Welcome to mirror list, hosted at ThFree Co, Russian Federation.

eevee_lights.c « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c15872b31fa1d8995d96d10a0322f3a4d316a609 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * Copyright 2016, Blender Foundation.
 */

/** \file
 * \ingroup DNA
 */

#include "DRW_render.h"

#include "BLI_dynstr.h"
#include "BLI_rand.h"
#include "BLI_rect.h"

#include "BKE_object.h"

#include "DEG_depsgraph_query.h"

#include "eevee_private.h"

#define SHADOW_CASTER_ALLOC_CHUNK 16

// #define DEBUG_CSM
// #define DEBUG_SHADOW_DISTRIBUTION

static struct {
  struct GPUShader *shadow_sh;
  struct GPUShader *shadow_store_cube_sh[SHADOW_METHOD_MAX];
  struct GPUShader *shadow_store_cube_high_sh[SHADOW_METHOD_MAX];
  struct GPUShader *shadow_store_cascade_sh[SHADOW_METHOD_MAX];
  struct GPUShader *shadow_store_cascade_high_sh[SHADOW_METHOD_MAX];
  struct GPUShader *shadow_copy_cube_sh[SHADOW_METHOD_MAX];
  struct GPUShader *shadow_copy_cascade_sh[SHADOW_METHOD_MAX];
} e_data = {NULL}; /* Engine data */

extern char datatoc_shadow_vert_glsl[];
extern char datatoc_shadow_frag_glsl[];
extern char datatoc_shadow_process_vert_glsl[];
extern char datatoc_shadow_process_geom_glsl[];
extern char datatoc_shadow_store_frag_glsl[];
extern char datatoc_shadow_copy_frag_glsl[];
extern char datatoc_concentric_samples_lib_glsl[];

extern char datatoc_common_view_lib_glsl[];

/* Prototypes */
static void eevee_light_setup(Object *ob, EEVEE_Light *evli);
static float light_attenuation_radius_get(Light *la, float light_threshold);

/* *********** LIGHT BITS *********** */
static void lightbits_set_single(EEVEE_LightBits *bitf, uint idx, bool val)
{
  if (val) {
    bitf->fields[idx / 8] |= (1 << (idx % 8));
  }
  else {
    bitf->fields[idx / 8] &= ~(1 << (idx % 8));
  }
}

static void lightbits_set_all(EEVEE_LightBits *bitf, bool val)
{
  memset(bitf, (val) ? 0xFF : 0x00, sizeof(EEVEE_LightBits));
}

static void lightbits_or(EEVEE_LightBits *r, const EEVEE_LightBits *v)
{
  for (int i = 0; i < MAX_LIGHTBITS_FIELDS; ++i) {
    r->fields[i] |= v->fields[i];
  }
}

static bool lightbits_get(const EEVEE_LightBits *r, uint idx)
{
  return r->fields[idx / 8] & (1 << (idx % 8));
}

static void lightbits_convert(EEVEE_LightBits *r,
                              const EEVEE_LightBits *bitf,
                              const int *light_bit_conv_table,
                              uint table_length)
{
  for (int i = 0; i < table_length; ++i) {
    if (lightbits_get(bitf, i) != 0) {
      if (light_bit_conv_table[i] >= 0) {
        r->fields[i / 8] |= (1 << (i % 8));
      }
    }
  }
}

/* *********** FUNCTIONS *********** */

void EEVEE_lights_init(EEVEE_ViewLayerData *sldata)
{
  const uint shadow_ubo_size = sizeof(EEVEE_Shadow) * MAX_SHADOW +
                               sizeof(EEVEE_ShadowCube) * MAX_SHADOW_CUBE +
                               sizeof(EEVEE_ShadowCascade) * MAX_SHADOW_CASCADE;

  const DRWContextState *draw_ctx = DRW_context_state_get();
  const Scene *scene_eval = DEG_get_evaluated_scene(draw_ctx->depsgraph);

  if (!e_data.shadow_sh) {
    e_data.shadow_sh = DRW_shader_create_with_lib(datatoc_shadow_vert_glsl,
                                                  NULL,
                                                  datatoc_shadow_frag_glsl,
                                                  datatoc_common_view_lib_glsl,
                                                  NULL);
  }

  if (!sldata->lights) {
    sldata->lights = MEM_callocN(sizeof(EEVEE_LightsInfo), "EEVEE_LightsInfo");
    sldata->light_ubo = DRW_uniformbuffer_create(sizeof(EEVEE_Light) * MAX_LIGHT, NULL);
    sldata->shadow_ubo = DRW_uniformbuffer_create(shadow_ubo_size, NULL);
    sldata->shadow_render_ubo = DRW_uniformbuffer_create(sizeof(EEVEE_ShadowRender), NULL);

    for (int i = 0; i < 2; ++i) {
      sldata->shcasters_buffers[i].shadow_casters = MEM_callocN(
          sizeof(EEVEE_ShadowCaster) * SHADOW_CASTER_ALLOC_CHUNK, "EEVEE_ShadowCaster buf");
      sldata->shcasters_buffers[i].flags = MEM_callocN(sizeof(sldata->shcasters_buffers[0].flags) *
                                                           SHADOW_CASTER_ALLOC_CHUNK,
                                                       "EEVEE_shcast_buffer flags buf");
      sldata->shcasters_buffers[i].alloc_count = SHADOW_CASTER_ALLOC_CHUNK;
      sldata->shcasters_buffers[i].count = 0;
    }

    sldata->lights->shcaster_frontbuffer = &sldata->shcasters_buffers[0];
    sldata->lights->shcaster_backbuffer = &sldata->shcasters_buffers[1];
  }

  /* Flip buffers */
  SWAP(EEVEE_ShadowCasterBuffer *,
       sldata->lights->shcaster_frontbuffer,
       sldata->lights->shcaster_backbuffer);

  const int sh_method = scene_eval->eevee.shadow_method;
  int sh_cube_size = scene_eval->eevee.shadow_cube_size;
  int sh_cascade_size = scene_eval->eevee.shadow_cascade_size;
  const bool sh_high_bitdepth = (scene_eval->eevee.flag & SCE_EEVEE_SHADOW_HIGH_BITDEPTH) != 0;
  sldata->lights->soft_shadows = (scene_eval->eevee.flag & SCE_EEVEE_SHADOW_SOFT) != 0;

  EEVEE_LightsInfo *linfo = sldata->lights;
  if ((linfo->shadow_cube_size != sh_cube_size) || (linfo->shadow_method != sh_method) ||
      (linfo->shadow_high_bitdepth != sh_high_bitdepth)) {
    BLI_assert((sh_cube_size > 0) && (sh_cube_size <= 4096));
    DRW_TEXTURE_FREE_SAFE(sldata->shadow_cube_pool);
    DRW_TEXTURE_FREE_SAFE(sldata->shadow_cube_target);
    DRW_TEXTURE_FREE_SAFE(sldata->shadow_cube_blur);

    /* Compute adequate size for the octahedral map. */
    linfo->shadow_cube_store_size = OCTAHEDRAL_SIZE_FROM_CUBESIZE(sh_cube_size);

    CLAMP(linfo->shadow_cube_store_size, 1, 4096);
    CLAMP(sh_cube_size, 1, 4096);

    linfo->shadow_render_data.cube_texel_size = 1.0f / sh_cube_size;
  }

  if ((linfo->shadow_cascade_size != sh_cascade_size) || (linfo->shadow_method != sh_method) ||
      (linfo->shadow_high_bitdepth != sh_high_bitdepth)) {
    BLI_assert((sh_cascade_size > 0) && (sh_cascade_size <= 4096));
    DRW_TEXTURE_FREE_SAFE(sldata->shadow_cascade_pool);
    DRW_TEXTURE_FREE_SAFE(sldata->shadow_cascade_target);
    DRW_TEXTURE_FREE_SAFE(sldata->shadow_cascade_blur);

    CLAMP(sh_cascade_size, 1, 4096);
  }

  linfo->shadow_high_bitdepth = sh_high_bitdepth;
  linfo->shadow_method = sh_method;
  linfo->shadow_cube_size = sh_cube_size;
  linfo->shadow_cascade_size = sh_cascade_size;

