Welcome to mirror list, hosted at ThFree Co, Russian Federation.

effect_reflection_resolve_frag.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 45057109cdf4ebd6d1a95a19938b91298d76f241 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

#pragma BLENDER_REQUIRE(common_math_lib.glsl)
#pragma BLENDER_REQUIRE(common_math_geom_lib.glsl)
#pragma BLENDER_REQUIRE(closure_eval_glossy_lib.glsl)
#pragma BLENDER_REQUIRE(closure_eval_lib.glsl)
#pragma BLENDER_REQUIRE(lightprobe_lib.glsl)
#pragma BLENDER_REQUIRE(bsdf_common_lib.glsl)
#pragma BLENDER_REQUIRE(surface_lib.glsl)
#pragma BLENDER_REQUIRE(effect_reflection_lib.glsl)

/* Based on:
 * "Stochastic Screen Space Reflections"
 * by Tomasz Stachowiak.
 * https://www.ea.com/frostbite/news/stochastic-screen-space-reflections
 * and
 * "Stochastic all the things: raytracing in hybrid real-time rendering"
 * by Tomasz Stachowiak.
 * https://media.contentapi.ea.com/content/dam/ea/seed/presentations/dd18-seed-raytracing-in-hybrid-real-time-rendering.pdf
 */

uniform sampler2D colorBuffer;
uniform sampler2D normalBuffer;
uniform sampler2D specroughBuffer;
uniform sampler2D hitBuffer;
uniform sampler2D hitDepth;

in vec4 uvcoordsvar;

out vec4 fragColor;

float brightness(vec3 c)
{
  return max(max(c.r, c.g), c.b);
}

vec4 ssr_get_scene_color_and_mask(vec3 hit_vP, int planar_index, float mip)
{
  vec2 uv;
  if (planar_index != -1) {
    uv = get_uvs_from_view(hit_vP);
    /* Planar X axis is flipped. */
    uv.x = 1.0 - uv.x;
  }
  else {
    /* Find hit position in previous frame. */
    /* TODO Combine matrices. */
    vec3 hit_P = transform_point(ViewMatrixInverse, hit_vP);
    /* TODO real reprojection with motion vectors, etc... */
    uv = project_point(pastViewProjectionMatrix, hit_P).xy * 0.5 + 0.5;
  }

  vec3 color;
  if (planar_index != -1) {
    color = textureLod(probePlanars, vec3(uv, planar_index), mip).rgb;
  }
  else {
    color = textureLod(colorBuffer, uv * hizUvScale.xy, mip).rgb;
  }

  /* Clamped brightness. */
  float luma = brightness(color);
  color *= 1.0 - max(0.0, luma - ssrFireflyFac) * safe_rcp(luma);

  float mask = screen_border_mask(uv);
  return vec4(color, mask);
}

void resolve_reflection_sample(int planar_index,
                               vec2 sample_uv,
                               vec3 vP,
                               vec3 vN,
                               vec3 vV,
                               float roughness_squared,
                               float cone_tan,
                               inout float weight_accum,
                               inout vec4 ssr_accum)
{
  vec4 hit_data = texture(hitBuffer, sample_uv * ssrUvScale);
  float hit_depth = texture(hitDepth, sample_uv * ssrUvScale).r;
  HitData data = decode_hit_data(hit_data, hit_depth);

  float hit_dist = length(data.hit_dir);

  /* Slide 54. */
  float bsdf = bsdf_ggx(vN, data.hit_dir / hit_dist, vV, roughness_squared);

  float weight = bsdf * data.ray_pdf_inv;

  /* Do not add light if ray has failed but still weight it. */
  if (!data.is_hit || (planar_index == -1 && data.is_planar) ||
      (planar_index != -1 && !data.is_planar)) {
    weight_accum += weight;
    return;
  }

  vec3 hit_vP = vP + data.hit_dir;

