Welcome to mirror list, hosted at ThFree Co, Russian Federation.

COM_GaussianBokehBlurOperation.cc « operations « compositor « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 039e6a9bcc0b8514111030f2022f962dacc1964b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2011 Blender Foundation. */

#include "COM_GaussianBokehBlurOperation.h"

#include "RE_pipeline.h"

namespace blender::compositor {

GaussianBokehBlurOperation::GaussianBokehBlurOperation() : BlurBaseOperation(DataType::Color)
{
  gausstab_ = nullptr;
}

void *GaussianBokehBlurOperation::initialize_tile_data(rcti * /*rect*/)
{
  lock_mutex();
  if (!sizeavailable_) {
    update_gauss();
  }
  void *buffer = get_input_operation(0)->initialize_tile_data(nullptr);
  unlock_mutex();
  return buffer;
}

void GaussianBokehBlurOperation::init_data()
{
  BlurBaseOperation::init_data();
  const float width = this->get_width();
  const float height = this->get_height();

  if (execution_model_ == eExecutionModel::FullFrame) {
    if (!sizeavailable_) {
      update_size();
    }
  }

  radxf_ = size_ * float(data_.sizex);
  CLAMP(radxf_, 0.0f, width / 2.0f);

  /* Vertical. */
  radyf_ = size_ * float(data_.sizey);
  CLAMP(radyf_, 0.0f, height / 2.0f);

  radx_ = ceil(radxf_);
  rady_ = ceil(radyf_);
}

void GaussianBokehBlurOperation::init_execution()
{
  BlurBaseOperation::init_execution();

  init_mutex();

  if (sizeavailable_) {
    update_gauss();
  }
}

void GaussianBokehBlurOperation::update_gauss()
{
  if (gausstab_ == nullptr) {
    int ddwidth = 2 * radx_ + 1;
    int ddheight = 2 * rady_ + 1;
    int n = ddwidth * ddheight;
    /* create a full filter image */
    float *ddgauss = (float *)MEM_mallocN(sizeof(float) * n, __func__);
    float *dgauss = ddgauss;
    float sum = 0.0f;
    float facx = (radxf_ > 0.0f ? 1.0f / radxf_ : 0.0f);
    float facy = (radyf_ > 0.0f ? 1.0f / radyf_ : 0.0f);
    for (int j = -rady_; j <= rady_; j++) {
      for (int i = -radx_; i <= radx_; i++, dgauss++) {
        float fj = float(j) * facy;
        float fi = float(i) * facx;
        float dist = sqrt(fj * fj + fi * fi);
        *dgauss = RE_filter_value(data_.filtertype, dist);

        sum += *dgauss;
      }
    }

    if (sum > 0.0f) {
      /* normalize */
      float norm = 1.0f / sum;
      for (int j = n - 1; j >= 0; j--) {
        ddgauss[j] *= norm;
      }
    }
    else {
      int center = rady_ * ddwidth + radx_;
      ddgauss[center] = 1.0f;
    }

    gausstab_ = ddgauss;
  }
}

void GaussianBokehBlurOperation::execute_pixel(float output[4], int x, int y, void *data)
{
  float result[4];
  input_size_->read_sampled(result, 0, 0, PixelSampler::Nearest);
  size_ = result[0];

  const float width = this->get_width();
  const float height = this->get_height();

  radxf_ = size_ * float(data_.sizex);
  CLAMP(radxf_, 0.0f, width / 2.0f);

  radyf_ = size_ * float(data_.sizey);
  CLAMP(radyf_, 0.0f, height / 2.0f);

  radx_ = ceil(radxf_);
  rady_ = ceil(radyf_);

  float temp_color[4];
  temp_color[0] = 0;
  temp_color[1] = 0;
  temp_color[2] = 0;
  temp_color[3] = 0;
  float multiplier_accum = 0;
  MemoryBuffer *input_buffer = (MemoryBuffer *)data;
  float *buffer = input_buffer->get_buffer();
  int bufferwidth = input_buffer->get_width();
  const rcti &input_rect = input_buffer->get_rect();
  int bufferstartx = input_rect.xmin;
  int bufferstarty = input_rect.ymin;

  int ymin = max_ii(y - rady_, input_rect.ymin);
  int ymax = min_ii(y + rady_ + 1, input_rect.ymax);
  int xmin = max_ii(x - radx_, input_rect.xmin);
  int xmax = min_ii(x + radx_ + 1, input_rect.xmax);

