Welcome to mirror list, hosted at ThFree Co, Russian Federation.

effect_dof_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: da34b2211045f01a843a8f5d78648e5329c378c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

#pragma BLENDER_REQUIRE(common_view_lib.glsl)
#pragma BLENDER_REQUIRE(common_math_lib.glsl)

uniform vec4 cocParams;

#define cocMul cocParams[0]  /* distance * aperturesize * invsensorsize */
#define cocBias cocParams[1] /* aperturesize * invsensorsize */
#define cocNear cocParams[2] /* Near view depths value. */
#define cocFar cocParams[3]  /* Far view depths value. */

/* -------------- Debug Defines ------------- */

// #define DOF_DEBUG_GATHER_PERF
// #define DOF_DEBUG_SCATTER_PERF

const bool no_smooth_intersection = false;
const bool no_gather_occlusion = false;
const bool no_gather_mipmaps = false;
const bool no_gather_random = false;
const bool no_gather_filtering = false;
const bool no_scatter_occlusion = false;
const bool no_scatter_pass = false;
const bool no_foreground_pass = false;
const bool no_background_pass = false;
const bool no_slight_focus_pass = false;
const bool no_focus_pass = false;
const bool no_holefill_pass = false;

/* -------------- Quality Defines ------------- */

#ifdef DOF_HOLEFILL_PASS
/* No need for very high density for holefill. */
const int gather_ring_count = 3;
const int gather_ring_density = 3;
const int gather_max_density_change = 0;
const int gather_density_change_ring = 1;
#else
const int gather_ring_count = DOF_GATHER_RING_COUNT;
const int gather_ring_density = 3;
const int gather_max_density_change = 50; /* Dictates the maximum good quality blur. */
const int gather_density_change_ring = 1;
#endif

/* -------------- Utils ------------- */

const vec2 quad_offsets[4] = vec2[4](
    vec2(-0.5, 0.5), vec2(0.5, 0.5), vec2(0.5, -0.5), vec2(-0.5, -0.5));

/* Divide by sensor size to get the normalized size. */
#define calculate_coc_persp(zdepth) (cocMul / zdepth - cocBias)
#define calculate_coc_ortho(zdepth) ((zdepth + cocMul / cocBias) * cocMul)
#define calculate_coc(z) \
  (ProjectionMatrix[3][3] == 0.0) ? calculate_coc_persp(z) : calculate_coc_ortho(z)

/* Ortho conversion is only true for camera view! */
#define linear_depth_persp(d) ((cocNear * cocFar) / (d * (cocNear - cocFar) + cocFar))
#define linear_depth_ortho(d) (d * (cocNear - cocFar) + cocNear)

#define linear_depth(d) \
  ((ProjectionMatrix[3][3] == 0.0) ? linear_depth_persp(d) : linear_depth_ortho(d))

#define dof_coc_from_zdepth(d) calculate_coc(linear_depth(d))

float dof_hdr_color_weight(vec4 color)
{
  /* From UE4. Very fast "luma" weighting. */
  float luma = (color.g * 2.0) + (color.r + color.b);
  /* TODO(fclem) Pass correct exposure. */
  const float exposure = 1.0;
  return 1.0 / (luma * exposure + 4.0);
}

float dof_coc_select(vec4 cocs)
{
  /* Select biggest coc. */
  float selected_coc = cocs.x;
  if (abs(cocs.y) > abs(selected_coc)) {
    selected_coc = cocs.y;
  }
  if (abs(cocs.z) > abs(selected_coc)) {
    selected_coc = cocs.z;
  }
  if (abs(cocs.w) > abs(selected_coc)) {
    selected_coc = cocs.w;
  }
  return selected_coc;
}

/* NOTE: Do not forget to normalize weights afterwards. */
vec4 dof_downsample_bilateral_coc_weights(vec4 cocs)
{
  float chosen_coc = dof_coc_select(cocs);

  const float scale = 4.0; /* TODO(fclem) revisit. */
  /* NOTE: The difference between the cocs should be inside a abs() function,
   * but we follow UE4 implementation to improve how dithered transparency looks (see slide 19). */
  return saturate(1.0 - (chosen_coc - cocs) * scale);
}

