Welcome to mirror list, hosted at ThFree Co, Russian Federation.

effect_ssr_frag.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 11048a46f8e8d1875eb728d6689f79055bfb9756 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

#pragma BLENDER_REQUIRE(common_math_lib.glsl)
#pragma BLENDER_REQUIRE(common_math_geom_lib.glsl)
#pragma BLENDER_REQUIRE(common_utiltex_lib.glsl)
#pragma BLENDER_REQUIRE(closure_eval_glossy_lib.glsl)
#pragma BLENDER_REQUIRE(closure_eval_lib.glsl)
#pragma BLENDER_REQUIRE(raytrace_lib.glsl)
#pragma BLENDER_REQUIRE(lightprobe_lib.glsl)
#pragma BLENDER_REQUIRE(bsdf_common_lib.glsl)
#pragma BLENDER_REQUIRE(bsdf_sampling_lib.glsl)
#pragma BLENDER_REQUIRE(surface_lib.glsl)

/* Based on:
 * "Stochastic Screen Space Reflections"
 * by Tomasz Stachowiak.
 * https://www.ea.com/frostbite/news/stochastic-screen-space-reflections
 * and
 * "Stochastic all the things: raytracing in hybrid real-time rendering"
 * by Tomasz Stachowiak.
 * https://media.contentapi.ea.com/content/dam/ea/seed/presentations/dd18-seed-raytracing-in-hybrid-real-time-rendering.pdf
 */

uniform ivec2 halfresOffset;

struct HitData {
  /** Hit direction scaled by intersection time. */
  vec3 hit_dir;
  /** Screen space [0..1] depth of the reflection hit position, or -1.0 for planar reflections. */
  float hit_depth;
  /** Inverse probability of ray spawning in this direction. */
  float ray_pdf_inv;
  /** True if ray has hit valid geometry. */
  bool is_hit;
  /** True if ray was generated from a planar reflection probe. */
  bool is_planar;
};

void encode_hit_data(HitData data, vec3 hit_sP, vec3 vP, out vec4 hit_data, out float hit_depth)
{
  vec3 hit_vP = get_view_space_from_depth(hit_sP.xy, hit_sP.z);
  hit_data.xyz = hit_vP - vP;
  hit_depth = data.is_planar ? -1.0 : hit_sP.z;
  /* Record 1.0 / pdf to reduce the computation in the resolve phase. */
  /* Encode hit validity in sign. */
  hit_data.w = data.ray_pdf_inv * ((data.is_hit) ? 1.0 : -1.0);
}

HitData decode_hit_data(vec4 hit_data, float hit_depth)
{
  HitData data;
  data.hit_dir.xyz = hit_data.xyz;
  data.hit_depth = hit_depth;
  data.is_planar = (hit_depth == -1.0);
  data.ray_pdf_inv = abs(hit_data.w);
  data.is_hit = (hit_data.w > 0.0);
  return data;
}

#ifdef STEP_RAYTRACE

uniform sampler2D normalBuffer;
uniform sampler2D specroughBuffer;

layout(location = 0) out vec4 hitData;
layout(location = 1) out float hitDepth;

void do_planar_ssr(int index,
                   vec3 vV,
                   vec3 vN,
                   vec3 vT,
                   vec3 vB,
                   vec3 viewPlaneNormal,
                   vec3 vP,
                   float alpha,
                   vec4 rand)
{
  float pdf;
  /* Microfacet normal */
  vec3 vH = sample_ggx(rand.xzw, alpha, vV, vN, vT, vB, pdf);
  vec3 vR = reflect(-vV, vH);
  vR = reflect(vR, viewPlaneNormal);

  Ray ray;
  ray.origin = vP;
  ray.direction = vR * 1e16;