  /* only compile the ones needed. reduce startup time. */
  if ((sh_method == SHADOW_ESM) && !e_data.shadow_copy_cube_sh[SHADOW_ESM]) {
    e_data.shadow_copy_cube_sh[SHADOW_ESM] = DRW_shader_create(datatoc_shadow_process_vert_glsl,
                                                               datatoc_shadow_process_geom_glsl,
                                                               datatoc_shadow_copy_frag_glsl,
                                                               "#define ESM\n"
                                                               "#define COPY\n");
    e_data.shadow_copy_cascade_sh[SHADOW_ESM] = DRW_shader_create(datatoc_shadow_process_vert_glsl,
                                                                  datatoc_shadow_process_geom_glsl,
                                                                  datatoc_shadow_copy_frag_glsl,
                                                                  "#define ESM\n"
                                                                  "#define COPY\n"
                                                                  "#define CSM\n");
  }
  else if ((sh_method == SHADOW_VSM) && !e_data.shadow_copy_cube_sh[SHADOW_VSM]) {
    e_data.shadow_copy_cube_sh[SHADOW_VSM] = DRW_shader_create(datatoc_shadow_process_vert_glsl,
                                                               datatoc_shadow_process_geom_glsl,
                                                               datatoc_shadow_copy_frag_glsl,
                                                               "#define VSM\n"
                                                               "#define COPY\n");
    e_data.shadow_copy_cascade_sh[SHADOW_VSM] = DRW_shader_create(datatoc_shadow_process_vert_glsl,
                                                                  datatoc_shadow_process_geom_glsl,
                                                                  datatoc_shadow_copy_frag_glsl,
                                                                  "#define VSM\n"
                                                                  "#define COPY\n"
                                                                  "#define CSM\n");
  }
}

static GPUShader *eevee_lights_get_store_sh(int shadow_method, bool high_blur, bool cascade)
{
  GPUShader **shader;

  if (cascade) {
    shader = (high_blur) ? &e_data.shadow_store_cascade_high_sh[shadow_method] :
                           &e_data.shadow_store_cascade_sh[shadow_method];
  }
  else {
    shader = (high_blur) ? &e_data.shadow_store_cube_high_sh[shadow_method] :
                           &e_data.shadow_store_cube_sh[shadow_method];
  }

  if (*shader == NULL) {
    DynStr *ds_frag = BLI_dynstr_new();
    BLI_dynstr_append(ds_frag, datatoc_concentric_samples_lib_glsl);
    BLI_dynstr_append(ds_frag, datatoc_shadow_store_frag_glsl);
    char *store_shadow_shader_str = BLI_dynstr_get_cstring(ds_frag);
    BLI_dynstr_free(ds_frag);

    ds_frag = BLI_dynstr_new();
    BLI_dynstr_append(ds_frag, (shadow_method == SHADOW_VSM) ? "#define VSM\n" : "#define ESM\n");
    if (high_blur) {
      BLI_dynstr_append(ds_frag, "#define HIGH_BLUR\n");
    }
    if (cascade) {
      BLI_dynstr_append(ds_frag, "#define CSM\n");
    }
    char *define_str = BLI_dynstr_get_cstring(ds_frag);
    BLI_dynstr_free(ds_frag);

    *shader = DRW_shader_create(datatoc_shadow_process_vert_glsl,
                                datatoc_shadow_process_geom_glsl,
                                store_shadow_shader_str,
                                define_str);

    MEM_freeN(store_shadow_shader_str);
    MEM_freeN(define_str);
  }

  return *shader;
}

static DRWPass *eevee_lights_cube_store_pass_get(EEVEE_PassList *psl,
                                                 EEVEE_ViewLayerData *sldata,
                                                 int shadow_method,
                                                 int shadow_samples_len)
{
  bool high_blur = shadow_samples_len > 16;
  DRWPass **pass = (high_blur) ? &psl->shadow_cube_store_pass : &psl->shadow_cube_store_high_pass;
  if (*pass == NULL) {
    *pass = DRW_pass_create("Shadow Cube Storage Pass", DRW_STATE_WRITE_COLOR);
    GPUShader *shader = eevee_lights_get_store_sh(shadow_method, high_blur, false);
    DRWShadingGroup *grp = DRW_shgroup_create(shader, *pass);
    DRW_shgroup_uniform_texture_ref(grp, "shadowTexture", &sldata->shadow_cube_blur);
    DRW_shgroup_uniform_block(grp, "shadow_render_block", sldata->shadow_render_ubo);

    DRW_shgroup_call_procedural_triangles(grp, NULL, 6);
  }
  return *pass;
}

static DRWPass *eevee_lights_cascade_store_pass_get(EEVEE_PassList *psl,
                                                    EEVEE_ViewLayerData *sldata,
                                                    int shadow_method,
                                                    int shadow_samples_len)
{
  bool high_blur = shadow_samples_len > 16;
  DRWPass **pass = (high_blur) ? &psl->shadow_cascade_store_pass :
                                 &psl->shadow_cascade_store_high_pass;
  if (*pass == NULL) {
    *pass = DRW_pass_create("Shadow Cascade Storage Pass", DRW_STATE_WRITE_COLOR);
    GPUShader *shader = eevee_lights_get_store_sh(shadow_method, high_blur, true);
    DRWShadingGroup *grp = DRW_shgroup_create(shader, *pass);
    DRW_shgroup_uniform_texture_ref(grp, "shadowTexture", &sldata->shadow_cascade_blur);
    DRW_shgroup_uniform_block(grp, "shadow_render_block", sldata->shadow_render_ubo);

    DRW_shgroup_call_procedural_triangles(grp, NULL, MAX_CASCADE_NUM);
  }
  return *pass;
}

void EEVEE_lights_cache_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
  EEVEE_LightsInfo *linfo = sldata->lights;
  EEVEE_StorageList *stl = vedata->stl;
  EEVEE_PassList *psl = vedata->psl;

  linfo->shcaster_frontbuffer->count = 0;
  linfo->num_light = 0;
  linfo->num_cube_layer = 0;
  linfo->num_cascade_layer = 0;
  linfo->gpu_cube_len = linfo->gpu_cascade_len = linfo->gpu_shadow_len = 0;
  linfo->cpu_cube_len = linfo->cpu_cascade_len = 0;
  memset(linfo->light_ref, 0, sizeof(linfo->light_ref));
  memset(linfo->shadow_cube_ref, 0, sizeof(linfo->shadow_cube_ref));
  memset(linfo->shadow_cascade_ref, 0, sizeof(linfo->shadow_cascade_ref));
  memset(linfo->new_shadow_id, -1, sizeof(linfo->new_shadow_id));

  /* Shadow Casters: Reset flags. */
  memset(linfo->shcaster_backbuffer->flags,
         (char)SHADOW_CASTER_PRUNED,
         linfo->shcaster_backbuffer->alloc_count);
  memset(linfo->shcaster_frontbuffer->flags, 0x00, linfo->shcaster_frontbuffer->alloc_count);

  psl->shadow_cube_store_pass = NULL;
  psl->shadow_cube_store_high_pass = NULL;
  psl->shadow_cascade_store_pass = NULL;
  psl->shadow_cascade_store_high_pass = NULL;

  {
    DRW_PASS_CREATE(psl->shadow_cube_copy_pass, DRW_STATE_WRITE_COLOR);

    DRWShadingGroup *grp = DRW_shgroup_create(e_data.shadow_copy_cube_sh[linfo->shadow_method],
                                              psl->shadow_cube_copy_pass);
    DRW_shgroup_uniform_texture_ref(grp, "shadowTexture", &sldata->shadow_cube_target);
    DRW_shgroup_uniform_block(grp, "shadow_render_block", sldata->shadow_render_ubo);

    DRW_shgroup_call_procedural_triangles(grp, NULL, 6);
  }

  {
    DRW_PASS_CREATE(psl->shadow_cascade_copy_pass, DRW_STATE_WRITE_COLOR);

    DRWShadingGroup *grp = DRW_shgroup_create(e_data.shadow_copy_cascade_sh[linfo->shadow_method],
                                              psl->shadow_cascade_copy_pass);
    DRW_shgroup_uniform_texture_ref(grp, "shadowTexture", &sldata->shadow_cascade_target);
    DRW_shgroup_uniform_block(grp, "shadow_render_block", sldata->shadow_render_ubo);

    DRW_shgroup_call_procedural_triangles(grp, NULL, MAX_CASCADE_NUM);
  }

  {
    DRWState state = DRW_STATE_WRITE_COLOR | DRW_STATE_WRITE_DEPTH | DRW_STATE_DEPTH_LESS_EQUAL;
    DRW_PASS_CREATE(psl->shadow_pass, state);

    stl->g_data->shadow_shgrp = DRW_shgroup_create(e_data.shadow_sh, psl->shadow_pass);
  }
}

void EEVEE_lights_cache_add(EEVEE_ViewLayerData *sldata, Object *ob)
{
  EEVEE_LightsInfo *linfo = sldata->lights;

  const DRWContextState *draw_ctx = DRW_context_state_get();
  const float threshold = draw_ctx->scene->eevee.light_threshold;
  /* Step 1 find all lights in the scene and setup them */
  if (linfo->num_light >= MAX_LIGHT) {
    printf("Too many lights in the scene !!!\n");
  }
  else {
    Light *la = (Light *)ob->data;