/* NOTE: Do not forget to normalize weights afterwards. */
vec4 dof_downsample_bilateral_color_weights(vec4 colors[4])
{
  vec4 weights;
  for (int i = 0; i < 4; i++) {
    weights[i] = dof_hdr_color_weight(colors[i]);
  }
  return weights;
}

/* Makes sure the load functions distribute the energy correctly
 * to both scatter and gather passes. */
vec4 dof_load_gather_color(sampler2D gather_input_color_buffer, vec2 uv, float lod)
{
  vec4 color = textureLod(gather_input_color_buffer, uv, lod);
  return color;
}

vec4 dof_load_scatter_color(sampler2D scatter_input_color_buffer, vec2 uv, float lod)
{
  vec4 color = textureLod(scatter_input_color_buffer, uv, lod);
  return color;
}

float dof_load_gather_coc(sampler2D gather_input_coc_buffer, vec2 uv, float lod)
{
  float coc = textureLod(gather_input_coc_buffer, uv, lod).r;
  /* We gather at halfres. CoC must be divided by 2 to be compared against radii. */
  return coc * 0.5;
}

/* Distribute weights between near/slightfocus/far fields (slide 117). */
const float layer_threshold = 4.0;
/* Make sure it overlaps. */
const float layer_offset_fg = 0.5 + 1.0;
/* Extra offset for convolution layers to avoid light leaking from background. */
const float layer_offset = 0.5 + 0.5;

#define DOF_MAX_SLIGHT_FOCUS_RADIUS 16

float dof_layer_weight(float coc, const bool is_foreground)
{
/* NOTE: These are fullres pixel CoC value. */
#ifdef DOF_RESOLVE_PASS
  return saturate(-abs(coc) + layer_threshold + layer_offset) *
         float(is_foreground ? (coc <= 0.5) : (coc > -0.5));
#else
  coc *= 2.0; /* Account for half pixel gather. */
  float threshold = layer_threshold - ((is_foreground) ? layer_offset_fg : layer_offset);
  return saturate(((is_foreground) ? -coc : coc) - threshold);
#endif
}
vec4 dof_layer_weight(vec4 coc)
{
  /* NOTE: Used for scatter pass which already flipped the sign correctly. */
  coc *= 2.0; /* Account for half pixel gather. */
  return saturate(coc - layer_threshold + layer_offset);
}

/* NOTE: This is halfres CoC radius. */
float dof_sample_weight(float coc)
{
  /* Full intensity if CoC radius is below the pixel footprint. */
  const float min_coc = 1.0;
  coc = max(min_coc, abs(coc));
  return (M_PI * min_coc * min_coc) / (M_PI * coc * coc);
}
vec4 dof_sample_weight(vec4 coc)
{
  /* Full intensity if CoC radius is below the pixel footprint. */
  const float min_coc = 1.0;
  coc = max(vec4(min_coc), abs(coc));
  return (M_PI * min_coc * min_coc) / (M_PI * coc * coc);
}

/* Intersection with the center of the kernel. */
float dof_intersection_weight(float coc, float distance_from_center, float intersection_multiplier)
{
  if (no_smooth_intersection) {
    return step(0.0, (abs(coc) - distance_from_center));
  }
  else {
    /* (Slide 64). */
    return saturate((abs(coc) - distance_from_center) * intersection_multiplier + 0.5);
  }
}

/* Returns weight of the sample for the outer bucket (containing previous rings). */
float dof_gather_accum_weight(float coc, float bordering_radius, bool first_ring)
{
  /* First ring has nothing to be mixed against. */
  if (first_ring) {
    return 0.0;
  }
  return saturate(coc - bordering_radius);
}

bool dof_do_fast_gather(float max_absolute_coc, float min_absolute_coc, const bool is_foreground)
{
  float min_weight = dof_layer_weight((is_foreground) ? -min_absolute_coc : min_absolute_coc,
                                      is_foreground);
  if (min_weight < 1.0) {
    return false;
  }
  /* FIXME(fclem): This is a workaround to fast gather triggering too early.
   * Since we use custom opacity mask, the opacity is not given to be 100% even for
   * after normal threshold. */
  if (is_foreground && min_absolute_coc < layer_threshold) {
    return false;
  }
  return (max_absolute_coc - min_absolute_coc) < (DOF_FAST_GATHER_COC_ERROR * max_absolute_coc);
}

