Welcome to mirror list, hosted at ThFree Co, Russian Federation.

lamps_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c879e9c37f3eb16311d75aee1a21e37e7270fcc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

uniform sampler2DArray shadowTexture;

layout(std140) uniform shadow_block {
	ShadowData        shadows_data[MAX_SHADOW];
	ShadowCubeData    shadows_cube_data[MAX_SHADOW_CUBE];
	ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
};

layout(std140) uniform light_block {
	LightData lights_data[MAX_LIGHT];
};

/* type */
#define POINT    0.0
#define SUN      1.0
#define SPOT     2.0
#define HEMI     3.0
#define AREA     4.0

/* ----------------------------------------------------------- */
/* ----------------------- Shadow tests ---------------------- */
/* ----------------------------------------------------------- */

float shadow_test_esm(float z, float dist, float exponent)
{
	return saturate(exp(exponent * (z - dist)));
}

float shadow_test_pcf(float z, float dist)
{
	return step(0, z - dist);
}

float shadow_test_vsm(vec2 moments, float dist, float bias, float bleed_bias)
{
	float p = 0.0;

	if (dist <= moments.x)
		p = 1.0;

	float variance = moments.y - (moments.x * moments.x);
	variance = max(variance, bias / 10.0);

	float d = moments.x - dist;
	float p_max = variance / (variance + d * d);

	/* Now reduce light-bleeding by removing the [0, x] tail and linearly rescaling (x, 1] */
	p_max = clamp((p_max - bleed_bias) / (1.0 - bleed_bias), 0.0, 1.0);

	return max(p, p_max);
}


/* ----------------------------------------------------------- */
/* ----------------------- Shadow types ---------------------- */
/* ----------------------------------------------------------- */

float shadow_cubemap(ShadowData sd, ShadowCubeData scd, float texid, vec3 W)
{
	vec3 cubevec = W - scd.position.xyz;
	float dist = length(cubevec);

	/* If fragment is out of shadowmap range, do not occlude */
	/* XXX : we check radial distance against a cubeface distance.
	 * We loose quite a bit of valid area. */
	if (dist > sd.sh_far)
		return 1.0;

	cubevec /= dist;

#if defined(SHADOW_VSM)
	vec2 moments = texture_octahedron(shadowTexture, vec4(cubevec, texid)).rg;
#else
	float z = texture_octahedron(shadowTexture, vec4(cubevec, texid)).r;
#endif

#if defined(SHADOW_VSM)
	return shadow_test_vsm(moments, dist, sd.sh_bias, sd.sh_bleed);
#elif defined(SHADOW_ESM)
	return shadow_test_esm(z, dist - sd.sh_bias, sd.sh_exp);
#else
	return shadow_test_pcf(z, dist - sd.sh_bias);
#endif
}

float evaluate_cascade(ShadowData sd, mat4 shadowmat, vec3 W, float range, float texid)
{
	vec4 shpos = shadowmat * vec4(W, 1.0);
	float dist = shpos.z * range;

#if defined(SHADOW_VSM)
	vec2 moments = texture(shadowTexture, vec3(shpos.xy, texid)).rg;
#else
	float z = texture(shadowTexture, vec3(shpos.xy, texid)).r;
#endif

	float vis;
#if defined(SHADOW_VSM)
	vis = shadow_test_vsm(moments, dist, sd.sh_bias, sd.sh_bleed);
#elif defined(SHADOW_ESM)
	vis = shadow_test_esm(z, dist - sd.sh_bias, sd.sh_exp);
#else
	vis = shadow_test_pcf(z, dist - sd.sh_bias);
#endif

	/* If fragment is out of shadowmap range, do not occlude */
	if (shpos.z < 1.0 && shpos.z > 0.0) {
		return vis;
	}
	else {
		return 1.0;
	}
}

float shadow_cascade(ShadowData sd, ShadowCascadeData scd, float texid, vec3 W)
{
	vec4 view_z = vec4(dot(W - cameraPos, cameraForward));
	vec4 weights = smoothstep(scd.split_end_distances, scd.split_start_distances.yzwx, view_z);
	weights.yzw -= weights.xyz;

	vec4 vis = vec4(1.0);
	float range = abs(sd.sh_far - sd.sh_near); /* Same factor as in get_cascade_world_distance(). */

	/* Branching using (weights > 0.0) is reaally slooow on intel so avoid it for now. */
	vis.x = evaluate_cascade(sd, scd.shadowmat[0], W, range, texid + 0);
	vis.y = evaluate_cascade(sd, scd.shadowmat[1], W, range, texid + 1);
	vis.z = evaluate_cascade(sd, scd.shadowmat[2], W, range, texid + 2);
	vis.w = evaluate_cascade(sd, scd.shadowmat[3], W, range, texid + 3);

	float weight_sum = dot(vec4(1.0), weights);
	if (weight_sum > 0.9999) {
		float vis_sum = dot(vec4(1.0), vis * weights);
		return vis_sum / weight_sum;
	}
	else {
		float vis_sum = dot(vec4(1.0), vis * step(0.001, weights));
		return mix(1.0, vis_sum, weight_sum);
	}
}

