Welcome to mirror list, hosted at ThFree Co, Russian Federation.

lightprobe_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6c6db88139b059e2b16cd8ae4961e1fe80f8778f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/* ----------- Uniforms --------- */

uniform sampler2DArray probePlanars;
uniform samplerCubeArray probeCubes;

/* ----------- Structures --------- */

struct CubeData {
  vec4 position_type;
  vec4 attenuation_fac_type;
  mat4 influencemat;
  mat4 parallaxmat;
};

#define PROBE_PARALLAX_BOX 1.0
#define PROBE_ATTENUATION_BOX 1.0

#define p_position position_type.xyz
#define p_parallax_type position_type.w
#define p_atten_fac attenuation_fac_type.x
#define p_atten_type attenuation_fac_type.y

struct PlanarData {
  vec4 plane_equation;
  vec4 clip_vec_x_fade_scale;
  vec4 clip_vec_y_fade_bias;
  vec4 clip_edges;
  vec4 facing_scale_bias;
  mat4 reflectionmat; /* transform world space into reflection texture space */
  mat4 unused;
};

#define pl_plane_eq plane_equation
#define pl_normal plane_equation.xyz
#define pl_facing_scale facing_scale_bias.x
#define pl_facing_bias facing_scale_bias.y
#define pl_fade_scale clip_vec_x_fade_scale.w
#define pl_fade_bias clip_vec_y_fade_bias.w
#define pl_clip_pos_x clip_vec_x_fade_scale.xyz
#define pl_clip_pos_y clip_vec_y_fade_bias.xyz
#define pl_clip_edges clip_edges

struct GridData {
  mat4 localmat;
  ivec4 resolution_offset;
  vec4 ws_corner_atten_scale;     /* world space corner position */
  vec4 ws_increment_x_atten_bias; /* world space vector between 2 opposite cells */
  vec4 ws_increment_y_lvl_bias;
  vec4 ws_increment_z;
  vec4 vis_bias_bleed_range;
};

#define g_corner ws_corner_atten_scale.xyz
#define g_atten_scale ws_corner_atten_scale.w
#define g_atten_bias ws_increment_x_atten_bias.w
#define g_level_bias ws_increment_y_lvl_bias.w
#define g_increment_x ws_increment_x_atten_bias.xyz
#define g_increment_y ws_increment_y_lvl_bias.xyz
#define g_increment_z ws_increment_z.xyz
#define g_resolution resolution_offset.xyz
#define g_offset resolution_offset.w
#define g_vis_bias vis_bias_bleed_range.x
#define g_vis_bleed vis_bias_bleed_range.y
#define g_vis_range vis_bias_bleed_range.z

#ifndef MAX_PROBE
#  define MAX_PROBE 1
#endif
#ifndef MAX_GRID
#  define MAX_GRID 1
#endif
#ifndef MAX_PLANAR
#  define MAX_PLANAR 1
#endif

#ifndef UTIL_TEX
#  define UTIL_TEX
uniform sampler2DArray utilTex;
#  define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
#endif /* UTIL_TEX */

layout(std140) uniform probe_block
{
  CubeData probes_data[MAX_PROBE];
};

layout(std140) uniform grid_block
{
  GridData grids_data[MAX_GRID];
};

layout(std140) uniform planar_block
{
  PlanarData planars_data[MAX_PLANAR];
};

/* ----------- Functions --------- */

float probe_attenuation_cube(int pd_id, vec3 W)
{
  vec3 localpos = transform_point(probes_data[pd_id].influencemat, W);

  float probe_atten_fac = probes_data[pd_id].p_atten_fac;
  float fac;
  if (probes_data[pd_id].p_atten_type == PROBE_ATTENUATION_BOX) {
    vec3 axes_fac = saturate(probe_atten_fac - probe_atten_fac * abs(localpos));
    fac = min_v3(axes_fac);
  }
  else {
    fac = saturate(probe_atten_fac - probe_atten_fac * length(localpos));
  }

  return fac;
}

float probe_attenuation_planar(PlanarData pd, vec3 W, vec3 N, float roughness)
{
  /* Normal Facing */
  float fac = saturate(dot(pd.pl_normal, N) * pd.pl_facing_scale + pd.pl_facing_bias);