  int index;
  int step = QualityStepHelper::get_step();
  int offsetadd = QualityStepHelper::get_offset_add();
  const int add_const = (xmin - x + radx_);
  const int mul_const = (radx_ * 2 + 1);
  for (int ny = ymin; ny < ymax; ny += step) {
    index = ((ny - y) + rady_) * mul_const + add_const;
    int bufferindex = ((xmin - bufferstartx) * 4) + ((ny - bufferstarty) * 4 * bufferwidth);
    for (int nx = xmin; nx < xmax; nx += step) {
      const float multiplier = gausstab_[index];
      madd_v4_v4fl(temp_color, &buffer[bufferindex], multiplier);
      multiplier_accum += multiplier;
      index += step;
      bufferindex += offsetadd;
    }
  }

  mul_v4_v4fl(output, temp_color, 1.0f / multiplier_accum);
}

void GaussianBokehBlurOperation::deinit_execution()
{
  BlurBaseOperation::deinit_execution();

  if (gausstab_) {
    MEM_freeN(gausstab_);
    gausstab_ = nullptr;
  }

  deinit_mutex();
}

bool GaussianBokehBlurOperation::determine_depending_area_of_interest(
    rcti *input, ReadBufferOperation *read_operation, rcti *output)
{
  rcti new_input;
  rcti size_input;
  size_input.xmin = 0;
  size_input.ymin = 0;
  size_input.xmax = 5;
  size_input.ymax = 5;
  NodeOperation *operation = this->get_input_operation(1);

  if (operation->determine_depending_area_of_interest(&size_input, read_operation, output)) {
    return true;
  }

  if (sizeavailable_ && gausstab_ != nullptr) {
    new_input.xmin = 0;
    new_input.ymin = 0;
    new_input.xmax = this->get_width();
    new_input.ymax = this->get_height();
  }
  else {
    int addx = radx_;
    int addy = rady_;
    new_input.xmax = input->xmax + addx;
    new_input.xmin = input->xmin - addx;
    new_input.ymax = input->ymax + addy;
    new_input.ymin = input->ymin - addy;
  }
  return BlurBaseOperation::determine_depending_area_of_interest(
      &new_input, read_operation, output);
}

void GaussianBokehBlurOperation::get_area_of_interest(const int input_idx,
                                                      const rcti &output_area,
                                                      rcti &r_input_area)
{
  if (input_idx != IMAGE_INPUT_INDEX) {
    BlurBaseOperation::get_area_of_interest(input_idx, output_area, r_input_area);
    return;
  }

  r_input_area.xmax = output_area.xmax + radx_;
  r_input_area.xmin = output_area.xmin - radx_;
  r_input_area.ymax = output_area.ymax + rady_;
  r_input_area.ymin = output_area.ymin - rady_;
}

void GaussianBokehBlurOperation::update_memory_buffer_partial(MemoryBuffer *output,
                                                              const rcti &area,
                                                              Span<MemoryBuffer *> inputs)
{
  const MemoryBuffer *input = inputs[IMAGE_INPUT_INDEX];
  BuffersIterator<float> it = output->iterate_with({}, area);
  const rcti &input_rect = input->get_rect();
  for (; !it.is_end(); ++it) {
    const int x = it.x;
    const int y = it.y;

    const int ymin = max_ii(y - rady_, input_rect.ymin);
    const int ymax = min_ii(y + rady_ + 1, input_rect.ymax);
    const int xmin = max_ii(x - radx_, input_rect.xmin);
    const int xmax = min_ii(x + radx_ + 1, input_rect.xmax);

    float temp_color[4] = {0};
    float multiplier_accum = 0;
    const int step = QualityStepHelper::get_step();
    const int elem_step = step * input->elem_stride;
    const int add_const = (xmin - x + radx_);
    const int mul_const = (radx_ * 2 + 1);
    for (int ny = ymin; ny < ymax; ny += step) {
      const float *color = input->get_elem(xmin, ny);
      int gauss_index = ((ny - y) + rady_) * mul_const + add_const;
      const int gauss_end = gauss_index + (xmax - xmin);
      for (; gauss_index < gauss_end; gauss_index += step, color += elem_step) {
        const float multiplier = gausstab_[gauss_index];
        madd_v4_v4fl(temp_color, color, multiplier);
        multiplier_accum += multiplier;
      }
    }

    mul_v4_v4fl(it.out, temp_color, 1.0f / multiplier_accum);
  }
}

// reference image
GaussianBlurReferenceOperation::GaussianBlurReferenceOperation()
    : BlurBaseOperation(DataType::Color)
{
  maintabs_ = nullptr;
  use_variable_size_ = true;
}

