Welcome to mirror list, hosted at ThFree Co, Russian Federation.

effect_translucency_frag.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ee48c4686309dccd13919acbbe70df20800ec122 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

#pragma BLENDER_REQUIRE(common_view_lib.glsl)
#pragma BLENDER_REQUIRE(common_math_geom_lib.glsl)
#pragma BLENDER_REQUIRE(common_utiltex_lib.glsl)
#pragma BLENDER_REQUIRE(lights_lib.glsl)

in vec4 uvcoordsvar;

out vec4 FragColor;

uniform sampler2D depthBuffer;
uniform sampler1D sssTexProfile;
uniform sampler2D sssRadius;
uniform sampler2DArray sssShadowCubes;
uniform sampler2DArray sssShadowCascades;

#define MAX_SSS_SAMPLES 65
#define SSS_LUT_SIZE 64.0
#define SSS_LUT_SCALE ((SSS_LUT_SIZE - 1.0) / float(SSS_LUT_SIZE))
#define SSS_LUT_BIAS (0.5 / float(SSS_LUT_SIZE))

layout(std140) uniform sssProfile
{
  vec4 kernel[MAX_SSS_SAMPLES];
  vec4 radii_max_radius;
  int sss_samples;
};

vec3 sss_profile(float s)
{
  s /= radii_max_radius.w;
  return texture(sssTexProfile, saturate(s) * SSS_LUT_SCALE + SSS_LUT_BIAS).rgb;
}

float light_translucent_power_with_falloff(LightData ld, vec3 N, vec4 l_vector)
{
  float power, falloff;
  /* XXX: Removing Area Power. */
  /* TODO: put this out of the shader. */
  if (ld.l_type >= AREA_RECT) {
    power = (ld.l_sizex * ld.l_sizey * 4.0 * M_PI) * (1.0 / 80.0);
    if (ld.l_type == AREA_ELLIPSE) {
      power *= M_PI * 0.25;
    }
    power *= 0.3 * 20.0 *
             max(0.0, dot(-ld.l_forward, l_vector.xyz / l_vector.w)); /* XXX ad hoc, empirical */
    power /= (l_vector.w * l_vector.w);
    falloff = dot(N, l_vector.xyz / l_vector.w);
  }
  else if (ld.l_type == SUN) {
    power = 1.0 / (1.0 + (ld.l_radius * ld.l_radius * 0.5));
    power *= ld.l_radius * ld.l_radius * M_PI; /* Removing area light power. */
    power *= M_2PI * 0.78;                     /* Matching cycles with point light. */
    power *= 0.082;                            /* XXX ad hoc, empirical */
    falloff = dot(N, -ld.l_forward);
  }
  else {
    power = (4.0 * ld.l_radius * ld.l_radius) * (1.0 / 10.0);
    power *= 1.5; /* XXX ad hoc, empirical */
    power /= (l_vector.w * l_vector.w);
    falloff = dot(N, l_vector.xyz / l_vector.w);
  }
  /* No transmittance at grazing angle (hide artifacts) */
  return power * saturate(falloff * 2.0);
}

/* Some driver poorly optimize this code. Use direct reference to matrices. */
#define sd(x) shadows_data[x]
#define scube(x) shadows_cube_data[x]
#define scascade(x) shadows_cascade_data[x]

float shadow_cube_radial_depth(vec3 cubevec, float tex_id, int shadow_id)
{
  float depth = sample_cube(sssShadowCubes, cubevec, tex_id).r;
  /* To reverting the constant bias from shadow rendering. (Tweaked for 16bit shadowmaps) */
  const float depth_bias = 3.1e-5;
  depth = saturate(depth - depth_bias);

  depth = linear_depth(true, depth, sd(shadow_id).sh_far, sd(shadow_id).sh_near);
  depth *= length(cubevec / max_v3(abs(cubevec)));
  return depth;
}

vec3 light_translucent(LightData ld, vec3 P, vec3 N, vec4 l_vector, vec2 rand, float sss_scale)
{
  int shadow_id = int(ld.l_shadowid);

  vec4 L = (ld.l_type != SUN) ? l_vector : vec4(-ld.l_forward, 1.0);

