Welcome to mirror list, hosted at ThFree Co, Russian Federation.

COM_VariableSizeBokehBlurOperation.cc « operations « compositor « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d4365af4860073307fcb98f193cfabe4f3d8e015 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2011 Blender Foundation. */

#include "COM_VariableSizeBokehBlurOperation.h"
#include "COM_OpenCLDevice.h"

namespace blender::compositor {

VariableSizeBokehBlurOperation::VariableSizeBokehBlurOperation()
{
  this->add_input_socket(DataType::Color);
  this->add_input_socket(DataType::Color, ResizeMode::Align); /* Do not resize the bokeh image. */
  this->add_input_socket(DataType::Value);                    /* Radius. */
#ifdef COM_DEFOCUS_SEARCH
  /* Inverse search radius optimization structure. */
  this->add_input_socket(DataType::Color, ResizeMode::None);
#endif
  this->add_output_socket(DataType::Color);
  flags_.complex = true;
  flags_.open_cl = true;

  input_program_ = nullptr;
  input_bokeh_program_ = nullptr;
  input_size_program_ = nullptr;
  max_blur_ = 32.0f;
  threshold_ = 1.0f;
  do_size_scale_ = false;
#ifdef COM_DEFOCUS_SEARCH
  input_search_program_ = nullptr;
#endif
}

void VariableSizeBokehBlurOperation::init_execution()
{
  input_program_ = get_input_socket_reader(0);
  input_bokeh_program_ = get_input_socket_reader(1);
  input_size_program_ = get_input_socket_reader(2);
#ifdef COM_DEFOCUS_SEARCH
  input_search_program_ = get_input_socket_reader(3);
#endif
  QualityStepHelper::init_execution(COM_QH_INCREASE);
}
struct VariableSizeBokehBlurTileData {
  MemoryBuffer *color;
  MemoryBuffer *bokeh;
  MemoryBuffer *size;
  int max_blur_scalar;
};

void *VariableSizeBokehBlurOperation::initialize_tile_data(rcti *rect)
{
  VariableSizeBokehBlurTileData *data = new VariableSizeBokehBlurTileData();
  data->color = (MemoryBuffer *)input_program_->initialize_tile_data(rect);
  data->bokeh = (MemoryBuffer *)input_bokeh_program_->initialize_tile_data(rect);
  data->size = (MemoryBuffer *)input_size_program_->initialize_tile_data(rect);

  rcti rect2 = COM_AREA_NONE;
  this->determine_depending_area_of_interest(
      rect, (ReadBufferOperation *)input_size_program_, &rect2);

  const float max_dim = MAX2(this->get_width(), this->get_height());
  const float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;

  data->max_blur_scalar = (int)(data->size->get_max_value(rect2) * scalar);
  CLAMP(data->max_blur_scalar, 1.0f, max_blur_);
  return data;
}

void VariableSizeBokehBlurOperation::deinitialize_tile_data(rcti * /*rect*/, void *data)
{
  VariableSizeBokehBlurTileData *result = (VariableSizeBokehBlurTileData *)data;
  delete result;
}

void VariableSizeBokehBlurOperation::execute_pixel(float output[4], int x, int y, void *data)
{
  VariableSizeBokehBlurTileData *tile_data = (VariableSizeBokehBlurTileData *)data;
  MemoryBuffer *input_program_buffer = tile_data->color;
  MemoryBuffer *input_bokeh_buffer = tile_data->bokeh;
  MemoryBuffer *input_size_buffer = tile_data->size;
  float *input_size_float_buffer = input_size_buffer->get_buffer();
  float *input_program_float_buffer = input_program_buffer->get_buffer();
  float read_color[4];
  float bokeh[4];
  float temp_size[4];
  float multiplier_accum[4];
  float color_accum[4];

  const float max_dim = MAX2(get_width(), get_height());
  const float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
  int max_blur_scalar = tile_data->max_blur_scalar;