/* ------------------- COC TILES UTILS ------------------- */

struct CocTile {
  float fg_min_coc;
  float fg_max_coc;
  float fg_max_intersectable_coc;
  float fg_slight_focus_max_coc;
  float bg_min_coc;
  float bg_max_coc;
  float bg_min_intersectable_coc;
};

struct CocTilePrediction {
  bool do_foreground;
  bool do_slight_focus;
  bool do_focus;
  bool do_background;
  bool do_holefill;
};

/* WATCH: Might have to change depending on the texture format. */
#define DOF_TILE_DEFOCUS 0.25
#define DOF_TILE_FOCUS 0.0
#define DOF_TILE_MIXED 0.75
#define DOF_TILE_LARGE_COC 1024.0

/* Init a CoC tile for reduction algorithms. */
CocTile dof_coc_tile_init(void)
{
  CocTile tile;
  tile.fg_min_coc = 0.0;
  tile.fg_max_coc = -DOF_TILE_LARGE_COC;
  tile.fg_max_intersectable_coc = DOF_TILE_LARGE_COC;
  tile.fg_slight_focus_max_coc = -1.0;
  tile.bg_min_coc = DOF_TILE_LARGE_COC;
  tile.bg_max_coc = 0.0;
  tile.bg_min_intersectable_coc = DOF_TILE_LARGE_COC;
  return tile;
}

CocTile dof_coc_tile_load(sampler2D fg_buffer, sampler2D bg_buffer, ivec2 tile_co)
{
  ivec2 tex_size = textureSize(fg_buffer, 0).xy;
  tile_co = clamp(tile_co, ivec2(0), tex_size - 1);

  vec4 fg = texelFetch(fg_buffer, tile_co, 0);
  vec3 bg = texelFetch(bg_buffer, tile_co, 0).xyz;

  CocTile tile;
  tile.fg_min_coc = -fg.x;
  tile.fg_max_coc = -fg.y;
  tile.fg_max_intersectable_coc = -fg.z;
  tile.fg_slight_focus_max_coc = fg.w;
  tile.bg_min_coc = bg.x;
  tile.bg_max_coc = bg.y;
  tile.bg_min_intersectable_coc = bg.z;
  return tile;
}

void dof_coc_tile_store(CocTile tile, out vec4 out_fg, out vec3 out_bg)
{
  out_fg.x = -tile.fg_min_coc;
  out_fg.y = -tile.fg_max_coc;
  out_fg.z = -tile.fg_max_intersectable_coc;
  out_fg.w = tile.fg_slight_focus_max_coc;
  out_bg.x = tile.bg_min_coc;
  out_bg.y = tile.bg_max_coc;
  out_bg.z = tile.bg_min_intersectable_coc;
}

CocTilePrediction dof_coc_tile_prediction_get(CocTile tile)
{
  /* Based on tile value, predict what pass we need to load. */
  CocTilePrediction predict;

  predict.do_foreground = (-tile.fg_min_coc > layer_threshold - layer_offset_fg);
  bool fg_fully_opaque = predict.do_foreground &&
                         dof_do_fast_gather(-tile.fg_min_coc, -tile.fg_max_coc, true);

  predict.do_slight_focus = !fg_fully_opaque && (tile.fg_slight_focus_max_coc >= 0.5);
  predict.do_focus = !fg_fully_opaque && (tile.fg_slight_focus_max_coc == DOF_TILE_FOCUS);

  predict.do_background = !predict.do_focus && !fg_fully_opaque &&
                          (tile.bg_max_coc > layer_threshold - layer_offset);
  bool bg_fully_opaque = predict.do_background &&
                         dof_do_fast_gather(-tile.bg_max_coc, tile.bg_min_coc, false);
  predict.do_holefill = !predict.do_focus && !fg_fully_opaque && -tile.fg_max_coc > 0.0;