  /* Distance from plane */
  fac *= saturate(abs(dot(pd.pl_plane_eq, vec4(W, 1.0))) * pd.pl_fade_scale + pd.pl_fade_bias);

  /* Fancy fast clipping calculation */
  vec2 dist_to_clip;
  dist_to_clip.x = dot(pd.pl_clip_pos_x, W);
  dist_to_clip.y = dot(pd.pl_clip_pos_y, W);
  /* compare and add all tests */
  fac *= step(2.0, dot(step(pd.pl_clip_edges, dist_to_clip.xxyy), vec2(-1.0, 1.0).xyxy));

  /* Decrease influence for high roughness */
  fac *= saturate(1.0 - roughness * 10.0);

  return fac;
}

float probe_attenuation_grid(GridData gd, mat4 localmat, vec3 W, out vec3 localpos)
{
  localpos = transform_point(localmat, W);
  vec3 pos_to_edge = max(vec3(0.0), abs(localpos) - 1.0);
  float fade = length(pos_to_edge);
  return saturate(-fade * gd.g_atten_scale + gd.g_atten_bias);
}

vec3 probe_evaluate_cube(int pd_id, vec3 W, vec3 R, float roughness)
{
  /* Correct reflection ray using parallax volume intersection. */
  vec3 localpos = transform_point(probes_data[pd_id].parallaxmat, W);
  vec3 localray = transform_direction(probes_data[pd_id].parallaxmat, R);

  float dist;
  if (probes_data[pd_id].p_parallax_type == PROBE_PARALLAX_BOX) {
    dist = line_unit_box_intersect_dist(localpos, localray);
  }
  else {
    dist = line_unit_sphere_intersect_dist(localpos, localray);
  }

  /* Use Distance in WS directly to recover intersection */
  vec3 intersection = W + R * dist - probes_data[pd_id].p_position;

  /* From Frostbite PBR Course
   * Distance based roughness
   * http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf
   */
  float original_roughness = roughness;
  float linear_roughness = sqrt(roughness);
  float distance_roughness = saturate(dist * linear_roughness / length(intersection));
  linear_roughness = mix(distance_roughness, linear_roughness, linear_roughness);
  roughness = linear_roughness * linear_roughness;

  float fac = saturate(original_roughness * 2.0 - 1.0);
  R = mix(intersection, R, fac * fac);

  return textureLod_cubemapArray(probeCubes, vec4(R, float(pd_id)), roughness * prbLodCubeMax).rgb;
}

vec3 probe_evaluate_world_spec(vec3 R, float roughness)
{
  return textureLod_cubemapArray(probeCubes, vec4(R, 0.0), roughness * prbLodCubeMax).rgb;
}

vec3 probe_evaluate_planar(
    float id, PlanarData pd, vec3 W, vec3 N, vec3 V, float roughness, inout float fade)
{
  /* Find view vector / reflection plane intersection. */
  vec3 point_on_plane = line_plane_intersect(W, V, pd.pl_plane_eq);

  /* How far the pixel is from the plane. */
  float ref_depth = 1.0; /* TODO parameter */

  /* Compute distorded reflection vector based on the distance to the reflected object.
   * In other words find intersection between reflection vector and the sphere center
   * around point_on_plane. */
  vec3 proj_ref = reflect(reflect(-V, N) * ref_depth, pd.pl_normal);

  /* Final point in world space. */
  vec3 ref_pos = point_on_plane + proj_ref;

  /* Reproject to find texture coords. */
  vec4 refco = ViewProjectionMatrix * vec4(ref_pos, 1.0);
  refco.xy /= refco.w;