  BLI_assert(input_bokeh_buffer->get_width() == COM_BLUR_BOKEH_PIXELS);
  BLI_assert(input_bokeh_buffer->get_height() == COM_BLUR_BOKEH_PIXELS);

#ifdef COM_DEFOCUS_SEARCH
  float search[4];
  input_search_program_->read(search,
                              x / InverseSearchRadiusOperation::DIVIDER,
                              y / InverseSearchRadiusOperation::DIVIDER,
                              nullptr);
  int minx = search[0];
  int miny = search[1];
  int maxx = search[2];
  int maxy = search[3];
#else
  int minx = MAX2(x - max_blur_scalar, 0);
  int miny = MAX2(y - max_blur_scalar, 0);
  int maxx = MIN2(x + max_blur_scalar, (int)get_width());
  int maxy = MIN2(y + max_blur_scalar, (int)get_height());
#endif
  {
    input_size_buffer->read_no_check(temp_size, x, y);
    input_program_buffer->read_no_check(read_color, x, y);

    copy_v4_v4(color_accum, read_color);
    copy_v4_fl(multiplier_accum, 1.0f);
    float size_center = temp_size[0] * scalar;

    const int add_xstep_value = QualityStepHelper::get_step();
    const int add_ystep_value = add_xstep_value;
    const int add_xstep_color = add_xstep_value * COM_DATA_TYPE_COLOR_CHANNELS;

    if (size_center > threshold_) {
      for (int ny = miny; ny < maxy; ny += add_ystep_value) {
        float dy = ny - y;
        int offset_value_ny = ny * input_size_buffer->get_width();
        int offset_value_nx_ny = offset_value_ny + (minx);
        int offset_color_nx_ny = offset_value_nx_ny * COM_DATA_TYPE_COLOR_CHANNELS;
        for (int nx = minx; nx < maxx; nx += add_xstep_value) {
          if (nx != x || ny != y) {
            float size = MIN2(input_size_float_buffer[offset_value_nx_ny] * scalar, size_center);
            if (size > threshold_) {
              float dx = nx - x;
              if (size > fabsf(dx) && size > fabsf(dy)) {
                float uv[2] = {
                    (float)(COM_BLUR_BOKEH_PIXELS / 2) +
                        (dx / size) * (float)((COM_BLUR_BOKEH_PIXELS / 2) - 1),
                    (float)(COM_BLUR_BOKEH_PIXELS / 2) +
                        (dy / size) * (float)((COM_BLUR_BOKEH_PIXELS / 2) - 1),
                };
                input_bokeh_buffer->read(bokeh, uv[0], uv[1]);
                madd_v4_v4v4(color_accum, bokeh, &input_program_float_buffer[offset_color_nx_ny]);
                add_v4_v4(multiplier_accum, bokeh);
              }
            }
          }
          offset_color_nx_ny += add_xstep_color;
          offset_value_nx_ny += add_xstep_value;
        }
      }
    }

    output[0] = color_accum[0] / multiplier_accum[0];
    output[1] = color_accum[1] / multiplier_accum[1];
    output[2] = color_accum[2] / multiplier_accum[2];
    output[3] = color_accum[3] / multiplier_accum[3];

    /* blend in out values over the threshold, otherwise we get sharp, ugly transitions */
    if ((size_center > threshold_) && (size_center < threshold_ * 2.0f)) {
      /* factor from 0-1 */
      float fac = (size_center - threshold_) / threshold_;
      interp_v4_v4v4(output, read_color, output, fac);
    }
  }
}

void VariableSizeBokehBlurOperation::execute_opencl(
    OpenCLDevice *device,
    MemoryBuffer *output_memory_buffer,
    cl_mem cl_output_buffer,
    MemoryBuffer **input_memory_buffers,
    std::list<cl_mem> *cl_mem_to_clean_up,
    std::list<cl_kernel> * /*cl_kernels_to_clean_up*/)
{
  cl_kernel defocus_kernel = device->COM_cl_create_kernel("defocus_kernel", nullptr);

  cl_int step = this->get_step();
  cl_int max_blur;
  cl_float threshold = threshold_;

