Welcome to mirror list, hosted at ThFree Co, Russian Federation.

COM_GlareFogGlowOperation.cpp « operations « compositor « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b43b94af06a63eba551aff686357fc6c69afef6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * Copyright 2011, Blender Foundation.
 */

#include "COM_GlareFogGlowOperation.h"
#include "MEM_guardedalloc.h"

/*
 *  2D Fast Hartley Transform, used for convolution
 */

typedef float fREAL;

// returns next highest power of 2 of x, as well it's log2 in L2
static unsigned int nextPow2(unsigned int x, unsigned int *L2)
{
  unsigned int pw, x_notpow2 = x & (x - 1);
  *L2 = 0;
  while (x >>= 1) {
    ++(*L2);
  }
  pw = 1 << (*L2);
  if (x_notpow2) {
    (*L2)++;
    pw <<= 1;
  }
  return pw;
}

//------------------------------------------------------------------------------

// from FXT library by Joerg Arndt, faster in order bitreversal
// use: r = revbin_upd(r, h) where h = N>>1
static unsigned int revbin_upd(unsigned int r, unsigned int h)
{
  while (!((r ^= h) & h)) {
    h >>= 1;
  }
  return r;
}
//------------------------------------------------------------------------------
static void FHT(fREAL *data, unsigned int M, unsigned int inverse)
{
  double tt, fc, dc, fs, ds, a = M_PI;
  fREAL t1, t2;
  int n2, bd, bl, istep, k, len = 1 << M, n = 1;

  int i, j = 0;
  unsigned int Nh = len >> 1;
  for (i = 1; i < (len - 1); i++) {
    j = revbin_upd(j, Nh);
    if (j > i) {
      t1 = data[i];
      data[i] = data[j];
      data[j] = t1;
    }
  }

  do {
    fREAL *data_n = &data[n];

    istep = n << 1;
    for (k = 0; k < len; k += istep) {
      t1 = data_n[k];
      data_n[k] = data[k] - t1;
      data[k] += t1;
    }

    n2 = n >> 1;
    if (n > 2) {
      fc = dc = cos(a);
      fs = ds = sqrt(1.0 - fc * fc);  // sin(a);
      bd = n - 2;
      for (bl = 1; bl < n2; bl++) {
        fREAL *data_nbd = &data_n[bd];
        fREAL *data_bd = &data[bd];
        for (k = bl; k < len; k += istep) {
          t1 = fc * (double)data_n[k] + fs * (double)data_nbd[k];
          t2 = fs * (double)data_n[k] - fc * (double)data_nbd[k];
          data_n[k] = data[k] - t1;
          data_nbd[k] = data_bd[k] - t2;
          data[k] += t1;
          data_bd[k] += t2;
        }
        tt = fc * dc - fs * ds;
        fs = fs * dc + fc * ds;
        fc = tt;
        bd -= 2;
      }
    }

    if (n > 1) {
      for (k = n2; k < len; k += istep) {
        t1 = data_n[k];
        data_n[k] = data[k] - t1;
        data[k] += t1;
      }
    }

    n = istep;
    a *= 0.5;
  } while (n < len);

  if (inverse) {
    fREAL sc = (fREAL)1 / (fREAL)len;
    for (k = 0; k < len; k++) {
      data[k] *= sc;
    }
  }
}
//------------------------------------------------------------------------------
/* 2D Fast Hartley Transform, Mx/My -> log2 of width/height,
 * nzp -> the row where zero pad data starts,
 * inverse -> see above */
static void FHT2D(
    fREAL *data, unsigned int Mx, unsigned int My, unsigned int nzp, unsigned int inverse)
{
  unsigned int i, j, Nx, Ny, maxy;

  Nx = 1 << Mx;
  Ny = 1 << My;

  // rows (forward transform skips 0 pad data)
  maxy = inverse ? Ny : nzp;
  for (j = 0; j < maxy; j++) {
    FHT(&data[Nx * j], Mx, inverse);
  }