    /* Early out if light has no power. */
    if (la->energy == 0.0f || is_zero_v3(&la->r)) {
      return;
    }

    EEVEE_Light *evli = linfo->light_data + linfo->num_light;
    eevee_light_setup(ob, evli);

    /* We do not support shadowmaps for dupli lights. */
    if ((ob->base_flag & BASE_FROM_DUPLI) != 0) {
      linfo->num_light++;
      return;
    }

    EEVEE_LightEngineData *led = EEVEE_light_data_ensure(ob);

    /* Save previous shadow id. */
    int prev_cube_sh_id = led->prev_cube_shadow_id;

    /* Default light without shadows */
    led->data.ld.shadow_id = -1;
    led->prev_cube_shadow_id = -1;

    if (la->mode & LA_SHADOW) {
      if (la->type == LA_SUN) {
        int cascade_nbr = la->cascade_count;

        if ((linfo->gpu_cascade_len + 1) <= MAX_SHADOW_CASCADE) {
          /* Save Light object. */
          linfo->shadow_cascade_ref[linfo->cpu_cascade_len] = ob;

          /* Store indices. */
          EEVEE_ShadowCascadeData *data = &led->data.scad;
          data->shadow_id = linfo->gpu_shadow_len;
          data->cascade_id = linfo->gpu_cascade_len;
          data->layer_id = linfo->num_cascade_layer;

          /* Increment indices. */
          linfo->gpu_shadow_len += 1;
          linfo->gpu_cascade_len += 1;
          linfo->num_cascade_layer += cascade_nbr;

          linfo->cpu_cascade_len += 1;
        }
      }
      else if (la->type == LA_SPOT || la->type == LA_LOCAL || la->type == LA_AREA) {
        if ((linfo->gpu_cube_len + 1) <= MAX_SHADOW_CUBE) {
          /* Save Light object. */
          linfo->shadow_cube_ref[linfo->cpu_cube_len] = ob;

          /* For light update tracking. */
          if ((prev_cube_sh_id >= 0) && (prev_cube_sh_id < linfo->shcaster_backbuffer->count)) {
            linfo->new_shadow_id[prev_cube_sh_id] = linfo->cpu_cube_len;
          }
          led->prev_cube_shadow_id = linfo->cpu_cube_len;

          /* Saving light bounds for later. */
          BLI_assert(linfo->cpu_cube_len >= 0 && linfo->cpu_cube_len < MAX_LIGHT);
          copy_v3_v3(linfo->shadow_bounds[linfo->cpu_cube_len].center, ob->obmat[3]);
          linfo->shadow_bounds[linfo->cpu_cube_len].radius = light_attenuation_radius_get(
              la, threshold);

          EEVEE_ShadowCubeData *data = &led->data.scd;
          /* Store indices. */
          data->shadow_id = linfo->gpu_shadow_len;
          data->cube_id = linfo->gpu_cube_len;
          data->layer_id = linfo->num_cube_layer;

          /* Increment indices. */
          linfo->gpu_shadow_len += 1;
          linfo->gpu_cube_len += 1;
          linfo->num_cube_layer += 1;

          linfo->cpu_cube_len += 1;
        }
      }
    }

    led->data.ld.light_id = linfo->num_light;
    linfo->light_ref[linfo->num_light] = ob;
    linfo->num_light++;
  }
}

/* Add a shadow caster to the shadowpasses */
void EEVEE_lights_cache_shcaster_add(EEVEE_ViewLayerData *UNUSED(sldata),
                                     EEVEE_StorageList *stl,
                                     struct GPUBatch *geom,
                                     Object *ob)
{
  DRW_shgroup_call(stl->g_data->shadow_shgrp, geom, ob);
}

void EEVEE_lights_cache_shcaster_material_add(EEVEE_ViewLayerData *sldata,
                                              EEVEE_PassList *psl,
                                              struct GPUMaterial *gpumat,
                                              struct GPUBatch *geom,
                                              struct Object *ob,
                                              const float *alpha_threshold)
{
  /* TODO / PERF : reuse the same shading group for objects with the same material */
  DRWShadingGroup *grp = DRW_shgroup_material_create(gpumat, psl->shadow_pass);

  if (grp == NULL) {
    return;
  }

  /* Grrr needed for correctness but not 99% of the time not needed.
   * TODO detect when needed? */
  DRW_shgroup_uniform_block(grp, "probe_block", sldata->probe_ubo);
  DRW_shgroup_uniform_block(grp, "grid_block", sldata->grid_ubo);
  DRW_shgroup_uniform_block(grp, "planar_block", sldata->planar_ubo);
  DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo);
  DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo);
  DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo);

  if (alpha_threshold != NULL) {
    DRW_shgroup_uniform_float(grp, "alphaThreshold", alpha_threshold, 1);
  }

  DRW_shgroup_call(grp, geom, ob);
}

/* Make that object update shadow casting lights inside its influence bounding box. */
void EEVEE_lights_cache_shcaster_object_add(EEVEE_ViewLayerData *sldata, Object *ob)
{
  if ((ob->base_flag & BASE_FROM_DUPLI) != 0) {
    /* TODO: Special case for dupli objects because we cannot save the object pointer. */
    return;
  }

  EEVEE_ObjectEngineData *oedata = EEVEE_object_data_ensure(ob);
  EEVEE_LightsInfo *linfo = sldata->lights;
  EEVEE_ShadowCasterBuffer *backbuffer = linfo->shcaster_backbuffer;
  EEVEE_ShadowCasterBuffer *frontbuffer = linfo->shcaster_frontbuffer;
  int past_id = oedata->shadow_caster_id;

  /* Update flags in backbuffer. */
  if (past_id > -1 && past_id < backbuffer->count) {
    backbuffer->flags[past_id] &= ~SHADOW_CASTER_PRUNED;

    if (oedata->need_update) {
      backbuffer->flags[past_id] |= SHADOW_CASTER_UPDATED;
    }
  }

  /* Update id. */
  oedata->shadow_caster_id = frontbuffer->count++;

  /* Make sure shadow_casters is big enough. */
  if (oedata->shadow_caster_id >= frontbuffer->alloc_count) {
    frontbuffer->alloc_count += SHADOW_CASTER_ALLOC_CHUNK;
    frontbuffer->shadow_casters = MEM_reallocN(
        frontbuffer->shadow_casters, sizeof(EEVEE_ShadowCaster) * frontbuffer->alloc_count);
    frontbuffer->flags = MEM_reallocN(frontbuffer->flags,
                                      sizeof(EEVEE_ShadowCaster) * frontbuffer->alloc_count);
  }

  EEVEE_ShadowCaster *shcaster = frontbuffer->shadow_casters + oedata->shadow_caster_id;

  if (oedata->need_update) {
    frontbuffer->flags[oedata->shadow_caster_id] = SHADOW_CASTER_UPDATED;
  }

  /* Update World AABB in frontbuffer. */
  BoundBox *bb = BKE_object_boundbox_get(ob);
  float min[3], max[3];
  INIT_MINMAX(min, max);
  for (int i = 0; i < 8; ++i) {
    float vec[3];
    copy_v3_v3(vec, bb->vec[i]);
    mul_m4_v3(ob->obmat, vec);
    minmax_v3v3_v3(min, max, vec);
  }

  EEVEE_BoundBox *aabb = &shcaster->bbox;
  add_v3_v3v3(aabb->center, min, max);
  mul_v3_fl(aabb->center, 0.5f);
  sub_v3_v3v3(aabb->halfdim, aabb->center, max);

  aabb->halfdim[0] = fabsf(aabb->halfdim[0]);
  aabb->halfdim[1] = fabsf(aabb->halfdim[1]);
  aabb->halfdim[2] = fabsf(aabb->halfdim[2]);

  oedata->need_update = false;
}

void EEVEE_lights_cache_finish(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
  EEVEE_LightsInfo *linfo = sldata->lights;
  eGPUTextureFormat shadow_pool_format = GPU_R32F;

  sldata->common_data.la_num_light = linfo->num_light;

  /* Setup enough layers. */
  /* Free textures if number mismatch. */
  if (linfo->num_cube_layer != linfo->cache_num_cube_layer) {
    DRW_TEXTURE_FREE_SAFE(sldata->shadow_cube_pool);
    linfo->cache_num_cube_layer = linfo->num_cube_layer;
    linfo->update_flag |= LIGHT_UPDATE_SHADOW_CUBE;
  }

  if (linfo->num_cascade_layer != linfo->cache_num_cascade_layer) {
    DRW_TEXTURE_FREE_SAFE(sldata->shadow_cascade_pool);
    linfo->cache_num_cascade_layer = linfo->num_cascade_layer;
  }

  switch (linfo->shadow_method) {
    case SHADOW_ESM:
      shadow_pool_format = ((linfo->shadow_high_bitdepth) ? GPU_R32F : GPU_R16F);
      break;
    case SHADOW_VSM:
      shadow_pool_format = ((linfo->shadow_high_bitdepth) ? GPU_RG32F : GPU_RG16F);
      break;
    default:
      BLI_assert(!"Incorrect Shadow Method");
      break;
  }

