Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ambient_occlusion_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2f6f8327f58eaca53f31f7d777c9da61d7892e71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

#pragma BLENDER_REQUIRE(common_math_lib.glsl)
#pragma BLENDER_REQUIRE(raytrace_lib.glsl)

/* Based on Practical Realtime Strategies for Accurate Indirect Occlusion
 * http://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf
 * http://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pptx
 */

#if defined(MESH_SHADER)
#  if !defined(USE_ALPHA_HASH)
#    if !defined(DEPTH_SHADER)
#      if !defined(USE_ALPHA_BLEND)
#        define ENABLE_DEFERED_AO
#      endif
#    endif
#  endif
#endif

#ifndef ENABLE_DEFERED_AO
#  if defined(STEP_RESOLVE)
#    define ENABLE_DEFERED_AO
#  endif
#endif

#define MAX_PHI_STEP 32
#define MAX_SEARCH_ITER 32
#define MAX_LOD 6.0

uniform sampler2D horizonBuffer;

/* aoSettings flags */
#define USE_AO 1
#define USE_BENT_NORMAL 2
#define USE_DENOISE 4

vec4 pack_horizons(vec4 v)
{
  return v * 0.5 + 0.5;
}
vec4 unpack_horizons(vec4 v)
{
  return v * 2.0 - 1.0;
}

/* Returns maximum screen distance an AO ray can travel for a given view depth */
vec2 get_max_dir(float view_depth)
{
  float homcco = ProjectionMatrix[2][3] * view_depth + ProjectionMatrix[3][3];
  float max_dist = aoDistance / homcco;
  return vec2(ProjectionMatrix[0][0], ProjectionMatrix[1][1]) * max_dist;
}

vec2 get_ao_dir(float jitter)
{
  /* Only half a turn because we integrate in slices. */
  jitter *= M_PI;
  return vec2(cos(jitter), sin(jitter));
}

void get_max_horizon_grouped(vec4 co1, vec4 co2, vec3 x, float lod, inout float h)
{
  int mip = int(lod) + hizMipOffset;
  co1 *= mipRatio[mip].xyxy;
  co2 *= mipRatio[mip].xyxy;

  float depth1 = textureLod(maxzBuffer, co1.xy, floor(lod)).r;
  float depth2 = textureLod(maxzBuffer, co1.zw, floor(lod)).r;
  float depth3 = textureLod(maxzBuffer, co2.xy, floor(lod)).r;
  float depth4 = textureLod(maxzBuffer, co2.zw, floor(lod)).r;

  vec4 len, s_h;

  vec3 s1 = get_view_space_from_depth(co1.xy, depth1); /* s View coordinate */
  vec3 omega_s1 = s1 - x;
  len.x = length(omega_s1);
  s_h.x = omega_s1.z / len.x;

  vec3 s2 = get_view_space_from_depth(co1.zw, depth2); /* s View coordinate */
  vec3 omega_s2 = s2 - x;
  len.y = length(omega_s2);
  s_h.y = omega_s2.z / len.y;

  vec3 s3 = get_view_space_from_depth(co2.xy, depth3); /* s View coordinate */
  vec3 omega_s3 = s3 - x;
  len.z = length(omega_s3);
  s_h.z = omega_s3.z / len.z;

  vec3 s4 = get_view_space_from_depth(co2.zw, depth4); /* s View coordinate */
  vec3 omega_s4 = s4 - x;
  len.w = length(omega_s4);
  s_h.w = omega_s4.z / len.w;

  /* Blend weight after half the aoDistance to fade artifacts */
  vec4 blend = saturate((1.0 - len / aoDistance) * 2.0);

  h = mix(h, max(h, s_h.x), blend.x);
  h = mix(h, max(h, s_h.y), blend.y);
  h = mix(h, max(h, s_h.z), blend.z);
  h = mix(h, max(h, s_h.w), blend.w);
}

vec2 search_horizon_sweep(vec2 t_phi, vec3 pos, vec2 uvs, float jitter, vec2 max_dir)
{
  max_dir *= max_v2(abs(t_phi));

