Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bsdf_direct_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ddc7327334cd18883c0682409c4d609b71a02521 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/* Bsdf direct light function */
/* in other word, how materials react to scene lamps */

/* Naming convention
 * V       View vector (normalized)
 * N       World Normal (normalized)
 * L       Outgoing Light Vector (Surface to Light in World Space) (normalized)
 * Ldist   Distance from surface to the light
 * W       World Pos
 */

/* ------------ Diffuse ------------- */

float direct_diffuse_point(vec3 N, vec4 l_vector)
{
	float dist = l_vector.w;
	vec3 L = l_vector.xyz / dist;
	float bsdf = max(0.0, dot(N, L));
	bsdf /= dist * dist;
	return bsdf;
}

/* infinitly far away point source, no decay */
float direct_diffuse_sun(LightData ld, vec3 N)
{
	float bsdf = max(0.0, dot(N, -ld.l_forward));
	bsdf *= M_1_PI; /* Normalize */
	return bsdf;
}

#ifdef USE_LTC
float direct_diffuse_sphere(LightData ld, vec3 N, vec4 l_vector)
{
	float NL = dot(N, l_vector.xyz / l_vector.w);

	return ltc_evaluate_disk_simple(ld.l_radius / l_vector.w, NL);
}

float direct_diffuse_rectangle(LightData ld, vec3 N, vec3 V, vec4 l_vector)
{
	vec3 corners[4];
	corners[0] = normalize(l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up *  ld.l_sizey);
	corners[1] = normalize(l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * -ld.l_sizey);
	corners[2] = normalize(l_vector.xyz + ld.l_right *  ld.l_sizex + ld.l_up * -ld.l_sizey);
	corners[3] = normalize(l_vector.xyz + ld.l_right *  ld.l_sizex + ld.l_up *  ld.l_sizey);

	return ltc_evaluate_quad(corners, N);
}

float direct_diffuse_unit_disc(LightData ld, vec3 N, vec3 V)
{
	float NL = dot(N, -ld.l_forward);

	return ltc_evaluate_disk_simple(ld.l_radius, NL);
}
#endif

/* ----------- GGx ------------ */
vec3 direct_ggx_point(vec3 N, vec3 V, vec4 l_vector, float roughness, vec3 f0)
{
	roughness = max(1e-3, roughness);
	float dist = l_vector.w;
	vec3 L = l_vector.xyz / dist;
	float bsdf = bsdf_ggx(N, L, V, roughness);
	bsdf /= dist * dist;

	/* Fresnel */
	float VH = max(dot(V, normalize(V + L)), 0.0);
	return F_schlick(f0, VH) * bsdf;
}

vec3 direct_ggx_sun(LightData ld, vec3 N, vec3 V, float roughness, vec3 f0)
{
	roughness = max(1e-3, roughness);
	float bsdf = bsdf_ggx(N, -ld.l_forward, V, roughness);
	float VH = dot(V, -ld.l_forward) * 0.5 + 0.5;
	return F_schlick(f0, VH) * bsdf;
}

#ifdef USE_LTC
vec3 direct_ggx_sphere(LightData ld, vec3 N, vec3 V, vec4 l_vector, float roughness, vec3 f0)
{
	roughness = clamp(roughness, 0.0008, 0.999); /* Fix low roughness artifacts. */

	vec2 uv = lut_coords(dot(N, V), sqrt(roughness));
	vec3 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rgb;
	vec4 ltc_lut = texture(utilTex, vec3(uv, 0.0)).rgba;
	mat3 ltc_mat = ltc_matrix(ltc_lut);

	/* Make orthonormal basis. */
	vec3 L = l_vector.xyz / l_vector.w;
	vec3 Px, Py;
	make_orthonormal_basis(L, Px, Py);
	Px *= ld.l_radius;
	Py *= ld.l_radius;

	vec3 points[3];
	points[0] = l_vector.xyz - Px - Py;
	points[1] = l_vector.xyz + Px - Py;
	points[2] = l_vector.xyz + Px + Py;

	float bsdf = ltc_evaluate_disk(N, V, ltc_mat, points);
	bsdf *= brdf_lut.b; /* Bsdf intensity */

	vec3 spec = F_area(f0, brdf_lut.xy) * bsdf;

	return spec;
}

vec3 direct_ggx_rectangle(LightData ld, vec3 N, vec3 V, vec4 l_vector, float roughness, vec3 f0)
{
	vec3 corners[4];
	corners[0] = l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up *  ld.l_sizey;
	corners[1] = l_vector.xyz + ld.l_right * -ld.l_sizex + ld.l_up * -ld.l_sizey;
	corners[2] = l_vector.xyz + ld.l_right *  ld.l_sizex + ld.l_up * -ld.l_sizey;
	corners[3] = l_vector.xyz + ld.l_right *  ld.l_sizex + ld.l_up *  ld.l_sizey;

	vec2 uv = lut_coords(dot(N, V), sqrt(roughness));
	vec3 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rgb;
	vec4 ltc_lut = texture(utilTex, vec3(uv, 0.0)).rgba;
	mat3 ltc_mat = ltc_matrix(ltc_lut);

	ltc_transform_quad(N, V, ltc_mat, corners);
	float bsdf = ltc_evaluate_quad(corners, vec3(0.0, 0.0, 1.0));
	bsdf *= brdf_lut.b; /* Bsdf intensity */

	vec3 spec = F_area(f0, brdf_lut.xy) * bsdf;

	return spec;
}

vec3 direct_ggx_unit_disc(LightData ld, vec3 N, vec3 V, float roughness, vec3 f0)
{
	roughness = clamp(roughness, 0.0004, 0.999); /* Fix low roughness artifacts. */

	vec2 uv = lut_coords(dot(N, V), sqrt(roughness));
	vec3 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rgb;
	vec4 ltc_lut = texture(utilTex, vec3(uv, 0.0)).rgba;
	mat3 ltc_mat = ltc_matrix(ltc_lut);

	vec3 Px = ld.l_right * ld.l_radius;
	vec3 Py = ld.l_up * ld.l_radius;

	vec3 points[3];
	points[0] = -ld.l_forward - Px - Py;
	points[1] = -ld.l_forward + Px - Py;
	points[2] = -ld.l_forward + Px + Py;

	float bsdf = ltc_evaluate_disk(N, V, ltc_mat, points);
	bsdf *= brdf_lut.b; /* Bsdf intensity */

	vec3 spec = F_area(f0, brdf_lut.xy) * bsdf;

	return spec;
}
#endif