  /* Cubemaps */
  if (!sldata->shadow_cube_target) {
    sldata->shadow_cube_target = DRW_texture_create_cube(
        linfo->shadow_cube_size, GPU_DEPTH_COMPONENT24, 0, NULL);
    sldata->shadow_cube_blur = DRW_texture_create_cube(
        linfo->shadow_cube_size, shadow_pool_format, DRW_TEX_FILTER, NULL);
  }
  GPU_framebuffer_ensure_config(
      &sldata->shadow_cube_copy_fb,
      {GPU_ATTACHMENT_NONE, GPU_ATTACHMENT_TEXTURE(sldata->shadow_cube_blur)});

  if (!sldata->shadow_cube_pool) {
    sldata->shadow_cube_pool = DRW_texture_create_2d_array(linfo->shadow_cube_store_size,
                                                           linfo->shadow_cube_store_size,
                                                           max_ii(1, linfo->num_cube_layer),
                                                           shadow_pool_format,
                                                           DRW_TEX_FILTER,
                                                           NULL);
  }
  GPU_framebuffer_ensure_config(&sldata->shadow_cube_target_fb,
                                {GPU_ATTACHMENT_TEXTURE(sldata->shadow_cube_target)});
  GPU_framebuffer_ensure_config(
      &sldata->shadow_cube_store_fb,
      {GPU_ATTACHMENT_NONE, GPU_ATTACHMENT_TEXTURE(sldata->shadow_cube_pool)});

  /* CSM */
  if (!sldata->shadow_cascade_target) {
    sldata->shadow_cascade_target = DRW_texture_create_2d_array(linfo->shadow_cascade_size,
                                                                linfo->shadow_cascade_size,
                                                                MAX_CASCADE_NUM,
                                                                GPU_DEPTH_COMPONENT24,
                                                                0,
                                                                NULL);
    sldata->shadow_cascade_blur = DRW_texture_create_2d_array(linfo->shadow_cascade_size,
                                                              linfo->shadow_cascade_size,
                                                              MAX_CASCADE_NUM,
                                                              shadow_pool_format,
                                                              DRW_TEX_FILTER,
                                                              NULL);
  }
  GPU_framebuffer_ensure_config(
      &sldata->shadow_cascade_copy_fb,
      {GPU_ATTACHMENT_NONE, GPU_ATTACHMENT_TEXTURE(sldata->shadow_cascade_blur)});

  if (!sldata->shadow_cascade_pool) {
    sldata->shadow_cascade_pool = DRW_texture_create_2d_array(linfo->shadow_cascade_size,
                                                              linfo->shadow_cascade_size,
                                                              max_ii(1, linfo->num_cascade_layer),
                                                              shadow_pool_format,
                                                              DRW_TEX_FILTER,
                                                              NULL);
  }
  GPU_framebuffer_ensure_config(&sldata->shadow_cascade_target_fb,
                                {GPU_ATTACHMENT_TEXTURE(sldata->shadow_cascade_target)});
  GPU_framebuffer_ensure_config(
      &sldata->shadow_cascade_store_fb,
      {GPU_ATTACHMENT_NONE, GPU_ATTACHMENT_TEXTURE(sldata->shadow_cascade_pool)});

  /* Update Lights UBOs. */
  EEVEE_lights_update(sldata, vedata);
}

float light_attenuation_radius_get(Light *la, float light_threshold)
{
  if (la->mode & LA_CUSTOM_ATTENUATION) {
    return la->att_dist;
  }

  /* Compute max light power. */
  float power = max_fff(la->r, la->g, la->b);
  power *= fabsf(la->energy / 100.0f);
  power *= max_ff(1.0f, la->spec_fac);
  /* Compute the distance (using the inverse square law)
   * at which the light power reaches the light_threshold. */
  float distance = sqrtf(max_ff(1e-16, power / max_ff(1e-16, light_threshold)));
  return distance;
}

static void light_shape_parameters_set(EEVEE_Light *evli, const Light *la, float scale[3])
{
  if (la->type == LA_SPOT) {
    /* Spot size & blend */
    evli->sizex = scale[0] / scale[2];
    evli->sizey = scale[1] / scale[2];
    evli->spotsize = cosf(la->spotsize * 0.5f);
    evli->spotblend = (1.0f - evli->spotsize) * la->spotblend;
    evli->radius = max_ff(0.001f, la->area_size);
  }
  else if (la->type == LA_AREA) {
    evli->sizex = max_ff(0.003f, la->area_size * scale[0] * 0.5f);
    if (ELEM(la->area_shape, LA_AREA_RECT, LA_AREA_ELLIPSE)) {
      evli->sizey = max_ff(0.003f, la->area_sizey * scale[1] * 0.5f);
    }
    else {
      evli->sizey = max_ff(0.003f, la->area_size * scale[1] * 0.5f);
    }
  }
  else if (la->type == LA_SUN) {
    evli->radius = max_ff(0.001f, tanf(la->sun_angle / 2.0f));
  }
  else {
    evli->radius = max_ff(0.001f, la->area_size);
  }
}

static float light_shape_power_get(const Light *la, const EEVEE_Light *evli)
{
  float power;
  /* Make illumination power constant */
  if (la->type == LA_AREA) {
    power = 1.0f / (evli->sizex * evli->sizey * 4.0f * M_PI) * /* 1/(w*h*Pi) */
            0.8f; /* XXX : Empirical, Fit cycles power */
    if (ELEM(la->area_shape, LA_AREA_DISK, LA_AREA_ELLIPSE)) {
      /* Scale power to account for the lower area of the ellipse compared to the surrounding
       * rectangle. */
      power *= 4.0f / M_PI;
    }
  }
  else if (la->type == LA_SPOT || la->type == LA_LOCAL) {
    power = 1.0f / (4.0f * evli->radius * evli->radius * M_PI * M_PI); /* 1/(4*r²*Pi²) */

    /* for point lights (a.k.a radius == 0.0) */
    // power = M_PI * M_PI * 0.78; /* XXX : Empirical, Fit cycles power */
  }
  else {
    power = 1.0f / (evli->radius * evli->radius * M_PI); /* 1/(r²*Pi) */
    /* Make illumination power closer to cycles for bigger radii. Cycles uses a cos^3 term that we
     * cannot reproduce so we account for that by scaling the light power. This function is the
     * result of a rough manual fitting. */
    power += 1.0f / (2.0f * M_PI); /* power *= 1 + r²/2 */
  }
  return power;
}

/* Update buffer with light data */
static void eevee_light_setup(Object *ob, EEVEE_Light *evli)
{
  Light *la = (Light *)ob->data;
  float mat[4][4], scale[3], power, att_radius;

  const DRWContextState *draw_ctx = DRW_context_state_get();
  const float light_threshold = draw_ctx->scene->eevee.light_threshold;

  /* Position */
  copy_v3_v3(evli->position, ob->obmat[3]);

  /* Color */
  copy_v3_v3(evli->color, &la->r);

  evli->spec = la->spec_fac;

  /* Influence Radius */
  att_radius = light_attenuation_radius_get(la, light_threshold);
  /* Take the inverse square of this distance. */
  evli->invsqrdist = 1.0 / max_ff(1e-4f, att_radius * att_radius);

  /* Vectors */
  normalize_m4_m4_ex(mat, ob->obmat, scale);
  copy_v3_v3(evli->forwardvec, mat[2]);
  normalize_v3(evli->forwardvec);
  negate_v3(evli->forwardvec);

  copy_v3_v3(evli->rightvec, mat[0]);
  normalize_v3(evli->rightvec);

  copy_v3_v3(evli->upvec, mat[1]);
  normalize_v3(evli->upvec);

  /* Make sure we have a consistent Right Hand coord frame.
   * (in case of negatively scaled Z axis) */
  float cross[3];
  cross_v3_v3v3(cross, evli->rightvec, evli->forwardvec);
  if (dot_v3v3(cross, evli->upvec) < 0.0) {
    negate_v3(evli->upvec);
  }

  light_shape_parameters_set(evli, la, scale);

  /* Light Type */
  evli->light_type = (float)la->type;
  if ((la->type == LA_AREA) && ELEM(la->area_shape, LA_AREA_DISK, LA_AREA_ELLIPSE)) {
    evli->light_type = LAMPTYPE_AREA_ELLIPSE;
  }

  power = light_shape_power_get(la, evli);
  mul_v3_fl(evli->color, power * la->energy);