#if 0 /* Debug */
  predict.do_foreground = predict.do_background = predict.do_holefill = true;
#endif
  return predict;
}

/* Special function to return the correct max value of 2 slight focus coc. */
float dof_coc_max_slight_focus(float coc1, float coc2)
{
  /* Do not consider values below 0.5 for expansion as they are "encoded".
   * See setup pass shader for more infos. */
  if ((coc1 == DOF_TILE_DEFOCUS && coc2 == DOF_TILE_FOCUS) ||
      (coc1 == DOF_TILE_FOCUS && coc2 == DOF_TILE_DEFOCUS)) {
    /* Tile where completely out of focus and in focus are both present.
     * Consider as very slightly out of focus. */
    return DOF_TILE_MIXED;
  }
  return max(coc1, coc2);
}

/* ------------------- GATHER UTILS ------------------- */

struct DofGatherData {
  vec4 color;
  float weight;
  float dist; /* TODO remove */
  /* For scatter occlusion. */
  float coc;
  float coc_sqr;
  /* For ring bucket merging. */
  float transparency;

  float layer_opacity;
};

#define GATHER_DATA_INIT DofGatherData(vec4(0.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

void dof_gather_ammend_weight(inout DofGatherData sample_data, float weight)
{
  sample_data.color *= weight;
  sample_data.coc *= weight;
  sample_data.coc_sqr *= weight;
  sample_data.weight *= weight;
}

void dof_gather_accumulate_sample(DofGatherData sample_data,
                                  float weight,
                                  inout DofGatherData accum_data)
{
  accum_data.color += sample_data.color * weight;
  accum_data.coc += sample_data.coc * weight;
  accum_data.coc_sqr += sample_data.coc * (sample_data.coc * weight);
  accum_data.weight += weight;
}

void dof_gather_accumulate_sample_pair(DofGatherData pair_data[2],
                                       float bordering_radius,
                                       float intersection_multiplier,
                                       bool first_ring,
                                       const bool do_fast_gather,
                                       const bool is_foreground,
                                       inout DofGatherData ring_data,
                                       inout DofGatherData accum_data)
{
  if (do_fast_gather) {
    for (int i = 0; i < 2; i++) {
      dof_gather_accumulate_sample(pair_data[i], 1.0, accum_data);
      accum_data.layer_opacity += 1.0;
    }
    return;
  }

#if 0
  const float mirroring_threshold = -layer_threshold - layer_offset;
  /* TODO(fclem) Promote to parameter? dither with Noise? */
  const float mirroring_min_distance = 15.0;
  if (pair_data[0].coc < mirroring_threshold &&
      (pair_data[1].coc - mirroring_min_distance) > pair_data[0].coc) {
    pair_data[1].coc = pair_data[0].coc;
  }
  else if (pair_data[1].coc < mirroring_threshold &&
           (pair_data[0].coc - mirroring_min_distance) > pair_data[1].coc) {
    pair_data[0].coc = pair_data[1].coc;
  }
#endif

  for (int i = 0; i < 2; i++) {
    float sample_weight = dof_sample_weight(pair_data[i].coc);
    float layer_weight = dof_layer_weight(pair_data[i].coc, is_foreground);
    float inter_weight = dof_intersection_weight(
        pair_data[i].coc, pair_data[i].dist, intersection_multiplier);
    float weight = inter_weight * layer_weight * sample_weight;

    /**
     * If a CoC is larger than bordering radius we accumulate it to the general accumulator.
     * If not, we accumulate to the ring bucket. This is to have more consistent sample occlusion.
     */
    float accum_weight = dof_gather_accum_weight(pair_data[i].coc, bordering_radius, first_ring);
    dof_gather_accumulate_sample(pair_data[i], weight * accum_weight, accum_data);
    dof_gather_accumulate_sample(pair_data[i], weight * (1.0 - accum_weight), ring_data);

    accum_data.layer_opacity += layer_weight;