  // transpose data
  if (Nx == Ny) {  // square
    for (j = 0; j < Ny; j++) {
      for (i = j + 1; i < Nx; i++) {
        unsigned int op = i + (j << Mx), np = j + (i << My);
        SWAP(fREAL, data[op], data[np]);
      }
    }
  }
  else {  // rectangular
    unsigned int k, Nym = Ny - 1, stm = 1 << (Mx + My);
    for (i = 0; stm > 0; i++) {
#define PRED(k) (((k & Nym) << Mx) + (k >> My))
      for (j = PRED(i); j > i; j = PRED(j)) {
        /* pass */
      }
      if (j < i) {
        continue;
      }
      for (k = i, j = PRED(i); j != i; k = j, j = PRED(j), stm--) {
        SWAP(fREAL, data[j], data[k]);
      }
#undef PRED
      stm--;
    }
  }

  SWAP(unsigned int, Nx, Ny);
  SWAP(unsigned int, Mx, My);

  // now columns == transposed rows
  for (j = 0; j < Ny; j++) {
    FHT(&data[Nx * j], Mx, inverse);
  }

  // finalize
  for (j = 0; j <= (Ny >> 1); j++) {
    unsigned int jm = (Ny - j) & (Ny - 1);
    unsigned int ji = j << Mx;
    unsigned int jmi = jm << Mx;
    for (i = 0; i <= (Nx >> 1); i++) {
      unsigned int im = (Nx - i) & (Nx - 1);
      fREAL A = data[ji + i];
      fREAL B = data[jmi + i];
      fREAL C = data[ji + im];
      fREAL D = data[jmi + im];
      fREAL E = (fREAL)0.5 * ((A + D) - (B + C));
      data[ji + i] = A - E;
      data[jmi + i] = B + E;
      data[ji + im] = C + E;
      data[jmi + im] = D - E;
    }
  }
}

//------------------------------------------------------------------------------

/* 2D convolution calc, d1 *= d2, M/N - > log2 of width/height */
static void fht_convolve(fREAL *d1, fREAL *d2, unsigned int M, unsigned int N)
{
  fREAL a, b;
  unsigned int i, j, k, L, mj, mL;
  unsigned int m = 1 << M, n = 1 << N;
  unsigned int m2 = 1 << (M - 1), n2 = 1 << (N - 1);
  unsigned int mn2 = m << (N - 1);

  d1[0] *= d2[0];
  d1[mn2] *= d2[mn2];
  d1[m2] *= d2[m2];
  d1[m2 + mn2] *= d2[m2 + mn2];
  for (i = 1; i < m2; i++) {
    k = m - i;
    a = d1[i] * d2[i] - d1[k] * d2[k];
    b = d1[k] * d2[i] + d1[i] * d2[k];
    d1[i] = (b + a) * (fREAL)0.5;
    d1[k] = (b - a) * (fREAL)0.5;
    a = d1[i + mn2] * d2[i + mn2] - d1[k + mn2] * d2[k + mn2];
    b = d1[k + mn2] * d2[i + mn2] + d1[i + mn2] * d2[k + mn2];
    d1[i + mn2] = (b + a) * (fREAL)0.5;
    d1[k + mn2] = (b - a) * (fREAL)0.5;
  }
  for (j = 1; j < n2; j++) {
    L = n - j;
    mj = j << M;
    mL = L << M;
    a = d1[mj] * d2[mj] - d1[mL] * d2[mL];
    b = d1[mL] * d2[mj] + d1[mj] * d2[mL];
    d1[mj] = (b + a) * (fREAL)0.5;
    d1[mL] = (b - a) * (fREAL)0.5;
    a = d1[m2 + mj] * d2[m2 + mj] - d1[m2 + mL] * d2[m2 + mL];
    b = d1[m2 + mL] * d2[m2 + mj] + d1[m2 + mj] * d2[m2 + mL];
    d1[m2 + mj] = (b + a) * (fREAL)0.5;
    d1[m2 + mL] = (b - a) * (fREAL)0.5;
  }
  for (i = 1; i < m2; i++) {
    k = m - i;
    for (j = 1; j < n2; j++) {
      L = n - j;
      mj = j << M;
      mL = L << M;
      a = d1[i + mj] * d2[i + mj] - d1[k + mL] * d2[k + mL];
      b = d1[k + mL] * d2[i + mj] + d1[i + mj] * d2[k + mL];
      d1[i + mj] = (b + a) * (fREAL)0.5;
      d1[k + mL] = (b - a) * (fREAL)0.5;
      a = d1[i + mL] * d2[i + mL] - d1[k + mj] * d2[k + mj];
      b = d1[k + mj] * d2[i + mL] + d1[i + mL] * d2[k + mj];
      d1[i + mL] = (b + a) * (fREAL)0.5;
      d1[k + mj] = (b - a) * (fREAL)0.5;
    }
  }
}
//------------------------------------------------------------------------------