  /* No shadow by default */
  evli->shadowid = -1.0f;
}

/**
 * Special ball distribution:
 * Point are distributed in a way that when they are orthogonaly
 * projected into any plane, the resulting distribution is (close to)
 * a uniform disc distribution.
 */
static void sample_ball(int sample_ofs, float radius, float rsample[3])
{
  double ht_point[3];
  double ht_offset[3] = {0.0, 0.0, 0.0};
  uint ht_primes[3] = {2, 3, 7};

  BLI_halton_3d(ht_primes, ht_offset, sample_ofs, ht_point);

  float omega = ht_point[1] * 2.0f * M_PI;

  rsample[2] = ht_point[0] * 2.0f - 1.0f; /* cos theta */

  float r = sqrtf(fmaxf(0.0f, 1.0f - rsample[2] * rsample[2])); /* sin theta */

  rsample[0] = r * cosf(omega);
  rsample[1] = r * sinf(omega);

  radius *= sqrt(sqrt(ht_point[2]));
  mul_v3_fl(rsample, radius);
}

static void sample_rectangle(
    int sample_ofs, float x_axis[3], float y_axis[3], float size_x, float size_y, float rsample[3])
{
  double ht_point[2];
  double ht_offset[2] = {0.0, 0.0};
  uint ht_primes[2] = {2, 3};

  BLI_halton_2d(ht_primes, ht_offset, sample_ofs, ht_point);

  /* Change ditribution center to be 0,0 */
  ht_point[0] = (ht_point[0] > 0.5f) ? ht_point[0] - 1.0f : ht_point[0];
  ht_point[1] = (ht_point[1] > 0.5f) ? ht_point[1] - 1.0f : ht_point[1];

  zero_v3(rsample);
  madd_v3_v3fl(rsample, x_axis, (ht_point[0] * 2.0f) * size_x);
  madd_v3_v3fl(rsample, y_axis, (ht_point[1] * 2.0f) * size_y);
}

static void sample_ellipse(
    int sample_ofs, float x_axis[3], float y_axis[3], float size_x, float size_y, float rsample[3])
{
  double ht_point[2];
  double ht_offset[2] = {0.0, 0.0};
  uint ht_primes[2] = {2, 3};

  BLI_halton_2d(ht_primes, ht_offset, sample_ofs, ht_point);

  /* Uniform disc sampling. */
  float omega = ht_point[1] * 2.0f * M_PI;
  float r = sqrtf(ht_point[0]);
  ht_point[0] = r * cosf(omega) * size_x;
  ht_point[1] = r * sinf(omega) * size_y;

  zero_v3(rsample);
  madd_v3_v3fl(rsample, x_axis, ht_point[0]);
  madd_v3_v3fl(rsample, y_axis, ht_point[1]);
}

static void shadow_cube_random_position_set(EEVEE_Light *evli,
                                            Light *la,
                                            int sample_ofs,
                                            float ws_sample_pos[3])
{
  float jitter[3];

#ifndef DEBUG_SHADOW_DISTRIBUTION
  int i = sample_ofs;
#else
  for (int i = 0; i <= sample_ofs; ++i) {
#endif
  switch (la->type) {
    case LA_AREA:
      if (ELEM(la->area_shape, LA_AREA_RECT, LA_AREA_SQUARE)) {
        sample_rectangle(i, evli->rightvec, evli->upvec, evli->sizex, evli->sizey, jitter);
      }
      else {
        sample_ellipse(i, evli->rightvec, evli->upvec, evli->sizex, evli->sizey, jitter);
      }
      break;
    default:
      sample_ball(i, evli->radius, jitter);
  }
#ifdef DEBUG_SHADOW_DISTRIBUTION
  float p[3];
  add_v3_v3v3(p, jitter, ws_sample_pos);
  DRW_debug_sphere(p, 0.01f, (float[4]){1.0f, (sample_ofs == i) ? 1.0f : 0.0f, 0.0f, 1.0f});
}
#endif
add_v3_v3(ws_sample_pos, jitter);
}

static void eevee_shadow_cube_setup(Object *ob,
                                    EEVEE_LightsInfo *linfo,
                                    EEVEE_LightEngineData *led,
                                    int sample_ofs)
{
  EEVEE_ShadowCubeData *sh_data = &led->data.scd;
  EEVEE_Light *evli = linfo->light_data + sh_data->light_id;
  EEVEE_Shadow *ubo_data = linfo->shadow_data + sh_data->shadow_id;
  EEVEE_ShadowCube *cube_data = linfo->shadow_cube_data + sh_data->cube_id;
  Light *la = (Light *)ob->data;

  copy_v3_v3(cube_data->position, ob->obmat[3]);

  if (linfo->soft_shadows) {
    shadow_cube_random_position_set(evli, la, sample_ofs, cube_data->position);
  }

  ubo_data->bias = 0.05f * la->bias;
  ubo_data->near = la->clipsta;
  ubo_data->far = 1.0f / (evli->invsqrdist * evli->invsqrdist);
  ubo_data->exp = (linfo->shadow_method == SHADOW_VSM) ? la->bleedbias : la->bleedexp;

  evli->shadowid = (float)(sh_data->shadow_id);
  ubo_data->shadow_start = (float)(sh_data->layer_id);
  ubo_data->data_start = (float)(sh_data->cube_id);
  ubo_data->shadow_blur = la->soft * 0.02f; /* Used by translucence shadowmap blur */

  ubo_data->contact_dist = (la->mode & LA_SHAD_CONTACT) ? la->contact_dist : 0.0f;
  ubo_data->contact_bias = 0.05f * la->contact_bias;
  ubo_data->contact_spread = la->contact_spread;
  ubo_data->contact_thickness = la->contact_thickness;
}

static void shadow_cascade_random_matrix_set(float mat[4][4], float radius, int sample_ofs)
{
  float jitter[3];

#ifndef DEBUG_SHADOW_DISTRIBUTION
  int i = sample_ofs;
#else
    for (int i = 0; i <= sample_ofs; ++i) {
#endif
  sample_ellipse(i, mat[0], mat[1], radius, radius, jitter);
#ifdef DEBUG_SHADOW_DISTRIBUTION
  float p[3];
  add_v3_v3v3(p, jitter, mat[2]);
  DRW_debug_sphere(p, 0.01f, (float[4]){1.0f, (sample_ofs == i) ? 1.0f : 0.0f, 0.0f, 1.0f});
}
#endif

add_v3_v3(mat[2], jitter);
orthogonalize_m4(mat, 2);
}

#define LERP(t, a, b) ((a) + (t) * ((b) - (a)))

static double round_to_digits(double value, int digits)
{
  double factor = pow(10.0, digits - ceil(log10(fabs(value))));
  return round(value * factor) / factor;
}

static void frustum_min_bounding_sphere(const float corners[8][3],
                                        float r_center[3],
                                        float *r_radius)
{
#if 0 /* Simple solution but waste too much space. */
  float minvec[3], maxvec[3];

  /* compute the bounding box */
  INIT_MINMAX(minvec, maxvec);
  for (int i = 0; i < 8; ++i) {
    minmax_v3v3_v3(minvec, maxvec, corners[i]);
  }

  /* compute the bounding sphere of this box */
  r_radius = len_v3v3(minvec, maxvec) * 0.5f;
  add_v3_v3v3(r_center, minvec, maxvec);
  mul_v3_fl(r_center, 0.5f);
#else
      /* Find averaged center. */
      zero_v3(r_center);
      for (int i = 0; i < 8; ++i) {
        add_v3_v3(r_center, corners[i]);
      }
      mul_v3_fl(r_center, 1.0f / 8.0f);

      /* Search the largest distance from the sphere center. */
      *r_radius = 0.0f;
      for (int i = 0; i < 8; ++i) {
        float rad = len_squared_v3v3(corners[i], r_center);
        if (rad > *r_radius) {
          *r_radius = rad;
        }
      }

      /* TODO try to reduce the radius further by moving the center.
       * Remember we need a __stable__ solution! */

      /* Try to reduce float imprecision leading to shimmering. */
      *r_radius = (float)round_to_digits(sqrtf(*r_radius), 3);
#endif
}

static void eevee_shadow_cascade_setup(Object *ob,
                                       EEVEE_LightsInfo *linfo,
                                       EEVEE_LightEngineData *led,
                                       DRWView *view,
                                       float view_near,
                                       float view_far,
                                       int sample_ofs)
{
  Light *la = (Light *)ob->data;

  /* Camera Matrices */
  float persinv[4][4], vp_projmat[4][4];
  DRW_view_persmat_get(view, persinv, true);
  DRW_view_winmat_get(view, vp_projmat, false);
  bool is_persp = DRW_view_is_persp_get(view);