  MemoryBuffer *size_memory_buffer = input_size_program_->get_input_memory_buffer(
      input_memory_buffers);

  const float max_dim = MAX2(get_width(), get_height());
  cl_float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;

  max_blur = (cl_int)min_ff(size_memory_buffer->get_max_value() * scalar, (float)max_blur_);

  device->COM_cl_attach_memory_buffer_to_kernel_parameter(
      defocus_kernel, 0, -1, cl_mem_to_clean_up, input_memory_buffers, input_program_);
  device->COM_cl_attach_memory_buffer_to_kernel_parameter(
      defocus_kernel, 1, -1, cl_mem_to_clean_up, input_memory_buffers, input_bokeh_program_);
  device->COM_cl_attach_memory_buffer_to_kernel_parameter(
      defocus_kernel, 2, 4, cl_mem_to_clean_up, input_memory_buffers, input_size_program_);
  device->COM_cl_attach_output_memory_buffer_to_kernel_parameter(
      defocus_kernel, 3, cl_output_buffer);
  device->COM_cl_attach_memory_buffer_offset_to_kernel_parameter(
      defocus_kernel, 5, output_memory_buffer);
  clSetKernelArg(defocus_kernel, 6, sizeof(cl_int), &step);
  clSetKernelArg(defocus_kernel, 7, sizeof(cl_int), &max_blur);
  clSetKernelArg(defocus_kernel, 8, sizeof(cl_float), &threshold);
  clSetKernelArg(defocus_kernel, 9, sizeof(cl_float), &scalar);
  device->COM_cl_attach_size_to_kernel_parameter(defocus_kernel, 10, this);

  device->COM_cl_enqueue_range(defocus_kernel, output_memory_buffer, 11, this);
}

void VariableSizeBokehBlurOperation::deinit_execution()
{
  input_program_ = nullptr;
  input_bokeh_program_ = nullptr;
  input_size_program_ = nullptr;
#ifdef COM_DEFOCUS_SEARCH
  input_search_program_ = nullptr;
#endif
}

bool VariableSizeBokehBlurOperation::determine_depending_area_of_interest(
    rcti *input, ReadBufferOperation *read_operation, rcti *output)
{
  rcti new_input;
  rcti bokeh_input;

  const float max_dim = MAX2(get_width(), get_height());
  const float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
  int max_blur_scalar = max_blur_ * scalar;

  new_input.xmax = input->xmax + max_blur_scalar + 2;
  new_input.xmin = input->xmin - max_blur_scalar + 2;
  new_input.ymax = input->ymax + max_blur_scalar - 2;
  new_input.ymin = input->ymin - max_blur_scalar - 2;
  bokeh_input.xmax = COM_BLUR_BOKEH_PIXELS;
  bokeh_input.xmin = 0;
  bokeh_input.ymax = COM_BLUR_BOKEH_PIXELS;
  bokeh_input.ymin = 0;

  NodeOperation *operation = get_input_operation(2);
  if (operation->determine_depending_area_of_interest(&new_input, read_operation, output)) {
    return true;
  }
  operation = get_input_operation(1);
  if (operation->determine_depending_area_of_interest(&bokeh_input, read_operation, output)) {
    return true;
  }
#ifdef COM_DEFOCUS_SEARCH
  rcti search_input;
  search_input.xmax = (input->xmax / InverseSearchRadiusOperation::DIVIDER) + 1;
  search_input.xmin = (input->xmin / InverseSearchRadiusOperation::DIVIDER) - 1;
  search_input.ymax = (input->ymax / InverseSearchRadiusOperation::DIVIDER) + 1;
  search_input.ymin = (input->ymin / InverseSearchRadiusOperation::DIVIDER) - 1;
  operation = get_input_operation(3);
  if (operation->determine_depending_area_of_interest(&search_input, read_operation, output)) {
    return true;
  }
#endif
  operation = get_input_operation(0);
  if (operation->determine_depending_area_of_interest(&new_input, read_operation, output)) {
    return true;
  }
  return false;
}