  /* Compute cone footprint in screen space. */
  float cone_footprint = hit_dist * cone_tan;
  float homcoord = ProjectionMatrix[2][3] * hit_vP.z + ProjectionMatrix[3][3];
  cone_footprint *= max(ProjectionMatrix[0][0], ProjectionMatrix[1][1]) / homcoord;
  cone_footprint *= ssrBrdfBias * 0.5;
  /* Estimate a cone footprint to sample a corresponding mipmap level. */
  float mip = log2(cone_footprint * max_v2(vec2(textureSize(specroughBuffer, 0))));

  vec4 radiance_mask = ssr_get_scene_color_and_mask(hit_vP, planar_index, mip);

  ssr_accum += radiance_mask * weight;
  weight_accum += weight;
}

void raytrace_resolve(ClosureInputGlossy cl_in,
                      inout ClosureEvalGlossy cl_eval,
                      inout ClosureEvalCommon cl_common,
                      inout ClosureOutputGlossy cl_out)
{
  float roughness = cl_in.roughness;

  vec4 ssr_accum = vec4(0.0);
  float weight_acc = 0.0;

  if (roughness < ssrMaxRoughness + 0.2) {
    /* Find Planar Reflections affecting this pixel */
    int planar_index = -1;
    for (int i = 0; i < MAX_PLANAR && i < prbNumPlanar; i++) {
      float fade = probe_attenuation_planar(planars_data[i], cl_common.P);
      fade *= probe_attenuation_planar_normal_roughness(planars_data[i], cl_in.N, 0.0);
      if (fade > 0.5) {
        planar_index = i;
        break;
      }
    }

    vec3 V, P, N;
    if (planar_index != -1) {
      PlanarData pd = planars_data[planar_index];
      /* Evaluate everything in refected space. */
      P = line_plane_intersect(cl_common.P, cl_common.V, pd.pl_plane_eq);
      V = reflect(cl_common.V, pd.pl_normal);
      N = reflect(cl_in.N, pd.pl_normal);
    }
    else {
      V = cl_common.V;
      P = cl_common.P;
      N = cl_in.N;
    }

    /* Using view space */
    vec3 vV = transform_direction(ViewMatrix, cl_common.V);
    vec3 vP = transform_point(ViewMatrix, cl_common.P);
    vec3 vN = transform_direction(ViewMatrix, cl_in.N);

    float roughness_squared = max(1e-3, sqr(roughness));
    float cone_cos = cone_cosine(roughness_squared);
    float cone_tan = sqrt(1.0 - cone_cos * cone_cos) / cone_cos;
    cone_tan *= mix(saturate(dot(vN, -vV) * 2.0), 1.0, roughness); /* Elongation fit */

    vec2 sample_uv = uvcoordsvar.xy;

    resolve_reflection_sample(
        planar_index, sample_uv, vP, vN, vV, roughness_squared, cone_tan, weight_acc, ssr_accum);
  }

  /* Compute SSR contribution */
  ssr_accum *= safe_rcp(weight_acc);
  /* fade between 0.5 and 1.0 roughness */
  ssr_accum.a *= smoothstep(ssrMaxRoughness + 0.2, ssrMaxRoughness, roughness);

  cl_eval.raytrace_radiance = ssr_accum.rgb * ssr_accum.a;
  cl_common.specular_accum -= ssr_accum.a;
}

CLOSURE_EVAL_FUNCTION_DECLARE_1(ssr_resolve, Glossy)

void main()
{
  float depth = textureLod(maxzBuffer, uvcoordsvar.xy * hizUvScale.xy, 0.0).r;

  if (depth == 1.0) {
    discard;
  }

  ivec2 texel = ivec2(gl_FragCoord.xy);
  vec4 speccol_roughness = texelFetch(specroughBuffer, texel, 0).rgba;
  vec3 brdf = speccol_roughness.rgb;
  float roughness = speccol_roughness.a;

  if (max_v3(brdf) <= 0.0) {
    discard;
  }

  FragDepth = depth;

  viewPosition = get_view_space_from_depth(uvcoordsvar.xy, depth);
  worldPosition = transform_point(ViewMatrixInverse, viewPosition);

  vec2 normal_encoded = texelFetch(normalBuffer, texel, 0).rg;
  viewNormal = normal_decode(normal_encoded, viewCameraVec(viewPosition));
  worldNormal = transform_direction(ViewMatrixInverse, viewNormal);

  CLOSURE_VARS_DECLARE_1(Glossy);

  in_Glossy_0.N = worldNormal;
  in_Glossy_0.roughness = roughness;

  /* Do a full deferred evaluation of the glossy BSDF. The only difference is that we inject the
   * SSR resolve before the cubemap iter. BRDF term is already computed during main pass and is
   * passed as specular color. */
  CLOSURE_EVAL_FUNCTION_1(ssr_resolve, Glossy);

  fragColor = vec4(out_Glossy_0.radiance * brdf, 1.0);
}