void GaussianBlurReferenceOperation::init_data()
{
  /* Setup variables for gausstab and area of interest. */
  data_.image_in_width = this->get_width();
  data_.image_in_height = this->get_height();
  if (data_.relative) {
    switch (data_.aspect) {
      case CMP_NODE_BLUR_ASPECT_NONE:
        data_.sizex = int(data_.percentx * 0.01f * data_.image_in_width);
        data_.sizey = int(data_.percenty * 0.01f * data_.image_in_height);
        break;
      case CMP_NODE_BLUR_ASPECT_Y:
        data_.sizex = int(data_.percentx * 0.01f * data_.image_in_width);
        data_.sizey = int(data_.percenty * 0.01f * data_.image_in_width);
        break;
      case CMP_NODE_BLUR_ASPECT_X:
        data_.sizex = int(data_.percentx * 0.01f * data_.image_in_height);
        data_.sizey = int(data_.percenty * 0.01f * data_.image_in_height);
        break;
    }
  }

  /* Horizontal. */
  filtersizex_ = float(data_.sizex);
  int imgx = get_width() / 2;
  if (filtersizex_ > imgx) {
    filtersizex_ = imgx;
  }
  else if (filtersizex_ < 1) {
    filtersizex_ = 1;
  }
  radx_ = float(filtersizex_);

  /* Vertical. */
  filtersizey_ = float(data_.sizey);
  int imgy = get_height() / 2;
  if (filtersizey_ > imgy) {
    filtersizey_ = imgy;
  }
  else if (filtersizey_ < 1) {
    filtersizey_ = 1;
  }
  rady_ = float(filtersizey_);
}

void *GaussianBlurReferenceOperation::initialize_tile_data(rcti * /*rect*/)
{
  void *buffer = get_input_operation(0)->initialize_tile_data(nullptr);
  return buffer;
}

void GaussianBlurReferenceOperation::init_execution()
{
  BlurBaseOperation::init_execution();

  update_gauss();
}

void GaussianBlurReferenceOperation::update_gauss()
{
  int i;
  int x = MAX2(filtersizex_, filtersizey_);
  maintabs_ = (float **)MEM_mallocN(x * sizeof(float *), "gauss array");
  for (i = 0; i < x; i++) {
    maintabs_[i] = make_gausstab(i + 1, i + 1);
  }
}

void GaussianBlurReferenceOperation::execute_pixel(float output[4], int x, int y, void *data)
{
  MemoryBuffer *memorybuffer = (MemoryBuffer *)data;
  float *buffer = memorybuffer->get_buffer();
  float *gausstabx, *gausstabcenty;
  float *gausstaby, *gausstabcentx;
  int i, j;
  float *src;
  float sum, val;
  float rval, gval, bval, aval;
  int imgx = get_width();
  int imgy = get_height();
  float temp_size[4];
  input_size_->read(temp_size, x, y, data);
  float ref_size = temp_size[0];
  int refradx = int(ref_size * radx_);
  int refrady = int(ref_size * rady_);
  if (refradx > filtersizex_) {
    refradx = filtersizex_;
  }
  else if (refradx < 1) {
    refradx = 1;
  }
  if (refrady > filtersizey_) {
    refrady = filtersizey_;
  }
  else if (refrady < 1) {
    refrady = 1;
  }

  if (refradx == 1 && refrady == 1) {
    memorybuffer->read_no_check(output, x, y);
  }
  else {
    int minxr = x - refradx < 0 ? -x : -refradx;
    int maxxr = x + refradx > imgx ? imgx - x : refradx;
    int minyr = y - refrady < 0 ? -y : -refrady;
    int maxyr = y + refrady > imgy ? imgy - y : refrady;

    float *srcd = buffer + COM_DATA_TYPE_COLOR_CHANNELS * ((y + minyr) * imgx + x + minxr);

    gausstabx = maintabs_[refradx - 1];
    gausstabcentx = gausstabx + refradx;
    gausstaby = maintabs_[refrady - 1];
    gausstabcenty = gausstaby + refrady;

    sum = gval = rval = bval = aval = 0.0f;
    for (i = minyr; i < maxyr; i++, srcd += COM_DATA_TYPE_COLOR_CHANNELS * imgx) {
      src = srcd;
      for (j = minxr; j < maxxr; j++, src += COM_DATA_TYPE_COLOR_CHANNELS) {