void VariableSizeBokehBlurOperation::get_area_of_interest(const int input_idx,
                                                          const rcti &output_area,
                                                          rcti &r_input_area)
{
  switch (input_idx) {
    case IMAGE_INPUT_INDEX:
    case SIZE_INPUT_INDEX: {
      const float max_dim = MAX2(get_width(), get_height());
      const float scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
      const int max_blur_scalar = max_blur_ * scalar;
      r_input_area.xmax = output_area.xmax + max_blur_scalar + 2;
      r_input_area.xmin = output_area.xmin - max_blur_scalar - 2;
      r_input_area.ymax = output_area.ymax + max_blur_scalar + 2;
      r_input_area.ymin = output_area.ymin - max_blur_scalar - 2;
      break;
    }
    case BOKEH_INPUT_INDEX: {
      r_input_area = output_area;
      r_input_area.xmax = r_input_area.xmin + COM_BLUR_BOKEH_PIXELS;
      r_input_area.ymax = r_input_area.ymin + COM_BLUR_BOKEH_PIXELS;
      break;
    }
#ifdef COM_DEFOCUS_SEARCH
    case DEFOCUS_INPUT_INDEX: {
      r_input_area.xmax = (output_area.xmax / InverseSearchRadiusOperation::DIVIDER) + 1;
      r_input_area.xmin = (output_area.xmin / InverseSearchRadiusOperation::DIVIDER) - 1;
      r_input_area.ymax = (output_area.ymax / InverseSearchRadiusOperation::DIVIDER) + 1;
      r_input_area.ymin = (output_area.ymin / InverseSearchRadiusOperation::DIVIDER) - 1;
      break;
    }
#endif
  }
}

struct PixelData {
  float multiplier_accum[4];
  float color_accum[4];
  float threshold;
  float scalar;
  float size_center;
  int max_blur_scalar;
  int step;
  MemoryBuffer *bokeh_input;
  MemoryBuffer *size_input;
  MemoryBuffer *image_input;
  int image_width;
  int image_height;
};

static void blur_pixel(int x, int y, PixelData &p)
{
  BLI_assert(p.bokeh_input->get_width() == COM_BLUR_BOKEH_PIXELS);
  BLI_assert(p.bokeh_input->get_height() == COM_BLUR_BOKEH_PIXELS);

#ifdef COM_DEFOCUS_SEARCH
  float search[4];
  inputs[DEFOCUS_INPUT_INDEX]->read_elem_checked(x / InverseSearchRadiusOperation::DIVIDER,
                                                 y / InverseSearchRadiusOperation::DIVIDER,
                                                 search);
  const int minx = search[0];
  const int miny = search[1];
  const int maxx = search[2];
  const int maxy = search[3];
#else
  const int minx = MAX2(x - p.max_blur_scalar, 0);
  const int miny = MAX2(y - p.max_blur_scalar, 0);
  const int maxx = MIN2(x + p.max_blur_scalar, p.image_width);
  const int maxy = MIN2(y + p.max_blur_scalar, p.image_height);
#endif

  const int color_row_stride = p.image_input->row_stride * p.step;
  const int color_elem_stride = p.image_input->elem_stride * p.step;
  const int size_row_stride = p.size_input->row_stride * p.step;
  const int size_elem_stride = p.size_input->elem_stride * p.step;
  const float *row_color = p.image_input->get_elem(minx, miny);
  const float *row_size = p.size_input->get_elem(minx, miny);
  for (int ny = miny; ny < maxy;
       ny += p.step, row_size += size_row_stride, row_color += color_row_stride) {
    const float dy = ny - y;
    const float *size_elem = row_size;
    const float *color = row_color;
    for (int nx = minx; nx < maxx;
         nx += p.step, size_elem += size_elem_stride, color += color_elem_stride) {
      if (nx == x && ny == y) {
        continue;
      }
      const float size = MIN2(size_elem[0] * p.scalar, p.size_center);
      if (size <= p.threshold) {
        continue;
      }
      const float dx = nx - x;
      if (size <= fabsf(dx) || size <= fabsf(dy)) {
        continue;
      }