  /* Lights Matrices */
  int cascade_nbr = la->cascade_count;

  EEVEE_ShadowCascadeData *sh_data = &led->data.scad;
  EEVEE_Light *evli = linfo->light_data + sh_data->light_id;
  EEVEE_Shadow *ubo_data = linfo->shadow_data + sh_data->shadow_id;
  EEVEE_ShadowCascade *cascade_data = linfo->shadow_cascade_data + sh_data->cascade_id;

  /* obmat = Object Space > World Space */
  /* viewmat = World Space > View Space */
  float(*viewmat)[4] = sh_data->viewmat;
#if 0 /* done at culling time */
  normalize_m4_m4(viewmat, ob->obmat);
#endif

  if (linfo->soft_shadows) {
    shadow_cascade_random_matrix_set(viewmat, evli->radius, sample_ofs);
  }

  copy_m4_m4(sh_data->viewinv, viewmat);
  invert_m4(viewmat);

  /* The technique consists into splitting
   * the view frustum into several sub-frustum
   * that are individually receiving one shadow map */

  float csm_start, csm_end;

  if (is_persp) {
    csm_start = view_near;
    csm_end = max_ff(view_far, -la->cascade_max_dist);
    /* Avoid artifacts */
    csm_end = min_ff(view_near, csm_end);
  }
  else {
    csm_start = -view_far;
    csm_end = view_far;
  }

  /* init near/far */
  for (int c = 0; c < MAX_CASCADE_NUM; ++c) {
    cascade_data->split_start[c] = csm_end;
    cascade_data->split_end[c] = csm_end;
  }

  /* Compute split planes */
  float splits_start_ndc[MAX_CASCADE_NUM];
  float splits_end_ndc[MAX_CASCADE_NUM];

  {
    /* Nearest plane */
    float p[4] = {1.0f, 1.0f, csm_start, 1.0f};
    /* TODO: we don't need full m4 multiply here */
    mul_m4_v4(vp_projmat, p);
    splits_start_ndc[0] = p[2];
    if (is_persp) {
      splits_start_ndc[0] /= p[3];
    }
  }

  {
    /* Farthest plane */
    float p[4] = {1.0f, 1.0f, csm_end, 1.0f};
    /* TODO: we don't need full m4 multiply here */
    mul_m4_v4(vp_projmat, p);
    splits_end_ndc[cascade_nbr - 1] = p[2];
    if (is_persp) {
      splits_end_ndc[cascade_nbr - 1] /= p[3];
    }
  }

  cascade_data->split_start[0] = csm_start;
  cascade_data->split_end[cascade_nbr - 1] = csm_end;

  for (int c = 1; c < cascade_nbr; ++c) {
    /* View Space */
    float linear_split = LERP(((float)(c) / (float)cascade_nbr), csm_start, csm_end);
    float exp_split = csm_start * powf(csm_end / csm_start, (float)(c) / (float)cascade_nbr);

    if (is_persp) {
      cascade_data->split_start[c] = LERP(la->cascade_exponent, linear_split, exp_split);
    }
    else {
      cascade_data->split_start[c] = linear_split;
    }
    cascade_data->split_end[c - 1] = cascade_data->split_start[c];

    /* Add some overlap for smooth transition */
    cascade_data->split_start[c] = LERP(la->cascade_fade,
                                        cascade_data->split_end[c - 1],
                                        (c > 1) ? cascade_data->split_end[c - 2] :
                                                  cascade_data->split_start[0]);

    /* NDC Space */
    {
      float p[4] = {1.0f, 1.0f, cascade_data->split_start[c], 1.0f};
      /* TODO: we don't need full m4 multiply here */
      mul_m4_v4(vp_projmat, p);
      splits_start_ndc[c] = p[2];

      if (is_persp) {
        splits_start_ndc[c] /= p[3];
      }
    }

    {
      float p[4] = {1.0f, 1.0f, cascade_data->split_end[c - 1], 1.0f};
      /* TODO: we don't need full m4 multiply here */
      mul_m4_v4(vp_projmat, p);
      splits_end_ndc[c - 1] = p[2];

      if (is_persp) {
        splits_end_ndc[c - 1] /= p[3];
      }
    }
  }

  /* Set last cascade split fade distance into the first split_start. */
  float prev_split = (cascade_nbr > 1) ? cascade_data->split_end[cascade_nbr - 2] :
                                         cascade_data->split_start[0];
  cascade_data->split_start[0] = LERP(
      la->cascade_fade, cascade_data->split_end[cascade_nbr - 1], prev_split);

  /* For each cascade */
  for (int c = 0; c < cascade_nbr; ++c) {
    float(*projmat)[4] = sh_data->projmat[c];
    /* Given 8 frustum corners */
    float corners[8][3] = {
        /* Near Cap */
        {1.0f, -1.0f, splits_start_ndc[c]},
        {-1.0f, -1.0f, splits_start_ndc[c]},
        {-1.0f, 1.0f, splits_start_ndc[c]},
        {1.0f, 1.0f, splits_start_ndc[c]},
        /* Far Cap */
        {1.0f, -1.0f, splits_end_ndc[c]},
        {-1.0f, -1.0f, splits_end_ndc[c]},
        {-1.0f, 1.0f, splits_end_ndc[c]},
        {1.0f, 1.0f, splits_end_ndc[c]},
    };

    /* Transform them into world space */
    for (int i = 0; i < 8; ++i) {
      mul_project_m4_v3(persinv, corners[i]);
    }

    float center[3];
    frustum_min_bounding_sphere(corners, center, &(sh_data->radius[c]));

#ifdef DEBUG_CSM
    float dbg_col[4] = {0.0f, 0.0f, 0.0f, 1.0f};
    if (c < 3) {
      dbg_col[c] = 1.0f;
    }
    DRW_debug_bbox((BoundBox *)&corners, dbg_col);
    DRW_debug_sphere(center, sh_data->radius[c], dbg_col);
#endif

    /* Project into lightspace */
    mul_m4_v3(viewmat, center);

    /* Snap projection center to nearest texel to cancel shimmering. */
    float shadow_origin[2], shadow_texco[2];
    /* Light to texture space. */
    mul_v2_v2fl(shadow_origin, center, linfo->shadow_cascade_size / (2.0f * sh_data->radius[c]));

    /* Find the nearest texel. */
    shadow_texco[0] = roundf(shadow_origin[0]);
    shadow_texco[1] = roundf(shadow_origin[1]);

    /* Compute offset. */
    sub_v2_v2(shadow_texco, shadow_origin);
    /* Texture to light space. */
    mul_v2_fl(shadow_texco, (2.0f * sh_data->radius[c]) / linfo->shadow_cascade_size);

    /* Apply offset. */
    add_v2_v2(center, shadow_texco);

    /* Expand the projection to cover frustum range */
    rctf rect_cascade;
    BLI_rctf_init_pt_radius(&rect_cascade, center, sh_data->radius[c]);
    orthographic_m4(projmat,
                    rect_cascade.xmin,
                    rect_cascade.xmax,
                    rect_cascade.ymin,
                    rect_cascade.ymax,
                    la->clipsta,
                    la->clipend);

    mul_m4_m4m4(sh_data->viewprojmat[c], projmat, viewmat);
    mul_m4_m4m4(cascade_data->shadowmat[c], texcomat, sh_data->viewprojmat[c]);

#ifdef DEBUG_CSM
    DRW_debug_m4_as_bbox(sh_data->viewprojmat[c], dbg_col, true);
#endif
  }

  ubo_data->bias = 0.05f * la->bias;
  ubo_data->near = la->clipsta;
  ubo_data->far = la->clipend;
  ubo_data->exp = (linfo->shadow_method == SHADOW_VSM) ? la->bleedbias : la->bleedexp;

  evli->shadowid = (float)(sh_data->shadow_id);
  ubo_data->shadow_start = (float)(sh_data->layer_id);
  ubo_data->data_start = (float)(sh_data->cascade_id);
  ubo_data->shadow_blur = la->soft * 0.02f; /* Used by translucence shadowmap blur */

  ubo_data->contact_dist = (la->mode & LA_SHAD_CONTACT) ? la->contact_dist : 0.0f;
  ubo_data->contact_bias = 0.05f * la->contact_bias;
  ubo_data->contact_spread = la->contact_spread;
  ubo_data->contact_thickness = la->contact_thickness;
}