  RayTraceParameters params;
  params.jitter = rand.y;
  params.trace_quality = ssrQuality;
  params.roughness = alpha * alpha;

  vec3 hit_sP;
  HitData data;
  data.is_planar = true;
  data.ray_pdf_inv = safe_rcp(pdf);
  data.is_hit = raytrace_planar(ray, params, index, hit_sP);

  encode_hit_data(data, hit_sP, ray.origin, hitData, hitDepth);
}

void do_ssr(vec3 vV, vec3 vN, vec3 vT, vec3 vB, vec3 vP, float alpha, vec4 rand)
{
  float pdf;
  /* Microfacet normal */
  vec3 vH = sample_ggx(rand.xzw, alpha, vV, vN, vT, vB, pdf);
  vec3 vR = reflect(-vV, vH);

  Ray ray;
  ray.origin = vP + vN * 1e-4;
  ray.direction = vR * 1e16;

  RayTraceParameters params;
  params.thickness = ssrThickness;
  params.jitter = rand.y;
  params.trace_quality = ssrQuality;
  params.roughness = alpha * alpha;

  vec3 hit_sP;
  HitData data;
  data.is_planar = false;
  data.ray_pdf_inv = safe_rcp(pdf);
  data.is_hit = raytrace(ray, params, true, hit_sP);

  encode_hit_data(data, hit_sP, ray.origin, hitData, hitDepth);
}

in vec4 uvcoordsvar;

void main()
{
  vec2 uvs = uvcoordsvar.xy;
  float depth = textureLod(maxzBuffer, uvs * hizUvScale.xy, 0.0).r;

  HitData data;
  data.is_planar = false;
  data.ray_pdf_inv = 0.0;
  data.is_hit = false;
  data.hit_dir = vec3(0.0, 0.0, 0.0);

  /* Default: not hits. */
  encode_hit_data(data, data.hit_dir, data.hit_dir, hitData, hitDepth);

  /* Early out */
  /* We can't do discard because we don't clear the render target. */
  if (depth == 1.0) {
    return;
  }

  /* Using view space */
  vec3 vP = get_view_space_from_depth(uvs, depth);
  vec3 P = transform_point(ViewMatrixInverse, vP);
  vec3 vV = viewCameraVec(vP);
  vec3 V = cameraVec(P);
  vec3 vN = normal_decode(texture(normalBuffer, uvs, 0).rg, vV);
  vec3 N = transform_direction(ViewMatrixInverse, vN);

  /* Retrieve pixel data */
  vec4 speccol_roughness = texture(specroughBuffer, uvs, 0).rgba;

  /* Early out */
  if (dot(speccol_roughness.rgb, vec3(1.0)) == 0.0) {
    return;
  }

  float roughness = speccol_roughness.a;
  float alpha = max(1e-3, roughness * roughness);

  /* Early out */
  if (roughness > ssrMaxRoughness + 0.2) {
    return;
  }

  vec4 rand = texelfetch_noise_tex(vec2(gl_FragCoord.xy));

  /* Gives *perfect* reflection for very small roughness */
  if (roughness < 0.04) {
    rand.xzw *= 0.0;
  }
  /* Importance sampling bias */
  rand.x = mix(rand.x, 0.0, ssrBrdfBias);

  vec3 vT, vB;
  make_orthonormal_basis(vN, vT, vB); /* Generate tangent space */

  /* Planar Reflections */
  for (int i = 0; i < MAX_PLANAR && i < prbNumPlanar; i++) {
    PlanarData pd = planars_data[i];

    float fade = probe_attenuation_planar(pd, P);
    fade *= probe_attenuation_planar_normal_roughness(pd, N, 0.0);

    if (fade > 0.5) {
      /* Find view vector / reflection plane intersection. */
      /* TODO optimize, use view space for all. */
      vec3 tracePosition = line_plane_intersect(P, V, pd.pl_plane_eq);
      tracePosition = transform_point(ViewMatrix, tracePosition);
      vec3 viewPlaneNormal = transform_direction(ViewMatrix, pd.pl_normal);