  /* Convert to pixel space. */
  t_phi /= vec2(textureSize(maxzBuffer, 0));

  /* Avoid division by 0 */
  t_phi += vec2(1e-5);

  jitter *= 0.25;

  /* Compute end points */
  vec2 corner1 = min(vec2(1.0) - uvs, max_dir);  /* Top right */
  vec2 corner2 = max(vec2(0.0) - uvs, -max_dir); /* Bottom left */
  vec2 iter1 = corner1 / t_phi;
  vec2 iter2 = corner2 / t_phi;

  vec2 min_iter = max(-iter1, -iter2);
  vec2 max_iter = max(iter1, iter2);

  vec2 times = vec2(-min_v2(min_iter), min_v2(max_iter));

  vec2 h = vec2(-1.0); /* init at cos(pi) */

  /* This is freaking sexy optimized. */
  for (float i = 0.0, ofs = 4.0, time = -1.0; i < MAX_SEARCH_ITER && time > times.x;
       i++, time -= ofs, ofs = min(exp2(MAX_LOD) * 4.0, ofs + ofs * aoQuality)) {
    vec4 t = max(times.xxxx, vec4(time) - (vec4(0.25, 0.5, 0.75, 1.0) - jitter) * ofs);
    vec4 cos1 = uvs.xyxy + t_phi.xyxy * t.xxyy;
    vec4 cos2 = uvs.xyxy + t_phi.xyxy * t.zzww;
    float lod = min(MAX_LOD, max(i - jitter * 4.0, 0.0) * aoQuality);
    get_max_horizon_grouped(cos1, cos2, pos, lod, h.y);
  }

  for (float i = 0.0, ofs = 4.0, time = 1.0; i < MAX_SEARCH_ITER && time < times.y;
       i++, time += ofs, ofs = min(exp2(MAX_LOD) * 4.0, ofs + ofs * aoQuality)) {
    vec4 t = min(times.yyyy, vec4(time) + (vec4(0.25, 0.5, 0.75, 1.0) - jitter) * ofs);
    vec4 cos1 = uvs.xyxy + t_phi.xyxy * t.xxyy;
    vec4 cos2 = uvs.xyxy + t_phi.xyxy * t.zzww;
    float lod = min(MAX_LOD, max(i - jitter * 4.0, 0.0) * aoQuality);
    get_max_horizon_grouped(cos1, cos2, pos, lod, h.x);
  }

  return h;
}

void integrate_slice(
    vec3 normal, vec2 t_phi, vec2 horizons, inout float visibility, inout vec3 bent_normal)
{
  /* Projecting Normal to Plane P defined by t_phi and omega_o */
  vec3 np = vec3(t_phi.y, -t_phi.x, 0.0); /* Normal vector to Integration plane */
  vec3 t = vec3(-t_phi, 0.0);
  vec3 n_proj = normal - np * dot(np, normal);
  float n_proj_len = max(1e-16, length(n_proj));

  float cos_n = clamp(n_proj.z / n_proj_len, -1.0, 1.0);
  float n = sign(dot(n_proj, t)) * fast_acos(cos_n); /* Angle between view vec and normal */

  /* (Slide 54) */
  vec2 h = fast_acos(horizons);
  h.x = -h.x;

  /* Clamping thetas (slide 58) */
  h.x = n + max(h.x - n, -M_PI_2);
  h.y = n + min(h.y - n, M_PI_2);

  /* Solving inner integral */
  vec2 h_2 = 2.0 * h;
  vec2 vd = -cos(h_2 - n) + cos_n + h_2 * sin(n);
  float vis = saturate((vd.x + vd.y) * 0.25 * n_proj_len);

  visibility += vis;