static void convolve(float *dst, MemoryBuffer *in1, MemoryBuffer *in2)
{
  fREAL *data1, *data2, *fp;
  unsigned int w2, h2, hw, hh, log2_w, log2_h;
  fRGB wt, *colp;
  int x, y, ch;
  int xbl, ybl, nxb, nyb, xbsz, ybsz;
  bool in2done = false;
  const unsigned int kernelWidth = in2->getWidth();
  const unsigned int kernelHeight = in2->getHeight();
  const unsigned int imageWidth = in1->getWidth();
  const unsigned int imageHeight = in1->getHeight();
  float *kernelBuffer = in2->getBuffer();
  float *imageBuffer = in1->getBuffer();

  MemoryBuffer *rdst = new MemoryBuffer(COM_DT_COLOR, in1->getRect());
  memset(rdst->getBuffer(),
         0,
         rdst->getWidth() * rdst->getHeight() * COM_NUM_CHANNELS_COLOR * sizeof(float));

  // convolution result width & height
  w2 = 2 * kernelWidth - 1;
  h2 = 2 * kernelHeight - 1;
  // FFT pow2 required size & log2
  w2 = nextPow2(w2, &log2_w);
  h2 = nextPow2(h2, &log2_h);

  // alloc space
  data1 = (fREAL *)MEM_callocN(3 * w2 * h2 * sizeof(fREAL), "convolve_fast FHT data1");
  data2 = (fREAL *)MEM_callocN(w2 * h2 * sizeof(fREAL), "convolve_fast FHT data2");

  // normalize convolutor
  wt[0] = wt[1] = wt[2] = 0.0f;
  for (y = 0; y < kernelHeight; y++) {
    colp = (fRGB *)&kernelBuffer[y * kernelWidth * COM_NUM_CHANNELS_COLOR];
    for (x = 0; x < kernelWidth; x++) {
      add_v3_v3(wt, colp[x]);
    }
  }
  if (wt[0] != 0.0f) {
    wt[0] = 1.0f / wt[0];
  }
  if (wt[1] != 0.0f) {
    wt[1] = 1.0f / wt[1];
  }
  if (wt[2] != 0.0f) {
    wt[2] = 1.0f / wt[2];
  }
  for (y = 0; y < kernelHeight; y++) {
    colp = (fRGB *)&kernelBuffer[y * kernelWidth * COM_NUM_CHANNELS_COLOR];
    for (x = 0; x < kernelWidth; x++) {
      mul_v3_v3(colp[x], wt);
    }
  }

  // copy image data, unpacking interleaved RGBA into separate channels
  // only need to calc data1 once

  // block add-overlap
  hw = kernelWidth >> 1;
  hh = kernelHeight >> 1;
  xbsz = (w2 + 1) - kernelWidth;
  ybsz = (h2 + 1) - kernelHeight;
  nxb = imageWidth / xbsz;
  if (imageWidth % xbsz) {
    nxb++;
  }
  nyb = imageHeight / ybsz;
  if (imageHeight % ybsz) {
    nyb++;
  }
  for (ybl = 0; ybl < nyb; ybl++) {
    for (xbl = 0; xbl < nxb; xbl++) {

      // each channel one by one
      for (ch = 0; ch < 3; ch++) {
        fREAL *data1ch = &data1[ch * w2 * h2];

