Welcome to mirror list, hosted at ThFree Co, Russian Federation.

COM_OpenCLKernels.cl « operations « compositor « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1f3b28f15d379f0dfa29c27151577d4c70f5a0fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/// This file contains all opencl kernels for node-operation implementations 

// Global SAMPLERS
const sampler_t SAMPLER_NEAREST      = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

__constant const int2 zero = {0,0};

// KERNEL --- BOKEH BLUR ---
__kernel void bokehBlurKernel(__read_only image2d_t boundingBox, __read_only image2d_t inputImage, 
                              __read_only image2d_t bokehImage, __write_only image2d_t output, 
                              int2 offsetInput, int2 offsetOutput, int radius, int step, int2 dimension, int2 offset) 
{
	int2 coords = {get_global_id(0), get_global_id(1)}; 
	coords += offset;
	float tempBoundingBox;
	float4 color = {0.0f,0.0f,0.0f,0.0f};
	float4 multiplyer = {0.0f,0.0f,0.0f,0.0f};
	float4 bokeh;
	const float radius2 = radius*2.0f;
	const int2 realCoordinate = coords + offsetOutput;

	tempBoundingBox = read_imagef(boundingBox, SAMPLER_NEAREST, coords).s0;

	if (tempBoundingBox > 0.0f) {
		const int2 bokehImageDim = get_image_dim(bokehImage);
		const int2 bokehImageCenter = bokehImageDim/2;
		const int2 minXY = max(realCoordinate - radius, zero);
		const int2 maxXY = min(realCoordinate + radius, dimension);
		int nx, ny;
		
		float2 uv;
		int2 inputXy;
		
		for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny +=step, inputXy.y+=step) {
			uv.y = ((realCoordinate.y-ny)/radius2)*bokehImageDim.y+bokehImageCenter.y;
			
			for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx +=step, inputXy.x+=step) {
				uv.x = ((realCoordinate.x-nx)/radius2)*bokehImageDim.x+bokehImageCenter.x;
				bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv);
				color += bokeh * read_imagef(inputImage, SAMPLER_NEAREST, inputXy);
				multiplyer += bokeh;
			}
		}
		color /= multiplyer;
		
	} else {
		int2 imageCoordinates = realCoordinate - offsetInput;
		color = read_imagef(inputImage, SAMPLER_NEAREST, imageCoordinates);
	}
	
	write_imagef(output, coords, color);
}

//KERNEL --- DEFOCUS /VARIABLESIZEBOKEHBLUR ---
__kernel void defocusKernel(__read_only image2d_t inputImage, __read_only image2d_t bokehImage, 
					__read_only image2d_t inputSize,
					__write_only image2d_t output, int2 offsetInput, int2 offsetOutput, 
					int step, int maxBlur, float threshold, int2 dimension, int2 offset) 
{
	float4 color = {1.0f, 0.0f, 0.0f, 1.0f};
	int2 coords = {get_global_id(0), get_global_id(1)};
	coords += offset;
	const int2 realCoordinate = coords + offsetOutput;

	float4 readColor;
	float4 bokeh;
	float tempSize;
	float4 multiplier_accum = {1.0f, 1.0f, 1.0f, 1.0f};
	float4 color_accum;
	
	int minx = max(realCoordinate.s0 - maxBlur, 0);
	int miny = max(realCoordinate.s1 - maxBlur, 0);
	int maxx = min(realCoordinate.s0 + maxBlur, dimension.s0);
	int maxy = min(realCoordinate.s1 + maxBlur, dimension.s1);
	
	{
		int2 inputCoordinate = realCoordinate - offsetInput;
		float size = read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0;
		color_accum = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate);

		for (int ny = miny; ny < maxy; ny += step) {
			for (int nx = minx; nx < maxx; nx += step) {
				if (nx >= 0 && nx < dimension.s0 && ny >= 0 && ny < dimension.s1) {
					inputCoordinate.s0 = nx - offsetInput.s0;
					inputCoordinate.s1 = ny - offsetInput.s1;
					tempSize = read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0;
					if (size > threshold && tempSize > threshold) {
						float dx = nx - realCoordinate.s0;
						float dy = ny - realCoordinate.s1;
						if (dx != 0 || dy != 0) {
							if (tempSize >= fabs(dx) && tempSize >= fabs(dy)) {
								float2 uv = { 256.0f + dx * 256.0f / tempSize, 256.0f + dy * 256.0f / tempSize};
								bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv);
								readColor = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate);
								color_accum += bokeh*readColor;
								multiplier_accum += bokeh;
							}
						}
					}
				}
			}
		} 
	}

	color = color_accum * (1.0f / multiplier_accum);
	write_imagef(output, coords, color);
}


// KERNEL --- DILATE ---
__kernel void dilateKernel(__read_only image2d_t inputImage,  __write_only image2d_t output,
                           int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension, 
                           int2 offset)
{
	int2 coords = {get_global_id(0), get_global_id(1)}; 
	coords += offset;
	const int2 realCoordinate = coords + offsetOutput;

	const int2 minXY = max(realCoordinate - scope, zero);
	const int2 maxXY = min(realCoordinate + scope, dimension);
	
	float value = 0.0f;
	int nx, ny;
	int2 inputXy;
	
	for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) {
		const float deltaY = (realCoordinate.y - ny);
		for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) {
			const float deltaX = (realCoordinate.x - nx);
			const float measuredDistance = deltaX*deltaX+deltaY*deltaY;
			if (measuredDistance <= distanceSquared) {
				value = max(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0);
			}
		}
	}

	float4 color = {value,0.0f,0.0f,0.0f};
	write_imagef(output, coords, color);
}

// KERNEL --- DILATE ---
__kernel void erodeKernel(__read_only image2d_t inputImage,  __write_only image2d_t output,
                           int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension, 
                           int2 offset)
{
	int2 coords = {get_global_id(0), get_global_id(1)}; 
	coords += offset;
	const int2 realCoordinate = coords + offsetOutput;

	const int2 minXY = max(realCoordinate - scope, zero);
	const int2 maxXY = min(realCoordinate + scope, dimension);
	
	float value = 1.0f;
	int nx, ny;
	int2 inputXy;
	
	for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) {
		for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) {
			const float deltaX = (realCoordinate.x - nx);
			const float deltaY = (realCoordinate.y - ny);
			const float measuredDistance = deltaX*deltaX+deltaY*deltaY;
			if (measuredDistance <= distanceSquared) {
				value = min(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0);
			}
		}
	}

	float4 color = {value,0.0f,0.0f,0.0f};
	write_imagef(output, coords, color);
}