      /* XXX: There is no way to ensure bokeh input is an actual bokeh with #COM_BLUR_BOKEH_PIXELS
       * size, anything may be connected. Use the real input size and remove asserts? */
      const float u = (float)(COM_BLUR_BOKEH_PIXELS / 2) +
                      (dx / size) * (float)((COM_BLUR_BOKEH_PIXELS / 2) - 1);
      const float v = (float)(COM_BLUR_BOKEH_PIXELS / 2) +
                      (dy / size) * (float)((COM_BLUR_BOKEH_PIXELS / 2) - 1);
      float bokeh[4];
      p.bokeh_input->read_elem_checked(u, v, bokeh);
      madd_v4_v4v4(p.color_accum, bokeh, color);
      add_v4_v4(p.multiplier_accum, bokeh);
    }
  }
}

void VariableSizeBokehBlurOperation::update_memory_buffer_partial(MemoryBuffer *output,
                                                                  const rcti &area,
                                                                  Span<MemoryBuffer *> inputs)
{
  PixelData p;
  p.bokeh_input = inputs[BOKEH_INPUT_INDEX];
  p.size_input = inputs[SIZE_INPUT_INDEX];
  p.image_input = inputs[IMAGE_INPUT_INDEX];
  p.step = QualityStepHelper::get_step();
  p.threshold = threshold_;
  p.image_width = this->get_width();
  p.image_height = this->get_height();

  rcti scalar_area = COM_AREA_NONE;
  this->get_area_of_interest(SIZE_INPUT_INDEX, area, scalar_area);
  BLI_rcti_isect(&scalar_area, &p.size_input->get_rect(), &scalar_area);
  const float max_size = p.size_input->get_max_value(scalar_area);

  const float max_dim = MAX2(this->get_width(), this->get_height());
  p.scalar = do_size_scale_ ? (max_dim / 100.0f) : 1.0f;
  p.max_blur_scalar = static_cast<int>(max_size * p.scalar);
  CLAMP(p.max_blur_scalar, 1, max_blur_);

  for (BuffersIterator<float> it = output->iterate_with({p.image_input, p.size_input}, area);
       !it.is_end();
       ++it) {
    const float *color = it.in(0);
    const float size = *it.in(1);
    copy_v4_v4(p.color_accum, color);
    copy_v4_fl(p.multiplier_accum, 1.0f);
    p.size_center = size * p.scalar;

    if (p.size_center > p.threshold) {
      blur_pixel(it.x, it.y, p);
    }

    it.out[0] = p.color_accum[0] / p.multiplier_accum[0];
    it.out[1] = p.color_accum[1] / p.multiplier_accum[1];
    it.out[2] = p.color_accum[2] / p.multiplier_accum[2];
    it.out[3] = p.color_accum[3] / p.multiplier_accum[3];

    /* Blend in out values over the threshold, otherwise we get sharp, ugly transitions. */
    if ((p.size_center > p.threshold) && (p.size_center < p.threshold * 2.0f)) {
      /* Factor from 0-1. */
      const float fac = (p.size_center - p.threshold) / p.threshold;
      interp_v4_v4v4(it.out, color, it.out, fac);
    }
  }
}