        // only need to calc fht data from in2 once, can re-use for every block
        if (!in2done) {
          // in2, channel ch -> data1
          for (y = 0; y < kernelHeight; y++) {
            fp = &data1ch[y * w2];
            colp = (fRGB *)&kernelBuffer[y * kernelWidth * COM_NUM_CHANNELS_COLOR];
            for (x = 0; x < kernelWidth; x++) {
              fp[x] = colp[x][ch];
            }
          }
        }

        // in1, channel ch -> data2
        memset(data2, 0, w2 * h2 * sizeof(fREAL));
        for (y = 0; y < ybsz; y++) {
          int yy = ybl * ybsz + y;
          if (yy >= imageHeight) {
            continue;
          }
          fp = &data2[y * w2];
          colp = (fRGB *)&imageBuffer[yy * imageWidth * COM_NUM_CHANNELS_COLOR];
          for (x = 0; x < xbsz; x++) {
            int xx = xbl * xbsz + x;
            if (xx >= imageWidth) {
              continue;
            }
            fp[x] = colp[xx][ch];
          }
        }

        // forward FHT
        // zero pad data start is different for each == height+1
        if (!in2done) {
          FHT2D(data1ch, log2_w, log2_h, kernelHeight + 1, 0);
        }
        FHT2D(data2, log2_w, log2_h, kernelHeight + 1, 0);

        // FHT2D transposed data, row/col now swapped
        // convolve & inverse FHT
        fht_convolve(data2, data1ch, log2_h, log2_w);
        FHT2D(data2, log2_h, log2_w, 0, 1);
        // data again transposed, so in order again

        // overlap-add result
        for (y = 0; y < (int)h2; y++) {
          const int yy = ybl * ybsz + y - hh;
          if ((yy < 0) || (yy >= imageHeight)) {
            continue;
          }
          fp = &data2[y * w2];
          colp = (fRGB *)&rdst->getBuffer()[yy * imageWidth * COM_NUM_CHANNELS_COLOR];
          for (x = 0; x < (int)w2; x++) {
            const int xx = xbl * xbsz + x - hw;
            if ((xx < 0) || (xx >= imageWidth)) {
              continue;
            }
            colp[xx][ch] += fp[x];
          }
        }
      }
      in2done = true;
    }
  }

  MEM_freeN(data2);
  MEM_freeN(data1);
  memcpy(
      dst, rdst->getBuffer(), sizeof(float) * imageWidth * imageHeight * COM_NUM_CHANNELS_COLOR);
  delete (rdst);
}

void GlareFogGlowOperation::generateGlare(float *data,
                                          MemoryBuffer *inputTile,
                                          NodeGlare *settings)
{
  int x, y;
  float scale, u, v, r, w, d;
  fRGB fcol;
  MemoryBuffer *ckrn;
  unsigned int sz = 1 << settings->size;
  const float cs_r = 1.0f, cs_g = 1.0f, cs_b = 1.0f;

  // temp. src image
  // make the convolution kernel
  rcti kernelRect;
  BLI_rcti_init(&kernelRect, 0, sz, 0, sz);
  ckrn = new MemoryBuffer(COM_DT_COLOR, &kernelRect);

  scale = 0.25f * sqrtf((float)(sz * sz));

  for (y = 0; y < sz; y++) {
    v = 2.0f * (y / (float)sz) - 1.0f;
    for (x = 0; x < sz; x++) {
      u = 2.0f * (x / (float)sz) - 1.0f;
      r = (u * u + v * v) * scale;
      d = -sqrtf(sqrtf(sqrtf(r))) * 9.0f;
      fcol[0] = expf(d * cs_r);
      fcol[1] = expf(d * cs_g);
      fcol[2] = expf(d * cs_b);
      // linear window good enough here, visual result counts, not scientific analysis
      // w = (1.0f-fabs(u))*(1.0f-fabs(v));
      // actually, Hanning window is ok, cos^2 for some reason is slower
      w = (0.5f + 0.5f * cosf(u * (float)M_PI)) * (0.5f + 0.5f * cosf(v * (float)M_PI));
      mul_v3_fl(fcol, w);
      ckrn->writePixel(x, y, fcol);
    }
  }

  convolve(data, inputTile, ckrn);
  delete ckrn;
}