      do_planar_ssr(i, vV, vN, vT, vB, viewPlaneNormal, tracePosition, alpha, rand);
      return;
    }
  }

  do_ssr(vV, vN, vT, vB, vP, alpha, rand);
}

#else /* STEP_RESOLVE */

uniform sampler2D colorBuffer; /* previous frame */
uniform sampler2D normalBuffer;
uniform sampler2D specroughBuffer;
uniform sampler2D hitBuffer;
uniform sampler2D hitDepth;

in vec4 uvcoordsvar;

out vec4 fragColor;

float brightness(vec3 c)
{
  return max(max(c.r, c.g), c.b);
}

vec4 ssr_get_scene_color_and_mask(vec3 hit_vP, int planar_index, float mip)
{
  vec2 uv;
  if (planar_index != -1) {
    uv = get_uvs_from_view(hit_vP);
    /* Planar X axis is flipped. */
    uv.x = 1.0 - uv.x;
  }
  else {
    /* Find hit position in previous frame. */
    /* TODO Combine matrices. */
    vec3 hit_P = transform_point(ViewMatrixInverse, hit_vP);
    /* TODO real reprojection with motion vectors, etc... */
    uv = project_point(pastViewProjectionMatrix, hit_P).xy * 0.5 + 0.5;
  }

  vec3 color;
  if (planar_index != -1) {
    color = textureLod(probePlanars, vec3(uv, planar_index), mip).rgb;
  }
  else {
    color = textureLod(colorBuffer, uv * hizUvScale.xy, mip).rgb;
  }

  /* Clamped brightness. */
  float luma = brightness(color);
  color *= 1.0 - max(0.0, luma - ssrFireflyFac) * safe_rcp(luma);

  float mask = screen_border_mask(uv);
  return vec4(color, mask);
}

void resolve_reflection_sample(int planar_index,
                               vec2 sample_uv,
                               vec3 vP,
                               vec3 vN,
                               vec3 vV,
                               float roughness_squared,
                               float cone_tan,
                               inout float weight_accum,
                               inout vec4 ssr_accum)
{
  vec4 hit_data = texture(hitBuffer, sample_uv * ssrUvScale);
  float hit_depth = texture(hitDepth, sample_uv * ssrUvScale).r;
  HitData data = decode_hit_data(hit_data, hit_depth);

  float hit_dist = length(data.hit_dir);

  /* Slide 54. */
  float bsdf = bsdf_ggx(vN, data.hit_dir / hit_dist, vV, roughness_squared);

  float weight = bsdf * data.ray_pdf_inv;

  /* Do not add light if ray has failed but still weight it. */
  if (!data.is_hit || (planar_index == -1 && data.is_planar) ||
      (planar_index != -1 && !data.is_planar)) {
    weight_accum += weight;
    return;
  }

  vec3 hit_vP = vP + data.hit_dir;

  /* Compute cone footprint in screen space. */
  float cone_footprint = hit_dist * cone_tan;
  float homcoord = ProjectionMatrix[2][3] * hit_vP.z + ProjectionMatrix[3][3];
  cone_footprint *= max(ProjectionMatrix[0][0], ProjectionMatrix[1][1]) / homcoord;
  cone_footprint *= ssrBrdfBias * 0.5;
  /* Estimate a cone footprint to sample a corresponding mipmap level. */
  float mip = log2(cone_footprint * max_v2(vec2(textureSize(specroughBuffer, 0))));

  vec4 radiance_mask = ssr_get_scene_color_and_mask(hit_vP, planar_index, mip);

  ssr_accum += radiance_mask * weight;
  weight_accum += weight;
}

void raytrace_resolve(ClosureInputGlossy cl_in,
                      inout ClosureEvalGlossy cl_eval,
                      inout ClosureEvalCommon cl_common,
                      inout ClosureOutputGlossy cl_out)
{
  float roughness = cl_in.roughness;