    if (is_foreground) {
      ring_data.transparency += 1.0 - inter_weight * layer_weight;
    }
    else {
      float coc = is_foreground ? -pair_data[i].coc : pair_data[i].coc;
      ring_data.transparency += saturate(coc - bordering_radius);
    }
  }
}

void dof_gather_accumulate_sample_ring(DofGatherData ring_data,
                                       int sample_count,
                                       bool first_ring,
                                       const bool do_fast_gather,
                                       /* accum_data occludes the ring_data if true. */
                                       const bool reversed_occlusion,
                                       inout DofGatherData accum_data)
{
  if (do_fast_gather) {
    /* Do nothing as ring_data contains nothing. All samples are already in accum_data. */
    return;
  }

  if (first_ring) {
    /* Layer opacity is directly accumulated into accum_data data. */
    accum_data.color = ring_data.color;
    accum_data.coc = ring_data.coc;
    accum_data.coc_sqr = ring_data.coc_sqr;
    accum_data.weight = ring_data.weight;

    accum_data.transparency = ring_data.transparency / float(sample_count);
    return;
  }

  if (ring_data.weight == 0.0) {
    return;
  }

  float ring_avg_coc = ring_data.coc / ring_data.weight;
  float accum_avg_coc = accum_data.coc / accum_data.weight;

  /* Smooth test to set opacity to see if the ring average coc occludes the accumulation.
   * Test is reversed to be multiplied against opacity. */
  float ring_occlu = saturate(accum_avg_coc - ring_avg_coc);
  /* The bias here is arbitrary. Seems to avoid weird looking foreground in most cases.
   * We might need to make it a parameter or find a relative bias. */
  float accum_occlu = saturate((ring_avg_coc - accum_avg_coc) * 0.1 - 1.0);

#ifdef DOF_RESOLVE_PASS
  ring_occlu = accum_occlu = 0.0;
#endif

  if (no_gather_occlusion) {
    ring_occlu = 0.0;
    accum_occlu = 0.0;
  }

  /* (Slide 40) */
  float ring_opacity = saturate(1.0 - ring_data.transparency / float(sample_count));
  float accum_opacity = 1.0 - accum_data.transparency;

  if (reversed_occlusion) {
    /* Accum_data occludes the ring. */
    float alpha = (accum_data.weight == 0.0) ? 0.0 : accum_opacity * accum_occlu;
    float one_minus_alpha = 1.0 - alpha;

    accum_data.color += ring_data.color * one_minus_alpha;
    accum_data.coc += ring_data.coc * one_minus_alpha;
    accum_data.coc_sqr += ring_data.coc_sqr * one_minus_alpha;
    accum_data.weight += ring_data.weight * one_minus_alpha;

    accum_data.transparency *= 1.0 - ring_opacity;
  }
  else {
    /* Ring occludes the accum_data (Same as reference). */
    float alpha = (accum_data.weight == 0.0) ? 1.0 : (ring_opacity * ring_occlu);
    float one_minus_alpha = 1.0 - alpha;

    accum_data.color = accum_data.color * one_minus_alpha + ring_data.color;
    accum_data.coc = accum_data.coc * one_minus_alpha + ring_data.coc;
    accum_data.coc_sqr = accum_data.coc_sqr * one_minus_alpha + ring_data.coc_sqr;
    accum_data.weight = accum_data.weight * one_minus_alpha + ring_data.weight;
  }
}

/* FIXME(fclem) Seems to be wrong since it needs ringcount+1 as input for slightfocus gather. */
int dof_gather_total_sample_count(const int ring_count, const int ring_density)
{
  return (ring_count * ring_count - ring_count) * ring_density + 1;
}

void dof_gather_accumulate_center_sample(DofGatherData center_data,
                                         float bordering_radius,
#ifdef DOF_RESOLVE_PASS
                                         int i_radius,
#endif
                                         const bool do_fast_gather,
                                         const bool is_foreground,
                                         inout DofGatherData accum_data)
{
  float layer_weight = dof_layer_weight(center_data.coc, is_foreground);
  float sample_weight = dof_sample_weight(center_data.coc);
  float weight = layer_weight * sample_weight;
  float accum_weight = dof_gather_accum_weight(center_data.coc, bordering_radius, false);

