI_assert(find_bevvert(&bp, v) != NULL);
				BM_vert_kill(bm, v);
			}
		}

		/* primary free */
		BLI_ghash_free(bp.vert_hash, NULL, NULL);
		BLI_memarena_free(bp.mem_arena);
	}
}