  vec4 ssr_accum = vec4(0.0);
  float weight_acc = 0.0;

  if (roughness < ssrMaxRoughness + 0.2) {
    /* Find Planar Reflections affecting this pixel */
    int planar_index = -1;
    for (int i = 0; i < MAX_PLANAR && i < prbNumPlanar; i++) {
      float fade = probe_attenuation_planar(planars_data[i], cl_common.P);
      fade *= probe_attenuation_planar_normal_roughness(planars_data[i], cl_in.N, 0.0);
      if (fade > 0.5) {
        planar_index = i;
        break;
      }
    }

    vec3 V, P, N;
    if (planar_index != -1) {
      PlanarData pd = planars_data[planar_index];
      /* Evaluate everything in refected space. */
      P = line_plane_intersect(cl_common.P, cl_common.V, pd.pl_plane_eq);
      V = reflect(cl_common.V, pd.pl_normal);
      N = reflect(cl_in.N, pd.pl_normal);
    }
    else {
      V = cl_common.V;
      P = cl_common.P;
      N = cl_in.N;
    }

    /* Using view space */
    vec3 vV = transform_direction(ViewMatrix, cl_common.V);
    vec3 vP = transform_point(ViewMatrix, cl_common.P);
    vec3 vN = transform_direction(ViewMatrix, cl_in.N);

    float roughness_squared = max(1e-3, sqr(roughness));
    float cone_cos = cone_cosine(roughness_squared);
    float cone_tan = sqrt(1.0 - cone_cos * cone_cos) / cone_cos;
    cone_tan *= mix(saturate(dot(vN, -vV) * 2.0), 1.0, roughness); /* Elongation fit */

    vec2 sample_uv = uvcoordsvar.xy;

    resolve_reflection_sample(
        planar_index, sample_uv, vP, vN, vV, roughness_squared, cone_tan, weight_acc, ssr_accum);
  }

  /* Compute SSR contribution */
  ssr_accum *= safe_rcp(weight_acc);
  /* fade between 0.5 and 1.0 roughness */
  ssr_accum.a *= smoothstep(ssrMaxRoughness + 0.2, ssrMaxRoughness, roughness);

  cl_eval.raytrace_radiance = ssr_accum.rgb * ssr_accum.a;
  cl_common.specular_accum -= ssr_accum.a;
}

CLOSURE_EVAL_FUNCTION_DECLARE_1(ssr_resolve, Glossy)

void main()
{
  float depth = textureLod(maxzBuffer, uvcoordsvar.xy * hizUvScale.xy, 0.0).r;

  if (depth == 1.0) {
    discard;
  }

  ivec2 texel = ivec2(gl_FragCoord.xy);
  vec4 speccol_roughness = texelFetch(specroughBuffer, texel, 0).rgba;
  vec3 brdf = speccol_roughness.rgb;
  float roughness = speccol_roughness.a;

  if (max_v3(brdf) <= 0.0) {
    discard;
  }

  FragDepth = depth;

  viewPosition = get_view_space_from_depth(uvcoordsvar.xy, depth);
  worldPosition = transform_point(ViewMatrixInverse, viewPosition);

  vec2 normal_encoded = texelFetch(normalBuffer, texel, 0).rg;
  viewNormal = normal_decode(normal_encoded, viewCameraVec(viewPosition));
  worldNormal = transform_direction(ViewMatrixInverse, viewNormal);

  CLOSURE_VARS_DECLARE_1(Glossy);

  in_Glossy_0.N = worldNormal;
  in_Glossy_0.roughness = roughness;

  /* Do a full deferred evaluation of the glossy BSDF. The only difference is that we inject the
   * SSR resolve before the cubemap iter. BRDF term is already computed during main pass and is
   * passed as specular color. */
  CLOSURE_EVAL_FUNCTION_1(ssr_resolve, Glossy);

  fragColor = vec4(out_Glossy_0.radiance * brdf, 1.0);
}

#endif