Welcome to mirror list, hosted at ThFree Co, Russian Federation.

COM_OpenCLKernels.cl « operations « compositor « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: cbd05cbec17c2d047e8130618bf62ee64ca31f5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
 * Copyright 2011, Blender Foundation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * Contributor: 
 *		Jeroen Bakker 
 *		Monique Dewanchand
 */

/// This file contains all opencl kernels for node-operation implementations 

// Global SAMPLERS
const sampler_t SAMPLER_NEAREST       = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
const sampler_t SAMPLER_NEAREST_CLAMP = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;

__constant const int2 zero = {0,0};

// KERNEL --- BOKEH BLUR ---
__kernel void bokehBlurKernel(__read_only image2d_t boundingBox, __read_only image2d_t inputImage, 
                              __read_only image2d_t bokehImage, __write_only image2d_t output, 
                              int2 offsetInput, int2 offsetOutput, int radius, int step, int2 dimension, int2 offset) 
{
	int2 coords = {get_global_id(0), get_global_id(1)};
	coords += offset;
	float tempBoundingBox;
	float4 color = {0.0f,0.0f,0.0f,0.0f};
	float4 multiplyer = {0.0f,0.0f,0.0f,0.0f};
	float4 bokeh;
	const float radius2 = radius*2.0f;
	const int2 realCoordinate = coords + offsetOutput;
	int2 imageCoordinates = realCoordinate - offsetInput;

	tempBoundingBox = read_imagef(boundingBox, SAMPLER_NEAREST, coords).s0;

	if (tempBoundingBox > 0.0f && radius > 0 ) {
		const int2 bokehImageDim = get_image_dim(bokehImage);
		const int2 bokehImageCenter = bokehImageDim/2;
		const int2 minXY = max(realCoordinate - radius, zero);
		const int2 maxXY = min(realCoordinate + radius, dimension);
		int nx, ny;
		
		float2 uv;
		int2 inputXy;
		
		if (radius < 2) {
			color = read_imagef(inputImage, SAMPLER_NEAREST, imageCoordinates);
			multiplyer = (float4)(1.0f, 1.0f, 1.0f, 1.0f);
		}
		
		for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny += step, inputXy.y += step) {
			uv.y = ((realCoordinate.y-ny)/radius2)*bokehImageDim.y+bokehImageCenter.y;
			
			for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx += step, inputXy.x += step) {
				uv.x = ((realCoordinate.x-nx)/radius2)*bokehImageDim.x+bokehImageCenter.x;
				bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv);
				color += bokeh * read_imagef(inputImage, SAMPLER_NEAREST, inputXy);
				multiplyer += bokeh;
			}
		}
		color /= multiplyer;
	}
	else {
		color = read_imagef(inputImage, SAMPLER_NEAREST, imageCoordinates);
	}
	
	write_imagef(output, coords, color);
}

//KERNEL --- DEFOCUS /VARIABLESIZEBOKEHBLUR ---
__kernel void defocusKernel(__read_only image2d_t inputImage, __read_only image2d_t bokehImage,
                            __read_only image2d_t inputSize,
                            __write_only image2d_t output, int2 offsetInput, int2 offsetOutput,
                            int step, int maxBlurScalar, float threshold, float scalar, int2 dimension, int2 offset)
{
	float4 color = {1.0f, 0.0f, 0.0f, 1.0f};
	int2 coords = {get_global_id(0), get_global_id(1)};
	coords += offset;
	const int2 realCoordinate = coords + offsetOutput;

	float4 readColor;
	float4 tempColor;
	float4 bokeh;
	float size;
	float4 multiplier_accum = {1.0f, 1.0f, 1.0f, 1.0f};
	float4 color_accum;
	
	int minx = max(realCoordinate.s0 - maxBlurScalar, 0);
	int miny = max(realCoordinate.s1 - maxBlurScalar, 0);
	int maxx = min(realCoordinate.s0 + maxBlurScalar, dimension.s0);
	int maxy = min(realCoordinate.s1 + maxBlurScalar, dimension.s1);
	
	{
		int2 inputCoordinate = realCoordinate - offsetInput;
		float size_center = read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0 * scalar;
		color_accum = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate);
		readColor = color_accum;

		if (size_center > threshold) {
			for (int ny = miny; ny < maxy; ny += step) {
				inputCoordinate.s1 = ny - offsetInput.s1;
				float dy = ny - realCoordinate.s1;
				for (int nx = minx; nx < maxx; nx += step) {
					float dx = nx - realCoordinate.s0;
					if (dx != 0 || dy != 0) {
						inputCoordinate.s0 = nx - offsetInput.s0;
						size = min(read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0 * scalar, size_center);
						if (size > threshold) {
							if (size >= fabs(dx) && size >= fabs(dy)) {
								float2 uv = {256.0f + dx * 255.0f / size,
								             256.0f + dy * 255.0f / size};
								bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv);
								tempColor = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate);
								color_accum += bokeh * tempColor;
								multiplier_accum += bokeh;
							}
						}
					}
				}
			}
		}

		color = color_accum * (1.0f / multiplier_accum);
		