  /* We use the full l_vector.xyz so that the spread is minimize
   * if the shading point is further away from the light source */
  /* TODO(fclem): do something better than this. */
  vec3 T, B;
  make_orthonormal_basis(L.xyz / L.w, T, B);

  vec3 n;
  vec4 depths;
  float d, dist;
  int data_id = int(sd(shadow_id).sh_data_index);
  if (ld.l_type == SUN) {
    vec4 view_z = vec4(dot(P - cameraPos, cameraForward));

    vec4 weights = step(scascade(data_id).split_end_distances, view_z);
    float id = abs(4.0 - dot(weights, weights));
    if (id > 3.0) {
      return vec3(0.0);
    }

    /* Same factor as in get_cascade_world_distance(). */
    float range = abs(sd(shadow_id).sh_far - sd(shadow_id).sh_near);

    vec4 shpos = scascade(data_id).shadowmat[int(id)] * vec4(P, 1.0);
    dist = shpos.z * range;

    if (shpos.z > 1.0 || shpos.z < 0.0) {
      return vec3(0.0);
    }

    float tex_id = scascade(data_id).sh_tex_index + id;

    /* Assume cascades have same height and width. */
    vec2 ofs = vec2(1.0, 0.0) / float(textureSize(sssShadowCascades, 0).x);
    d = sample_cascade(sssShadowCascades, shpos.xy, tex_id).r;
    depths.x = sample_cascade(sssShadowCascades, shpos.xy + ofs.xy, tex_id).r;
    depths.y = sample_cascade(sssShadowCascades, shpos.xy + ofs.yx, tex_id).r;
    depths.z = sample_cascade(sssShadowCascades, shpos.xy - ofs.xy, tex_id).r;
    depths.w = sample_cascade(sssShadowCascades, shpos.xy - ofs.yx, tex_id).r;

    /* To reverting the constant bias from shadow rendering. (Tweaked for 16bit shadowmaps) */
    float depth_bias = 3.1e-5;
    depths = saturate(depths - depth_bias);
    d = saturate(d - depth_bias);

    /* Size of a texel in world space.
     * FIXME This is only correct if l_right is the same right vector used for shadowmap creation.
     * This won't work if the shadow matrix is rotated (soft shadows).
     * TODO: precompute. */
    float unit_world_in_uv_space = length(mat3(scascade(data_id).shadowmat[int(id)]) * ld.l_right);
    float dx_scale = 2.0 * ofs.x / unit_world_in_uv_space;

    d *= range;
    depths *= range;

    /* This is the normal of the occluder in world space. */
    // vec3 T = ld.l_forward * dx + ld.l_right * dx_scale;
    // vec3 B = ld.l_forward * dy + ld.l_up * dx_scale;
    // n = normalize(cross(T, B));
  }
  else {
    float ofs = 1.0 / float(textureSize(sssShadowCubes, 0).x);

    vec3 cubevec = transform_point(scube(data_id).shadowmat, P);
    dist = length(cubevec);
    cubevec /= dist;
    /* tex_id == data_id for cube shadowmap */
    float tex_id = float(data_id);
    d = shadow_cube_radial_depth(cubevec, tex_id, shadow_id);
    /* NOTE: The offset is irregular in respect to cubeface uvs. But it has
     * a much more uniform behavior than biasing based on face derivatives. */
    depths.x = shadow_cube_radial_depth(cubevec + T * ofs, tex_id, shadow_id);
    depths.y = shadow_cube_radial_depth(cubevec + B * ofs, tex_id, shadow_id);
    depths.z = shadow_cube_radial_depth(cubevec - T * ofs, tex_id, shadow_id);
    depths.w = shadow_cube_radial_depth(cubevec - B * ofs, tex_id, shadow_id);
  }

  float dx = depths.x - depths.z;
  float dy = depths.y - depths.w;

  float s = min(d, min_v4(depths));