  /* O. Klehm, T. Ritschel, E. Eisemann, H.-P. Seidel
   * Bent Normals and Cones in Screen-space
   * Sec. 3.1 : Bent normals */
  float b_angle = (h.x + h.y) * 0.5;
  bent_normal += vec3(sin(b_angle) * -t_phi, cos(b_angle)) * vis;
}

void gtao_deferred(
    vec3 normal, vec4 noise, float frag_depth, out float visibility, out vec3 bent_normal)
{
  /* Fetch early, hide latency! */
  vec4 horizons = texelFetch(horizonBuffer, ivec2(gl_FragCoord.xy), 0);

  vec4 dirs;
  dirs.xy = get_ao_dir(noise.x * 0.5);
  dirs.zw = get_ao_dir(noise.x * 0.5 + 0.5);

  bent_normal = normal * 1e-8;
  visibility = 1e-8;

  horizons = unpack_horizons(horizons);

  integrate_slice(normal, dirs.xy, horizons.xy, visibility, bent_normal);
  integrate_slice(normal, dirs.zw, horizons.zw, visibility, bent_normal);

  bent_normal = normalize(bent_normal / visibility);

  visibility *= 0.5; /* We integrated 2 slices. */
}

void gtao(vec3 normal, vec3 position, vec4 noise, out float visibility, out vec3 bent_normal)
{
  vec2 uvs = get_uvs_from_view(position);
  vec2 max_dir = get_max_dir(position.z);
  vec2 dir = get_ao_dir(noise.x);

  bent_normal = normal * 1e-8;
  visibility = 1e-8;

  /* Only trace in 2 directions. May lead to a darker result but since it's mostly for
   * alpha blended objects that will have overdraw, we limit the performance impact. */
  vec2 horizons = search_horizon_sweep(dir, position, uvs, noise.y, max_dir);
  integrate_slice(normal, dir, horizons, visibility, bent_normal);

  bent_normal = normalize(bent_normal / visibility);
}

/* Multibounce approximation base on surface albedo.
 * Page 78 in the .pdf version. */
float gtao_multibounce(float visibility, vec3 albedo)
{
  if (aoBounceFac == 0.0) {
    return visibility;
  }

  /* Median luminance. Because Colored multibounce looks bad. */
  float lum = dot(albedo, vec3(0.3333));

  float a = 2.0404 * lum - 0.3324;
  float b = -4.7951 * lum + 0.6417;
  float c = 2.7552 * lum + 0.6903;

  float x = visibility;
  return max(x, ((x * a + b) * x + c) * x);
}

float specular_occlusion(float NV, float AO, float roughness)
{
  return saturate(pow(NV + AO, roughness) - 1.0 + AO);
}

/* Use the right occlusion  */
float occlusion_compute(vec3 N, vec3 vpos, float user_occlusion, vec4 rand, out vec3 bent_normal)
{
#ifndef USE_REFRACTION
  if ((int(aoSettings) & USE_AO) != 0) {
    float visibility;
    vec3 vnor = mat3(ViewMatrix) * N;

#  ifdef ENABLE_DEFERED_AO
    gtao_deferred(vnor, rand, gl_FragCoord.z, visibility, bent_normal);
#  else
    gtao(vnor, vpos, rand, visibility, bent_normal);
#  endif

    /* Prevent some problems down the road. */
    visibility = max(1e-3, visibility);

    if ((int(aoSettings) & USE_BENT_NORMAL) != 0) {
      /* The bent normal will show the facet look of the mesh. Try to minimize this. */
      float mix_fac = visibility * visibility * visibility;
      bent_normal = normalize(mix(bent_normal, vnor, mix_fac));

      bent_normal = transform_direction(ViewMatrixInverse, bent_normal);
    }
    else {
      bent_normal = N;
    }

    /* Scale by user factor */
    visibility = pow(visibility, aoFactor);

    return min(visibility, user_occlusion);
  }
#endif

  bent_normal = N;
  return user_occlusion;
}