  /* TODO: If we support non-ssr planar reflection, we should blur them with gaussian
   * and chose the right mip depending on the cone footprint after projection */
  /* NOTE: X is inverted here to compensate inverted drawing.  */
  vec3 sample = textureLod(probePlanars, vec3(refco.xy * vec2(-0.5, 0.5) + 0.5, id), 0.0).rgb;

  return sample;
}

void fallback_cubemap(vec3 N,
                      vec3 V,
                      vec3 W,
                      vec3 viewPosition,
                      float roughness,
                      float roughnessSquared,
                      inout vec4 spec_accum)
{
  /* Specular probes */
  vec3 spec_dir = get_specular_reflection_dominant_dir(N, V, roughnessSquared);

#ifdef SSR_AO
  vec4 rand = texelfetch_noise_tex(gl_FragCoord.xy);
  vec3 bent_normal;
  float final_ao = occlusion_compute(N, viewPosition, 1.0, rand, bent_normal);
  final_ao = specular_occlusion(dot(N, V), final_ao, roughness);
#else
  const float final_ao = 1.0;
#endif

  /* Starts at 1 because 0 is world probe */
  for (int i = 1; i < MAX_PROBE && i < prbNumRenderCube && spec_accum.a < 0.999; i++) {
    float fade = probe_attenuation_cube(i, W);

    if (fade > 0.0) {
      vec3 spec = final_ao * probe_evaluate_cube(i, W, spec_dir, roughness);
      accumulate_light(spec, fade, spec_accum);
    }
  }

  /* World Specular */
  if (spec_accum.a < 0.999) {
    vec3 spec = final_ao * probe_evaluate_world_spec(spec_dir, roughness);
    accumulate_light(spec, 1.0, spec_accum);
  }
}

#ifdef IRRADIANCE_LIB
vec3 probe_evaluate_grid(GridData gd, vec3 W, vec3 N, vec3 localpos)
{
  localpos = localpos * 0.5 + 0.5;
  localpos = localpos * vec3(gd.g_resolution) - 0.5;

  vec3 localpos_floored = floor(localpos);
  vec3 trilinear_weight = fract(localpos);

  float weight_accum = 0.0;
  vec3 irradiance_accum = vec3(0.0);

  /* For each neighbor cells */
  for (int i = 0; i < 8; i++) {
    ivec3 offset = ivec3(i, i >> 1, i >> 2) & ivec3(1);
    vec3 cell_cos = clamp(localpos_floored + vec3(offset), vec3(0.0), vec3(gd.g_resolution) - 1.0);

    /* Keep in sync with update_irradiance_probe */
    ivec3 icell_cos = ivec3(gd.g_level_bias * floor(cell_cos / gd.g_level_bias));
    int cell = gd.g_offset + icell_cos.z + icell_cos.y * gd.g_resolution.z +
               icell_cos.x * gd.g_resolution.z * gd.g_resolution.y;

    vec3 color = irradiance_from_cell_get(cell, N);

    /* We need this because we render probes in world space (so we need light vector in WS).
     * And rendering them in local probe space is too much problem. */
    vec3 ws_cell_location = gd.g_corner +
                            (gd.g_increment_x * cell_cos.x + gd.g_increment_y * cell_cos.y +
                             gd.g_increment_z * cell_cos.z);

    vec3 ws_point_to_cell = ws_cell_location - W;
    float ws_dist_point_to_cell = length(ws_point_to_cell);
    vec3 ws_light = ws_point_to_cell / ws_dist_point_to_cell;

    /* Smooth backface test */
    float weight = saturate(dot(ws_light, N));

    /* Precomputed visibility */
    weight *= load_visibility_cell(
        cell, ws_light, ws_dist_point_to_cell, gd.g_vis_bias, gd.g_vis_bleed, gd.g_vis_range);

    /* Smoother transition */
    weight += prbIrradianceSmooth;

    /* Trilinear weights */
    vec3 trilinear = mix(1.0 - trilinear_weight, trilinear_weight, offset);
    weight *= trilinear.x * trilinear.y * trilinear.z;

    /* Avoid zero weight */
    weight = max(0.00001, weight);

    weight_accum += weight;
    irradiance_accum += color * weight;
  }

  return irradiance_accum / weight_accum;
}

vec3 probe_evaluate_world_diff(vec3 N)
{
  return irradiance_from_cell_get(0, N);
}

#endif /* IRRADIANCE_LIB */