  if (do_fast_gather) {
    /* Hope for the compiler to optimize the above. */
    layer_weight = 1.0;
    sample_weight = 1.0;
    accum_weight = 1.0;
    weight = 1.0;
  }

  center_data.transparency = 1.0 - weight;

  dof_gather_accumulate_sample(center_data, weight * accum_weight, accum_data);

  if (!do_fast_gather) {
#ifdef DOF_RESOLVE_PASS
    /* NOTE(fclem): Hack to smooth transition to full in-focus opacity. */
    int total_sample_count = dof_gather_total_sample_count(i_radius + 1, DOF_SLIGHT_FOCUS_DENSITY);
    float fac = saturate(1.0 - abs(center_data.coc) / float(layer_threshold));
    accum_data.layer_opacity += float(total_sample_count) * fac * fac;
#endif
    accum_data.layer_opacity += layer_weight;

    /* Logic of dof_gather_accumulate_sample(). */
    weight *= (1.0 - accum_weight);
    center_data.coc_sqr = center_data.coc * (center_data.coc * weight);
    center_data.color *= weight;
    center_data.coc *= weight;
    center_data.weight = weight;

#ifdef DOF_FOREGROUND_PASS /* Reduce issue with closer foreground over distant foreground. */
    float ring_area = sqr(bordering_radius);
    dof_gather_ammend_weight(center_data, ring_area);
#endif

    /* Accumulate center as its own ring. */
    dof_gather_accumulate_sample_ring(
        center_data, 1, false, do_fast_gather, is_foreground, accum_data);
  }
}

int dof_gather_total_sample_count_with_density_change(const int ring_count,
                                                      const int ring_density,
                                                      int density_change)
{
  int sample_count_per_density_change = dof_gather_total_sample_count(ring_count, ring_density) -
                                        dof_gather_total_sample_count(
                                            ring_count - gather_density_change_ring, ring_density);

  return dof_gather_total_sample_count(ring_count, ring_density) +
         sample_count_per_density_change * density_change;
}

void dof_gather_accumulate_resolve(int total_sample_count,
                                   DofGatherData accum_data,
                                   out vec4 out_col,
                                   out float out_weight,
                                   out vec2 out_occlusion)
{
  float weight_inv = safe_rcp(accum_data.weight);
  out_col = accum_data.color * weight_inv;
  out_occlusion = vec2(abs(accum_data.coc), accum_data.coc_sqr) * weight_inv;

#ifdef DOF_FOREGROUND_PASS
  out_weight = 1.0 - accum_data.transparency;
#else
  if (accum_data.weight > 0.0) {
    out_weight = accum_data.layer_opacity / float(total_sample_count);
  }
  else {
    out_weight = 0.0;
  }
#endif
  /* Gathering may not accumulate to 1.0 alpha because of float precision. */
  if (out_weight > 0.99) {
    out_weight = 1.0;
  }
  else if (out_weight < 0.01) {
    out_weight = 0.0;
  }
  /* Same thing for alpha channel. */
  if (out_col.a > 0.99) {
    out_col.a = 1.0;
  }
  else if (out_col.a < 0.01) {
    out_col.a = 0.0;
  }
}

ivec2 dof_square_ring_sample_offset(int ring_distance, int sample_id)
{
  /**
   * Generate samples in a square pattern with the ring radius. X is the center tile.
   *
   *    Dist1          Dist2
   *                 6 5 4 3 2
   *    3 2 1        7       1
   *    . X 0        .   X   0
   *    . . .        .       .
   *                 . . . . .
   *
   * Samples are expected to be mirrored to complete the pattern.
   */
  ivec2 offset;
  if (sample_id < ring_distance) {
    offset.x = ring_distance;
    offset.y = sample_id;
  }
  else if (sample_id < ring_distance * 3) {
    offset.x = ring_distance - sample_id + ring_distance;
    offset.y = ring_distance;
  }
  else {
    offset.x = -ring_distance;
    offset.y = ring_distance - sample_id + 3 * ring_distance;
  }
  return offset;
}