  /* To avoid light leak from depth discontinuity and shadowmap aliasing. */
  float slope_bias = (abs(dx) + abs(dy)) * 0.5;
  s -= slope_bias;

  float delta = dist - s;

  float power = light_translucent_power_with_falloff(ld, N, l_vector);

  return power * sss_profile(abs(delta) / sss_scale);
}

#undef sd
#undef scube
#undef scsmd

/* Similar to https://atyuwen.github.io/posts/normal-reconstruction/.
 * This samples the depth buffer 4 time for each direction to get the most correct
 * implicit normal reconstruction out of the depth buffer. */
vec3 view_position_derivative_from_depth(vec2 uvs, vec2 ofs, vec3 vP, float depth_center)
{
  vec2 uv1 = uvs - ofs * 2.0;
  vec2 uv2 = uvs - ofs;
  vec2 uv3 = uvs + ofs;
  vec2 uv4 = uvs + ofs * 2.0;
  vec4 H;
  H.x = textureLod(depthBuffer, uv1, 0.0).r;
  H.y = textureLod(depthBuffer, uv2, 0.0).r;
  H.z = textureLod(depthBuffer, uv3, 0.0).r;
  H.w = textureLod(depthBuffer, uv4, 0.0).r;
  /* Fix issue with depth precision. Take even larger diff. */
  vec4 diff = abs(vec4(depth_center, H.yzw) - H.x);
  if (max_v4(diff) < 2.4e-7 && all(lessThan(diff.xyz, diff.www))) {
    return 0.25 * (get_view_space_from_depth(uv3, H.w) - get_view_space_from_depth(uv1, H.x));
  }
  /* Simplified (H.xw + 2.0 * (H.yz - H.xw)) - depth_center */
  vec2 deltas = abs((2.0 * H.yz - H.xw) - depth_center);
  if (deltas.x < deltas.y) {
    return vP - get_view_space_from_depth(uv2, H.y);
  }
  else {
    return get_view_space_from_depth(uv3, H.z) - vP;
  }
}

/* TODO(fclem) port to a common place for other effects to use. */
bool reconstruct_view_position_and_normal_from_depth(vec2 uvs, out vec3 vP, out vec3 vNg)
{
  vec2 texel_size = vec2(abs(dFdx(uvs.x)), abs(dFdy(uvs.y)));
  float depth_center = textureLod(depthBuffer, uvs, 0.0).r;

  vP = get_view_space_from_depth(uvs, depth_center);

  vec3 dPdx = view_position_derivative_from_depth(uvs, texel_size * vec2(1, 0), vP, depth_center);
  vec3 dPdy = view_position_derivative_from_depth(uvs, texel_size * vec2(0, 1), vP, depth_center);

  vNg = safe_normalize(cross(dPdx, dPdy));

  /* Background case. */
  if (depth_center == 1.0) {
    return false;
  }

  return true;
}

void main(void)
{
  vec2 uvs = uvcoordsvar.xy;
  float sss_scale = texture(sssRadius, uvs).r;

  vec3 rand = texelfetch_noise_tex(gl_FragCoord.xy).zwy;
  rand.xy *= fast_sqrt(rand.z);

  vec3 vP, vNg;
  reconstruct_view_position_and_normal_from_depth(uvs, vP, vNg);

  vec3 P = point_view_to_world(vP);
  vec3 Ng = normal_view_to_world(vNg);

  vec3 accum = vec3(0.0);
  for (int i = 0; i < MAX_LIGHT && i < laNumLight; i++) {
    LightData ld = lights_data[i];

    /* Only shadowed light can produce translucency */
    if (ld.l_shadowid < 0.0) {
      continue;
    }

    vec4 l_vector; /* Non-Normalized Light Vector with length in last component. */
    l_vector.xyz = ld.l_position - P;
    l_vector.w = length(l_vector.xyz);

    float att = light_attenuation(ld, l_vector);
    if (att < 1e-8) {
      continue;
    }

    accum += att * ld.l_color * light_translucent(ld, P, -Ng, l_vector, rand.xy, sss_scale);
  }

  FragColor = vec4(accum, 1.0);
}