#ifdef COM_DEFOCUS_SEARCH
/* #InverseSearchRadiusOperation. */
InverseSearchRadiusOperation::InverseSearchRadiusOperation()
{
  this->add_input_socket(DataType::Value, ResizeMode::Align); /* Radius. */
  this->add_output_socket(DataType::Color);
  this->flags.complex = true;
  input_radius_ = nullptr;
}

void InverseSearchRadiusOperation::init_execution()
{
  input_radius_ = this->get_input_socket_reader(0);
}

void *InverseSearchRadiusOperation::initialize_tile_data(rcti *rect)
{
  MemoryBuffer *data = new MemoryBuffer(DataType::Color, rect);
  float *buffer = data->get_buffer();
  int x, y;
  int width = input_radius_->get_width();
  int height = input_radius_->get_height();
  float temp[4];
  int offset = 0;
  for (y = rect->ymin; y < rect->ymax; y++) {
    for (x = rect->xmin; x < rect->xmax; x++) {
      int rx = x * DIVIDER;
      int ry = y * DIVIDER;
      buffer[offset] = MAX2(rx - max_blur_, 0);
      buffer[offset + 1] = MAX2(ry - max_blur_, 0);
      buffer[offset + 2] = MIN2(rx + DIVIDER + max_blur_, width);
      buffer[offset + 3] = MIN2(ry + DIVIDER + max_blur_, height);
      offset += 4;
    }
  }
#  if 0
  for (x = rect->xmin; x < rect->xmax; x++) {
    for (y = rect->ymin; y < rect->ymax; y++) {
      int rx = x * DIVIDER;
      int ry = y * DIVIDER;
      float radius = 0.0f;
      float maxx = x;
      float maxy = y;

      for (int x2 = 0; x2 < DIVIDER; x2++) {
        for (int y2 = 0; y2 < DIVIDER; y2++) {
          input_radius_->read(temp, rx + x2, ry + y2, PixelSampler::Nearest);
          if (radius < temp[0]) {
            radius = temp[0];
            maxx = x2;
            maxy = y2;
          }
        }
      }
      int impact_radius = ceil(radius / DIVIDER);
      for (int x2 = x - impact_radius; x2 < x + impact_radius; x2++) {
        for (int y2 = y - impact_radius; y2 < y + impact_radius; y2++) {
          data->read(temp, x2, y2);
          temp[0] = MIN2(temp[0], maxx);
          temp[1] = MIN2(temp[1], maxy);
          temp[2] = MAX2(temp[2], maxx);
          temp[3] = MAX2(temp[3], maxy);
          data->write_pixel(x2, y2, temp);
        }
      }
    }
  }
#  endif
  return data;
}

void InverseSearchRadiusOperation::execute_pixel_chunk(float output[4], int x, int y, void *data)
{
  MemoryBuffer *buffer = (MemoryBuffer *)data;
  buffer->read_no_check(output, x, y);
}

void InverseSearchRadiusOperation::deinitialize_tile_data(rcti *rect, void *data)
{
  if (data) {
    MemoryBuffer *mb = (MemoryBuffer *)data;
    delete mb;
  }
}

void InverseSearchRadiusOperation::deinit_execution()
{
  input_radius_ = nullptr;
}

void InverseSearchRadiusOperation::determine_resolution(unsigned int resolution[2],
                                                        unsigned int preferred_resolution[2])
{
  NodeOperation::determine_resolution(resolution, preferred_resolution);
  resolution[0] = resolution[0] / DIVIDER;
  resolution[1] = resolution[1] / DIVIDER;
}

bool InverseSearchRadiusOperation::determine_depending_area_of_interest(
    rcti *input, ReadBufferOperation *read_operation, rcti *output)
{
  rcti new_rect;
  new_rect.ymin = input->ymin * DIVIDER - max_blur_;
  new_rect.ymax = input->ymax * DIVIDER + max_blur_;
  new_rect.xmin = input->xmin * DIVIDER - max_blur_;
  new_rect.xmax = input->xmax * DIVIDER + max_blur_;
  return NodeOperation::determine_depending_area_of_interest(&new_rect, read_operation, output);
}
#endif

}  // namespace blender::compositor