		/* blend in out values over the threshold, otherwise we get sharp, ugly transitions */
		if ((size_center > threshold) &&
		    (size_center < threshold * 2.0f))
		{
			/* factor from 0-1 */
			float fac = (size_center - threshold) / threshold;
			color = (readColor * (1.0f - fac)) +  (color * fac);
		}
		
		write_imagef(output, coords, color);
	}
}


// KERNEL --- DILATE ---
__kernel void dilateKernel(__read_only image2d_t inputImage,  __write_only image2d_t output,
                           int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension, 
                           int2 offset)
{
	int2 coords = {get_global_id(0), get_global_id(1)};
	coords += offset;
	const int2 realCoordinate = coords + offsetOutput;

	const int2 minXY = max(realCoordinate - scope, zero);
	const int2 maxXY = min(realCoordinate + scope, dimension);
	
	float value = 0.0f;
	int nx, ny;
	int2 inputXy;
	
	for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) {
		const float deltaY = (realCoordinate.y - ny);
		for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) {
			const float deltaX = (realCoordinate.x - nx);
			const float measuredDistance = deltaX * deltaX + deltaY * deltaY;
			if (measuredDistance <= distanceSquared) {
				value = max(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0);
			}
		}
	}

	float4 color = {value,0.0f,0.0f,0.0f};
	write_imagef(output, coords, color);
}

// KERNEL --- DILATE ---
__kernel void erodeKernel(__read_only image2d_t inputImage,  __write_only image2d_t output,
                           int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension, 
                           int2 offset)
{
	int2 coords = {get_global_id(0), get_global_id(1)};
	coords += offset;
	const int2 realCoordinate = coords + offsetOutput;

	const int2 minXY = max(realCoordinate - scope, zero);
	const int2 maxXY = min(realCoordinate + scope, dimension);
	
	float value = 1.0f;
	int nx, ny;
	int2 inputXy;
	
	for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) {
		for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) {
			const float deltaX = (realCoordinate.x - nx);
			const float deltaY = (realCoordinate.y - ny);
			const float measuredDistance = deltaX * deltaX+deltaY * deltaY;
			if (measuredDistance <= distanceSquared) {
				value = min(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0);
			}
		}
	}

	float4 color = {value,0.0f,0.0f,0.0f};
	write_imagef(output, coords, color);
}

// KERNEL --- DIRECTIONAL BLUR ---
__kernel void directionalBlurKernel(__read_only image2d_t inputImage,  __write_only image2d_t output,
                                    int2 offsetOutput, int iterations, float scale, float rotation, float2 translate,
                                     float2 center, int2 offset)
{
	int2 coords = {get_global_id(0), get_global_id(1)};
	coords += offset;
	const int2 realCoordinate = coords + offsetOutput;

	float4 col;
	float2 ltxy = translate;
	float lsc = scale;
	float lrot = rotation;
	
	col = read_imagef(inputImage, SAMPLER_NEAREST, realCoordinate);

	/* blur the image */
	for (int i = 0; i < iterations; ++i) {
		const float cs = cos(lrot), ss = sin(lrot);
		const float isc = 1.0f / (1.0f + lsc);

		const float v = isc * (realCoordinate.s1 - center.s1) + ltxy.s1;
		const float u = isc * (realCoordinate.s0 - center.s0) + ltxy.s0;
		float2 uv = {
			cs * u + ss * v + center.s0,
			cs * v - ss * u + center.s1
		};

		col += read_imagef(inputImage, SAMPLER_NEAREST_CLAMP, uv);

		/* double transformations */
		ltxy += translate;
		lrot += rotation;
		lsc += scale;
	}

	col *= (1.0f/(iterations+1));

	write_imagef(output, coords, col);
}

// KERNEL --- GAUSSIAN BLUR ---
__kernel void gaussianXBlurOperationKernel(__read_only image2d_t inputImage,
                                           int2 offsetInput,
                                           __write_only image2d_t output,
                                           int2 offsetOutput,
                                           int filter_size,
                                           int2 dimension,
                                           __global float *gausstab,
                                           int2 offset)
{
	float4 color = {0.0f, 0.0f, 0.0f, 0.0f};
	int2 coords = {get_global_id(0), get_global_id(1)};
	coords += offset;
	const int2 realCoordinate = coords + offsetOutput;
	int2 inputCoordinate = realCoordinate - offsetInput;
	float weight = 0.0f;

	int xmin = max(realCoordinate.x - filter_size,     0) - offsetInput.x;
	int xmax = min(realCoordinate.x + filter_size + 1, dimension.x) - offsetInput.x;

	for (int nx = xmin, i = max(filter_size - realCoordinate.x, 0); nx < xmax; ++nx, ++i) {
		float w = gausstab[i];
		inputCoordinate.x = nx;
		color += read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate) * w;
		weight += w;
	}

	color *= (1.0f / weight);

	write_imagef(output, coords, color);
}

__kernel void gaussianYBlurOperationKernel(__read_only image2d_t inputImage,
                                           int2 offsetInput,
                                           __write_only image2d_t output,
                                           int2 offsetOutput,
                                           int filter_size,
                                           int2 dimension,
                                           __global float *gausstab,
                                           int2 offset)
{
	float4 color = {0.0f, 0.0f, 0.0f, 0.0f};
	int2 coords = {get_global_id(0), get_global_id(1)};
	coords += offset;
	const int2 realCoordinate = coords + offsetOutput;
	int2 inputCoordinate = realCoordinate - offsetInput;
	float weight = 0.0f;

	int ymin = max(realCoordinate.y - filter_size,     0) - offsetInput.y;
	int ymax = min(realCoordinate.y + filter_size + 1, dimension.y) - offsetInput.y;

	for (int ny = ymin, i = max(filter_size - realCoordinate.y, 0); ny < ymax; ++ny, ++i) {
		float w = gausstab[i];
		inputCoordinate.y = ny;
		color += read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate) * w;
		weight += w;
	}

	color *= (1.0f / weight);

	write_imagef(output, coords, color);
}