/* ----------------------------------------------------------- */
/* --------------------- Light Functions --------------------- */
/* ----------------------------------------------------------- */
#define MAX_MULTI_SHADOW 4

float light_visibility(LightData ld, vec3 W,
#ifndef VOLUMETRICS
                       vec3 viewPosition,
                       vec3 viewNormal,
#endif
                       vec4 l_vector)
{
	float vis = 1.0;

	if (ld.l_type == SPOT) {
		float z = dot(ld.l_forward, l_vector.xyz);
		vec3 lL = l_vector.xyz / z;
		float x = dot(ld.l_right, lL) / ld.l_sizex;
		float y = dot(ld.l_up, lL) / ld.l_sizey;

		float ellipse = 1.0 / sqrt(1.0 + x * x + y * y);

		float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);

		vis *= spotmask;
		vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
	}
	else if (ld.l_type == AREA) {
		vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
	}

#if !defined(VOLUMETRICS) || defined(VOLUME_SHADOW)
	/* shadowing */
	if (ld.l_shadowid >= 0.0) {
		ShadowData data = shadows_data[int(ld.l_shadowid)];

		if (ld.l_type == SUN) {
			/* TODO : MSM */
			// for (int i = 0; i < MAX_MULTI_SHADOW; ++i) {
				vis *= shadow_cascade(
					data, shadows_cascade_data[int(data.sh_data_start)],
					data.sh_tex_start, W);
			// }
		}
		else {
			/* TODO : MSM */
			// for (int i = 0; i < MAX_MULTI_SHADOW; ++i) {
				vis *= shadow_cubemap(
					data, shadows_cube_data[int(data.sh_data_start)],
					data.sh_tex_start, W);
			// }
		}

#ifndef VOLUMETRICS
		/* Only compute if not already in shadow. */
		if ((vis > 0.001) && (data.sh_contact_dist > 0.0)) {
			vec4 L = (ld.l_type != SUN) ? l_vector : vec4(-ld.l_forward, 1.0);
			float trace_distance = (ld.l_type != SUN) ? min(data.sh_contact_dist, l_vector.w) : data.sh_contact_dist;

			vec3 T, B;
			make_orthonormal_basis(L.xyz / L.w, T, B);

			vec3 rand = texture(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0)).xzw;
			rand.yz *= rand.x * data.sh_contact_spread;

			/* We use the full l_vector.xyz so that the spread is minimize
			 * if the shading point is further away from the light source */
			vec3 ray_dir = L.xyz + T * rand.y + B * rand.z;
			ray_dir = transform_direction(ViewMatrix, ray_dir);
			ray_dir = normalize(ray_dir);
			vec3 ray_origin = viewPosition + viewNormal * data.sh_contact_offset;
			vec3 hit_pos = raycast(-1, ray_origin, ray_dir * trace_distance, data.sh_contact_thickness, rand.x, 0.75, 0.01);

			if (hit_pos.z > 0.0) {
				hit_pos = get_view_space_from_depth(hit_pos.xy, hit_pos.z);
				float hit_dist = distance(viewPosition, hit_pos);
				float dist_ratio = hit_dist / trace_distance;
				return mix(0.0, vis, dist_ratio * dist_ratio * dist_ratio);
			}
		}
#endif
	}
#endif

	return vis;
}

float light_diffuse(LightData ld, vec3 N, vec3 V, vec4 l_vector)
{
#ifdef USE_LTC
	if (ld.l_type == SUN) {
		/* TODO disk area light */
		return direct_diffuse_sun(ld, N);
	}
	else if (ld.l_type == AREA) {
		return direct_diffuse_rectangle(ld, N, V, l_vector);
	}
	else {
		return direct_diffuse_sphere(ld, N, l_vector);
	}
#else
	if (ld.l_type == SUN) {
		return direct_diffuse_sun(ld, N, V);
	}
	else {
		return direct_diffuse_point(N, l_vector);
	}
#endif
}

vec3 light_specular(LightData ld, vec3 N, vec3 V, vec4 l_vector, float roughness, vec3 f0)
{
#ifdef USE_LTC
	if (ld.l_type == SUN) {
		/* TODO disk area light */
		return direct_ggx_sun(ld, N, V, roughness, f0);
	}
	else if (ld.l_type == AREA) {
		return direct_ggx_rectangle(ld, N, V, l_vector, roughness, f0);
	}
	else {
		return direct_ggx_sphere(ld, N, V, l_vector, roughness, f0);
	}
#else
	if (ld.l_type == SUN) {
		return direct_ggx_sun(ld, N, V, roughness, f0);
	}
	else {
		return direct_ggx_point(N, V, l_vector, roughness, f0);
	}
#endif
}

#ifdef HAIR_SHADER
void light_hair_common(
        LightData ld, vec3 N, vec3 V, vec4 l_vector, vec3 norm_view,
        out float occlu_trans, out float occlu,
        out vec3 norm_lamp, out vec3 view_vec)
{
	const float transmission = 0.3; /* Uniform internal scattering factor */

	vec3 lamp_vec;

	if (ld.l_type == SUN || ld.l_type == AREA) {
		lamp_vec = ld.l_forward;
	}
	else {
		lamp_vec = -l_vector.xyz;
	}

	norm_lamp = cross(lamp_vec, N);
	norm_lamp = normalize(cross(N, norm_lamp)); /* Normal facing lamp */

	/* Rotate view vector onto the cross(tangent, light) plane */
	view_vec = normalize(norm_lamp * dot(norm_view, V) + N * dot(N, V));

	occlu = (dot(norm_view, norm_lamp) * 0.5 + 0.5);
	occlu_trans = transmission + (occlu * (1.0 - transmission)); /* Includes transmission component */
}
#endif