        val = gausstabcenty[i] * gausstabcentx[j];
        sum += val;
        rval += val * src[0];
        gval += val * src[1];
        bval += val * src[2];
        aval += val * src[3];
      }
    }
    sum = 1.0f / sum;
    output[0] = rval * sum;
    output[1] = gval * sum;
    output[2] = bval * sum;
    output[3] = aval * sum;
  }
}

void GaussianBlurReferenceOperation::deinit_execution()
{
  int x, i;
  x = MAX2(filtersizex_, filtersizey_);
  for (i = 0; i < x; i++) {
    MEM_freeN(maintabs_[i]);
  }
  MEM_freeN(maintabs_);
  BlurBaseOperation::deinit_execution();
}

bool GaussianBlurReferenceOperation::determine_depending_area_of_interest(
    rcti *input, ReadBufferOperation *read_operation, rcti *output)
{
  rcti new_input;
  NodeOperation *operation = this->get_input_operation(1);

  if (operation->determine_depending_area_of_interest(input, read_operation, output)) {
    return true;
  }

  int addx = data_.sizex + 2;
  int addy = data_.sizey + 2;
  new_input.xmax = input->xmax + addx;
  new_input.xmin = input->xmin - addx;
  new_input.ymax = input->ymax + addy;
  new_input.ymin = input->ymin - addy;
  return NodeOperation::determine_depending_area_of_interest(&new_input, read_operation, output);
}

void GaussianBlurReferenceOperation::get_area_of_interest(const int input_idx,
                                                          const rcti &output_area,
                                                          rcti &r_input_area)
{
  if (input_idx != IMAGE_INPUT_INDEX) {
    BlurBaseOperation::get_area_of_interest(input_idx, output_area, r_input_area);
    return;
  }

  const int add_x = data_.sizex + 2;
  const int add_y = data_.sizey + 2;
  r_input_area.xmax = output_area.xmax + add_x;
  r_input_area.xmin = output_area.xmin - add_x;
  r_input_area.ymax = output_area.ymax + add_y;
  r_input_area.ymin = output_area.ymin - add_y;
}

void GaussianBlurReferenceOperation::update_memory_buffer_partial(MemoryBuffer *output,
                                                                  const rcti &area,
                                                                  Span<MemoryBuffer *> inputs)
{
  const MemoryBuffer *image_input = inputs[IMAGE_INPUT_INDEX];
  MemoryBuffer *size_input = inputs[SIZE_INPUT_INDEX];
  for (BuffersIterator<float> it = output->iterate_with({size_input}, area); !it.is_end(); ++it) {
    const float ref_size = *it.in(0);
    int ref_radx = int(ref_size * radx_);
    int ref_rady = int(ref_size * rady_);
    if (ref_radx > filtersizex_) {
      ref_radx = filtersizex_;
    }
    else if (ref_radx < 1) {
      ref_radx = 1;
    }
    if (ref_rady > filtersizey_) {
      ref_rady = filtersizey_;
    }
    else if (ref_rady < 1) {
      ref_rady = 1;
    }

    const int x = it.x;
    const int y = it.y;
    if (ref_radx == 1 && ref_rady == 1) {
      image_input->read_elem(x, y, it.out);
      continue;
    }

    const int w = get_width();
    const int height = get_height();
    const int minxr = x - ref_radx < 0 ? -x : -ref_radx;
    const int maxxr = x + ref_radx > w ? w - x : ref_radx;
    const int minyr = y - ref_rady < 0 ? -y : -ref_rady;
    const int maxyr = y + ref_rady > height ? height - y : ref_rady;

    const float *gausstabx = maintabs_[ref_radx - 1];
    const float *gausstabcentx = gausstabx + ref_radx;
    const float *gausstaby = maintabs_[ref_rady - 1];
    const float *gausstabcenty = gausstaby + ref_rady;

    float gauss_sum = 0.0f;
    float color_sum[4] = {0};
    const float *row_color = image_input->get_elem(x + minxr, y + minyr);
    for (int i = minyr; i < maxyr; i++, row_color += image_input->row_stride) {
      const float *color = row_color;
      for (int j = minxr; j < maxxr; j++, color += image_input->elem_stride) {
        const float val = gausstabcenty[i] * gausstabcentx[j];
        gauss_sum += val;
        madd_v4_v4fl(color_sum, color, val);
      }
    }
    mul_v4_v4fl(it.out, color_sum, 1.0f / gauss_sum);
  }
}

}  // namespace blender::compositor