/* Used for checking if object is inside the shadow volume. */
static bool sphere_bbox_intersect(const EEVEE_BoundSphere *bs, const EEVEE_BoundBox *bb)
{
  /* We are testing using a rougher AABB vs AABB test instead of full AABB vs Sphere. */
  /* TODO test speed with AABB vs Sphere. */
  bool x = fabsf(bb->center[0] - bs->center[0]) <= (bb->halfdim[0] + bs->radius);
  bool y = fabsf(bb->center[1] - bs->center[1]) <= (bb->halfdim[1] + bs->radius);
  bool z = fabsf(bb->center[2] - bs->center[2]) <= (bb->halfdim[2] + bs->radius);

  return x && y && z;
}

void EEVEE_lights_update(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata)
{
  EEVEE_StorageList *stl = vedata->stl;
  EEVEE_EffectsInfo *effects = stl->effects;
  EEVEE_LightsInfo *linfo = sldata->lights;
  Object *ob;
  int i;
  char *flag;
  EEVEE_ShadowCaster *shcaster;
  EEVEE_BoundSphere *bsphere;
  EEVEE_ShadowCasterBuffer *frontbuffer = linfo->shcaster_frontbuffer;
  EEVEE_ShadowCasterBuffer *backbuffer = linfo->shcaster_backbuffer;

  EEVEE_LightBits update_bits = {{0}};
  if ((linfo->update_flag & LIGHT_UPDATE_SHADOW_CUBE) != 0) {
    /* Update all lights. */
    lightbits_set_all(&update_bits, true);
  }
  else {
    /* Search for deleted shadow casters and if shcaster WAS in shadow radius. */
    /* No need to run this if we already update all lights. */
    EEVEE_LightBits past_bits = {{0}};
    EEVEE_LightBits curr_bits = {{0}};
    shcaster = backbuffer->shadow_casters;
    flag = backbuffer->flags;
    for (i = 0; i < backbuffer->count; ++i, ++flag, ++shcaster) {
      /* If the shadowcaster has been deleted or updated. */
      if (*flag != 0) {
        /* Add the lights that were intersecting with its BBox. */
        lightbits_or(&past_bits, &shcaster->bits);
      }
    }
    /* Convert old bits to new bits and add result to final update bits. */
    /* NOTE: This might be overkill since all lights are tagged to refresh if
     * the light count changes. */
    lightbits_convert(&curr_bits, &past_bits, linfo->new_shadow_id, MAX_LIGHT);
    lightbits_or(&update_bits, &curr_bits);
  }

  /* Search for updates in current shadow casters. */
  shcaster = frontbuffer->shadow_casters;
  flag = frontbuffer->flags;
  for (i = 0; i < frontbuffer->count; i++, flag++, shcaster++) {
    /* Run intersection checks to fill the bitfields. */
    bsphere = linfo->shadow_bounds;
    for (int j = 0; j < linfo->cpu_cube_len; j++, bsphere++) {
      bool iter = sphere_bbox_intersect(bsphere, &shcaster->bbox);
      lightbits_set_single(&shcaster->bits, j, iter);
    }
    /* Only add to final bits if objects has been updated. */
    if (*flag != 0) {
      lightbits_or(&update_bits, &shcaster->bits);
    }
  }

  /* Setup shadow cube in UBO and tag for update if necessary. */
  for (i = 0; (i < MAX_SHADOW_CUBE) && (ob = linfo->shadow_cube_ref[i]); i++) {
    EEVEE_LightEngineData *led = EEVEE_light_data_ensure(ob);

    eevee_shadow_cube_setup(ob, linfo, led, effects->taa_current_sample - 1);
    if (lightbits_get(&update_bits, i) != 0 || linfo->soft_shadows) {
      led->need_update = true;
    }
  }

  /* Resize shcasters buffers if too big. */
  if (frontbuffer->alloc_count - frontbuffer->count > SHADOW_CASTER_ALLOC_CHUNK) {
    frontbuffer->alloc_count = (frontbuffer->count / SHADOW_CASTER_ALLOC_CHUNK) *
                               SHADOW_CASTER_ALLOC_CHUNK;
    frontbuffer->alloc_count += (frontbuffer->count % SHADOW_CASTER_ALLOC_CHUNK != 0) ?
                                    SHADOW_CASTER_ALLOC_CHUNK :
                                    0;
    frontbuffer->shadow_casters = MEM_reallocN(
        frontbuffer->shadow_casters, sizeof(EEVEE_ShadowCaster) * frontbuffer->alloc_count);
    frontbuffer->flags = MEM_reallocN(frontbuffer->flags,
                                      sizeof(EEVEE_ShadowCaster) * frontbuffer->alloc_count);
  }
}

static void eevee_ensure_cube_views(float near, float far, const float pos[3], DRWView *view[6])
{
  float winmat[4][4], viewmat[4][4];
  perspective_m4(winmat, -near, near, -near, near, near, far);

  for (int i = 0; i < 6; i++) {
    unit_m4(viewmat);
    negate_v3_v3(viewmat[3], pos);
    mul_m4_m4m4(viewmat, cubefacemat[i], viewmat);

    if (view[i] == NULL) {
      view[i] = DRW_view_create(viewmat, winmat, NULL, NULL, NULL);
    }
    else {
      DRW_view_update(view[i], viewmat, winmat, NULL, NULL);
    }
  }
}

static void eevee_ensure_cascade_views(EEVEE_ShadowCascadeData *cascade_data,
                                       int cascade_count,
                                       DRWView *view[4])
{
  for (int i = 0; i < cascade_count; i++) {
    if (view[i] == NULL) {
      view[i] = DRW_view_create(cascade_data->viewmat, cascade_data->projmat[i], NULL, NULL, NULL);
    }
    else {
      DRW_view_update(view[i], cascade_data->viewmat, cascade_data->projmat[i], NULL, NULL);
    }
  }
}

/* this refresh lights shadow buffers */
void EEVEE_draw_shadows(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata, DRWView *view)
{
  EEVEE_PassList *psl = vedata->psl;
  EEVEE_StorageList *stl = vedata->stl;
  EEVEE_EffectsInfo *effects = stl->effects;
  EEVEE_PrivateData *g_data = stl->g_data;
  EEVEE_LightsInfo *linfo = sldata->lights;
  const DRWContextState *draw_ctx = DRW_context_state_get();
  const float light_threshold = draw_ctx->scene->eevee.light_threshold;
  Object *ob;
  int i;

  int saved_ray_type = sldata->common_data.ray_type;

  /* TODO: make it optional if we don't draw shadows. */
  sldata->common_data.ray_type = EEVEE_RAY_SHADOW;
  DRW_uniformbuffer_update(sldata->common_ubo, &sldata->common_data);

  /* Precompute all shadow/view test before rendering and trashing the culling cache. */
  bool cube_visible[MAX_SHADOW_CUBE];
  for (i = 0; (ob = linfo->shadow_cube_ref[i]) && (i < MAX_SHADOW_CUBE); i++) {
    Light *la = (Light *)ob->data;
    BoundSphere bsphere = {
        .center = {ob->obmat[3][0], ob->obmat[3][1], ob->obmat[3][2]},
        .radius = light_attenuation_radius_get(la, light_threshold),
    };
    cube_visible[i] = DRW_culling_sphere_test(view, &bsphere);
  }

  bool cascade_visible[MAX_SHADOW_CASCADE];
  for (i = 0; (ob = linfo->shadow_cascade_ref[i]) && (i < MAX_SHADOW_CASCADE); i++) {
    EEVEE_LightEngineData *led = EEVEE_light_data_get(ob);
    EEVEE_ShadowCascadeData *sh_data = &led->data.scad;
    float plane[4];
    normalize_m4_m4(sh_data->viewmat, ob->obmat);

    plane_from_point_normal_v3(plane, sh_data->viewmat[3], sh_data->viewmat[2]);
    /* TODO: check against near/far instead of "local Z = 0" plane.
     * Or even the cascades AABB. */
    cascade_visible[i] = DRW_culling_plane_test(view, plane);
  }

  /* Cube Shadow Maps */
  DRW_stats_group_start("Cube Shadow Maps");
  /* Render each shadow to one layer of the array */
  for (i = 0; (ob = linfo->shadow_cube_ref[i]) && (i < MAX_SHADOW_CUBE); i++) {
    EEVEE_LightEngineData *led = EEVEE_light_data_ensure(ob);
    Light *la = (Light *)ob->data;

    if (!led->need_update || !cube_visible[i]) {
      continue;
    }

    EEVEE_ShadowRender *srd = &linfo->shadow_render_data;
    EEVEE_ShadowCubeData *evscd = &led->data.scd;
    EEVEE_ShadowCube *cube_data = linfo->shadow_cube_data + evscd->cube_id;

    srd->clip_near = la->clipsta;
    srd->clip_far = light_attenuation_radius_get(la, light_threshold);
    srd->stored_texel_size = 1.0 / (float)linfo->shadow_cube_store_size;
    srd->exponent = la->bleedexp;

    eevee_ensure_cube_views(
        srd->clip_near, srd->clip_far, cube_data->position, g_data->cube_views);

