Welcome to mirror list, hosted at ThFree Co, Russian Federation.

lamps_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b031b45d1c4d8fb1dd80ca5a372b78be05873015 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

uniform sampler2DArray shadowCubes;
uniform sampler2DArrayShadow shadowCascades;

layout(std140) uniform shadow_block {
	ShadowCubeData    shadows_cube_data[MAX_SHADOW_CUBE];
	ShadowMapData     shadows_map_data[MAX_SHADOW_MAP];
	ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
};

layout(std140) uniform probe_block {
	CubeData probes_data[MAX_PROBE];
};

layout(std140) uniform grid_block {
	GridData grids_data[MAX_GRID];
};

layout(std140) uniform planar_block {
	PlanarData planars_data[MAX_PLANAR];
};

layout(std140) uniform light_block {
	LightData lights_data[MAX_LIGHT];
};

/* type */
#define POINT    0.0
#define SUN      1.0
#define SPOT     2.0
#define HEMI     3.0
#define AREA     4.0

float shadow_cubemap(float shid, vec3 l_vector, vec3 W)
{
	ShadowCubeData scd = shadows_cube_data[int(shid)];

	vec3 cubevec = W - l_vector;
	float dist = length(cubevec) - scd.sh_cube_bias;

	float z = texture_octahedron(shadowCubes, vec4(cubevec, shid)).r;

	float esm_test = saturate(exp(scd.sh_cube_exp * (z - dist)));
	// float sh_test = step(0, z - dist);

	return esm_test;
}

float shadow_cascade(float shid, vec3 W)
{
	/* Shadow Cascade */
	shid -= (MAX_SHADOW_CUBE + MAX_SHADOW_MAP);
	ShadowCascadeData smd = shadows_cascade_data[int(shid)];

	/* Finding Cascade index */
	vec4 z = vec4(-dot(cameraPos - W, cameraForward));
	vec4 comp = step(z, smd.split_distances);
	float cascade = dot(comp, comp);
	mat4 shadowmat;
	float bias;

	/* Manual Unrolling of a loop for better performance.
	 * Doing fetch directly with cascade index leads to
	 * major performance impact. (0.27ms -> 10.0ms for 1 light) */
	if (cascade == 0.0) {
		shadowmat = smd.shadowmat[0];
		bias = smd.bias[0];
	}
	else if (cascade == 1.0) {
		shadowmat = smd.shadowmat[1];
		bias = smd.bias[1];
	}
	else if (cascade == 2.0) {
		shadowmat = smd.shadowmat[2];
		bias = smd.bias[2];
	}
	else {
		shadowmat = smd.shadowmat[3];
		bias = smd.bias[3];
	}

	vec4 shpos = shadowmat * vec4(W, 1.0);
	shpos.z -= bias * shpos.w;
	shpos.xyz /= shpos.w;

	return texture(shadowCascades, vec4(shpos.xy, shid * float(MAX_CASCADE_NUM) + cascade, shpos.z));
}

float light_visibility(LightData ld, vec3 W, vec3 l_vector)
{
	float vis = 1.0;

	if (ld.l_type == SPOT) {
		float z = dot(ld.l_forward, l_vector);
		vec3 lL = l_vector / z;
		float x = dot(ld.l_right, lL) / ld.l_sizex;
		float y = dot(ld.l_up, lL) / ld.l_sizey;

		float ellipse = 1.0 / sqrt(1.0 + x * x + y * y);

		float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);

		vis *= spotmask;
		vis *= step(0.0, -dot(l_vector, ld.l_forward));
	}
	else if (ld.l_type == AREA) {
		vis *= step(0.0, -dot(l_vector, ld.l_forward));
	}

	/* shadowing */
	if (ld.l_shadowid >= (MAX_SHADOW_MAP + MAX_SHADOW_CUBE)) {
		vis *= shadow_cascade(ld.l_shadowid, W);
	}
	else if (ld.l_shadowid >= 0.0) {
		vis *= shadow_cubemap(ld.l_shadowid, l_vector, W);
	}

	return vis;
}

float light_diffuse(LightData ld, ShadingData sd, vec4 l_vector)
{
#ifdef USE_LTC
	if (ld.l_type == SUN) {
		/* TODO disk area light */
		return direct_diffuse_sun(ld, sd);
	}
	else if (ld.l_type == AREA) {
		return direct_diffuse_rectangle(ld, sd, l_vector);
	}
	else {
		return direct_diffuse_sphere(ld, sd, l_vector);
	}
#else
	if (ld.l_type == SUN) {
		return direct_diffuse_sun(ld, sd);
	}
	else {
		return direct_diffuse_point(sd, l_vector);
	}
#endif
}

vec3 light_specular(LightData ld, ShadingData sd, vec4 l_vector, float roughness, vec3 f0)
{
#ifdef USE_LTC
	if (ld.l_type == SUN) {
		/* TODO disk area light */
		return direct_ggx_sun(ld, sd, roughness, f0);
	}
	else if (ld.l_type == AREA) {
		return direct_ggx_rectangle(ld, sd, l_vector, roughness, f0);
	}
	else {
		return direct_ggx_sphere(ld, sd, l_vector, roughness, f0);
	}
#else
	if (ld.l_type == SUN) {
		return direct_ggx_sun(ld, sd, roughness, f0);
	}
	else {
		return direct_ggx_point(sd, l_vector, roughness, f0);
	}
#endif
}

#ifdef HAIR_SHADER
void light_hair_common(
        LightData ld, ShadingData sd, vec4 l_vector, vec3 norm_view,
        out float occlu_trans, out float occlu,
        out vec3 norm_lamp, out vec3 view_vec)
{
	const float transmission = 0.3; /* Uniform internal scattering factor */

	vec3 lamp_vec;

	if (ld.l_type == SUN || ld.l_type == AREA) {
		lamp_vec = ld.l_forward;
	}
	else {
		lamp_vec = -l_vector.xyz;
	}

	norm_lamp = cross(lamp_vec, sd.N);
	norm_lamp = normalize(cross(sd.N, norm_lamp)); /* Normal facing lamp */

	/* Rotate view vector onto the cross(tangent, light) plane */
	view_vec = normalize(norm_lamp * dot(norm_view, sd.V) + sd.N * dot(sd.N, sd.V));

	float occlusion = (dot(norm_view, norm_lamp) * 0.5 + 0.5);
	float occltrans = transmission + (occlusion * (1.0 - transmission)); /* Includes transmission component */
}
#endif