    /* Render shadow cube */
    /* Render 6 faces separately: seems to be faster for the general case.
     * The only time it's more beneficial is when the CPU culling overhead
     * outweigh the instancing overhead. which is rarely the case. */
    for (int j = 0; j < 6; j++) {
      DRW_view_set_active(g_data->cube_views[j]);

      GPU_framebuffer_texture_cubeface_attach(
          sldata->shadow_cube_target_fb, sldata->shadow_cube_target, 0, j, 0);
      GPU_framebuffer_bind(sldata->shadow_cube_target_fb);
      GPU_framebuffer_clear_depth(sldata->shadow_cube_target_fb, 1.0f);
      DRW_draw_pass(psl->shadow_pass);
    }

    /* 0.001f is arbitrary, but it should be relatively small so that filter size is not too big.
     */
    float filter_texture_size = la->soft * 0.001f;
    float filter_pixel_size = ceil(filter_texture_size / srd->cube_texel_size);

    /* TODO: OPTI: Don't do this intermediate step if no filter is needed. */
    {
      srd->filter_size[0] = srd->cube_texel_size * ((filter_pixel_size > 1.0f) ? 1.5f : 0.0f);
      srd->view_count = 6;
      srd->base_id = 0;
      DRW_uniformbuffer_update(sldata->shadow_render_ubo, srd);

      /* Copy using a small 3x3 box filter */
      GPU_framebuffer_bind(sldata->shadow_cube_copy_fb);
      DRW_draw_pass(psl->shadow_cube_copy_pass);
    }
    /* Push it to shadowmap array */
    {
      /* Adjust constants if concentric samples change. */
      const float max_filter_size = 7.5f;
      const float magic = 4.5f; /* Dunno why but that works. */
      const int max_sample = 256;

      if (filter_pixel_size > 2.0f) {
        srd->filter_size[0] = srd->cube_texel_size * max_filter_size * magic;
        filter_pixel_size = max_ff(0.0f, filter_pixel_size - 3.0f);
        /* Compute number of concentric samples. Depends directly on filter size. */
        float pix_size_sqr = filter_pixel_size * filter_pixel_size;
        srd->shadow_samples_len[0] = min_ii(
            max_sample, 4 + 8 * (int)filter_pixel_size + 4 * (int)(pix_size_sqr));
      }
      else {
        srd->filter_size[0] = 0.0f;
        srd->shadow_samples_len[0] = 4;
      }
      srd->view_count = 1;
      srd->base_id = evscd->layer_id;
      srd->shadow_samples_len_inv[0] = 1.0f / (float)srd->shadow_samples_len[0];
      DRW_uniformbuffer_update(sldata->shadow_render_ubo, srd);

      DRWPass *store_pass = eevee_lights_cube_store_pass_get(
          psl, sldata, linfo->shadow_method, srd->shadow_samples_len[0]);

      GPU_framebuffer_bind(sldata->shadow_cube_store_fb);
      DRW_draw_pass(store_pass);
    }

    if (linfo->soft_shadows == false) {
      led->need_update = false;
    }
  }
  linfo->update_flag &= ~LIGHT_UPDATE_SHADOW_CUBE;
  DRW_stats_group_end();

  float near = DRW_view_near_distance_get(view);
  float far = DRW_view_far_distance_get(view);

  /* Cascaded Shadow Maps */
  DRW_stats_group_start("Cascaded Shadow Maps");
  for (i = 0; (ob = linfo->shadow_cascade_ref[i]) && (i < MAX_SHADOW_CASCADE); i++) {
    if (!cascade_visible[i]) {
      continue;
    }

    EEVEE_LightEngineData *led = EEVEE_light_data_ensure(ob);
    Light *la = (Light *)ob->data;

    EEVEE_ShadowCascadeData *evscd = &led->data.scad;
    EEVEE_ShadowRender *srd = &linfo->shadow_render_data;

    srd->clip_near = la->clipsta;
    srd->clip_far = la->clipend;
    srd->view_count = la->cascade_count;
    srd->stored_texel_size = 1.0 / (float)linfo->shadow_cascade_size;

    DRW_uniformbuffer_update(sldata->shadow_render_ubo, &linfo->shadow_render_data);

    eevee_shadow_cascade_setup(ob, linfo, led, view, near, far, effects->taa_current_sample - 1);

    /* Meh, Reusing the cube views. */
    BLI_assert(MAX_CASCADE_NUM <= 6);
    eevee_ensure_cascade_views(evscd, la->cascade_count, g_data->cube_views);

    /* Render shadow cascades */
    /* Render cascade separately: seems to be faster for the general case.
     * The only time it's more beneficial is when the CPU culling overhead
     * outweigh the instancing overhead. which is rarely the case. */
    for (int j = 0; j < la->cascade_count; j++) {
      DRW_view_set_active(g_data->cube_views[j]);

      GPU_framebuffer_texture_layer_attach(
          sldata->shadow_cascade_target_fb, sldata->shadow_cascade_target, 0, j, 0);
      GPU_framebuffer_bind(sldata->shadow_cascade_target_fb);
      GPU_framebuffer_clear_depth(sldata->shadow_cascade_target_fb, 1.0f);
      DRW_draw_pass(psl->shadow_pass);
    }
    /* Copy using a small 3x3 box filter */
    {
      /* NOTE: We always do it in the case of CSM because of artifacts in the farthest cascade. */
      copy_v4_fl(srd->filter_size, srd->stored_texel_size);
      srd->base_id = 0;
      DRW_uniformbuffer_update(sldata->shadow_render_ubo, srd);

      GPU_framebuffer_bind(sldata->shadow_cascade_copy_fb);
      DRW_draw_pass(psl->shadow_cascade_copy_pass);
    }
    /* Push it to shadowmap array and blur more */
    {
      int max_pass_sample = 0;

      for (int j = 0; j < la->cascade_count; j++) {
        /* 0.01f factor to convert to percentage */
        float filter_texture_size = la->soft * 0.01f / evscd->radius[j];
        float filter_pixel_size = ceil(linfo->shadow_cascade_size * filter_texture_size);
        /* Adjust constants if concentric samples change. */
        const float max_filter_size = 7.5f;
        const float magic = 3.2f; /* Arbitrary: less banding */
        const int max_sample = 256;

        if (filter_pixel_size > 2.0f) {
          srd->filter_size[j] = srd->stored_texel_size * max_filter_size * magic;
          filter_pixel_size = max_ff(0.0f, filter_pixel_size - 3.0f);
          /* Compute number of concentric samples. Depends directly on filter size. */
          float pix_size_sqr = filter_pixel_size * filter_pixel_size;
          srd->shadow_samples_len[j] = min_ii(
              max_sample, 4 + 8 * (int)filter_pixel_size + 4 * (int)(pix_size_sqr));
        }
        else {
          srd->filter_size[j] = 0.0f;
          srd->shadow_samples_len[j] = 4;
        }
        srd->shadow_samples_len_inv[j] = 1.0f / (float)srd->shadow_samples_len[j];
        max_pass_sample = max_ii(max_pass_sample, srd->shadow_samples_len[j]);
      }
      srd->base_id = evscd->layer_id;
      DRW_uniformbuffer_update(sldata->shadow_render_ubo, srd);

      /* XXX(fclem) this create drawcalls outside of cache generation. */
      DRWPass *store_pass = eevee_lights_cascade_store_pass_get(
          psl, sldata, linfo->shadow_method, max_pass_sample);

      GPU_framebuffer_bind(sldata->shadow_cascade_store_fb);
      DRW_draw_pass(store_pass);
    }
  }

  DRW_stats_group_end();

  DRW_view_set_active(view);

  DRW_uniformbuffer_update(sldata->light_ubo, &linfo->light_data);
  DRW_uniformbuffer_update(sldata->shadow_ubo, &linfo->shadow_data); /* Update all data at once */

  sldata->common_data.ray_type = saved_ray_type;
  DRW_uniformbuffer_update(sldata->common_ubo, &sldata->common_data);
}

void EEVEE_lights_free(void)
{
  DRW_SHADER_FREE_SAFE(e_data.shadow_sh);
  for (int i = 0; i < SHADOW_METHOD_MAX; ++i) {
    DRW_SHADER_FREE_SAFE(e_data.shadow_store_cube_sh[i]);
    DRW_SHADER_FREE_SAFE(e_data.shadow_store_cube_high_sh[i]);
    DRW_SHADER_FREE_SAFE(e_data.shadow_store_cascade_sh[i]);
    DRW_SHADER_FREE_SAFE(e_data.shadow_store_cascade_high_sh[i]);
    DRW_SHADER_FREE_SAFE(e_data.shadow_copy_cube_sh[i]);
    DRW_SHADER_FREE_SAFE(e_data.shadow_copy_cascade_sh[i]);
  }
}