Welcome to mirror list, hosted at ThFree Co, Russian Federation.

lights_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3b9d0a8f2bcc72c26d99dc91159627f123151887 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

uniform sampler2DArrayShadow shadowCubeTexture;
uniform sampler2DArrayShadow shadowCascadeTexture;

#define LAMPS_LIB

layout(std140) uniform shadow_block
{
  ShadowData shadows_data[MAX_SHADOW];
  ShadowCubeData shadows_cube_data[MAX_SHADOW_CUBE];
  ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
};

layout(std140) uniform light_block
{
  LightData lights_data[MAX_LIGHT];
};

/* type */
#define POINT 0.0
#define SUN 1.0
#define SPOT 2.0
#define AREA_RECT 4.0
/* Used to define the area light shape, doesn't directly correspond to a Blender light type. */
#define AREA_ELLIPSE 100.0

float cubeFaceIndexEEVEE(vec3 P)
{
  vec3 aP = abs(P);
  if (all(greaterThan(aP.xx, aP.yz))) {
    return (P.x > 0.0) ? 0.0 : 1.0;
  }
  else if (all(greaterThan(aP.yy, aP.xz))) {
    return (P.y > 0.0) ? 2.0 : 3.0;
  }
  else {
    return (P.z > 0.0) ? 4.0 : 5.0;
  }
}

vec2 cubeFaceCoordEEVEE(vec3 P, float face, float scale)
{
  if (face < 2.0) {
    return (P.zy / P.x) * scale * vec2(-0.5, -sign(P.x) * 0.5) + 0.5;
  }
  else if (face < 4.0) {
    return (P.xz / P.y) * scale * vec2(sign(P.y) * 0.5, 0.5) + 0.5;
  }
  else {
    return (P.xy / P.z) * scale * vec2(0.5, -sign(P.z) * 0.5) + 0.5;
  }
}

vec2 cubeFaceCoordEEVEE(vec3 P, float face, sampler2DArray tex)
{
  /* Scaling to compensate the 1px border around the face. */
  float cube_res = float(textureSize(tex, 0).x);
  float scale = (cube_res) / (cube_res + 1.0);
  return cubeFaceCoordEEVEE(P, face, scale);
}

vec2 cubeFaceCoordEEVEE(vec3 P, float face, sampler2DArrayShadow tex)
{
  /* Scaling to compensate the 1px border around the face. */
  float cube_res = float(textureSize(tex, 0).x);
  float scale = (cube_res) / (cube_res + 1.0);
  return cubeFaceCoordEEVEE(P, face, scale);
}

vec4 sample_cube(sampler2DArray tex, vec3 cubevec, float cube)
{
  /* Manual Shadow Cube Layer indexing. */
  float face = cubeFaceIndexEEVEE(cubevec);
  vec2 uv = cubeFaceCoordEEVEE(cubevec, face, tex);

  vec3 coord = vec3(uv, cube * 6.0 + face);
  return texture(tex, coord);
}

vec4 sample_cascade(sampler2DArray tex, vec2 co, float cascade_id)
{
  return texture(tex, vec3(co, cascade_id));
}

/* Some driver poorly optimize this code. Use direct reference to matrices. */
#define sd(x) shadows_data[x]
#define scube(x) shadows_cube_data[x]
#define scascade(x) shadows_cascade_data[x]

float sample_cube_shadow(int shadow_id, vec3 W)
{
  int data_id = int(sd(shadow_id).sh_data_index);
  vec3 cubevec = transform_point(scube(data_id).shadowmat, W);
  float dist = max(sd(shadow_id).sh_near, max_v3(abs(cubevec)) - sd(shadow_id).sh_bias);
  dist = buffer_depth(true, dist, sd(shadow_id).sh_far, sd(shadow_id).sh_near);
  /* Manual Shadow Cube Layer indexing. */
  /* TODO Shadow Cube Array. */
  float face = cubeFaceIndexEEVEE(cubevec);
  vec2 coord = cubeFaceCoordEEVEE(cubevec, face, shadowCubeTexture);
  /* tex_id == data_id for cube shadowmap */
  float tex_id = float(data_id);
  return texture(shadowCubeTexture, vec4(coord, tex_id * 6.0 + face, dist));
}

float sample_cascade_shadow(int shadow_id, vec3 W)
{
  int data_id = int(sd(shadow_id).sh_data_index);
  float tex_id = scascade(data_id).sh_tex_index;
  vec4 view_z = vec4(dot(W - cameraPos, cameraForward));
  vec4 weights = 1.0 - smoothstep(scascade(data_id).split_end_distances,
                                  scascade(data_id).split_start_distances.yzwx,
                                  view_z);
  float tot_weight = dot(weights.xyz, vec3(1.0));

  int cascade = int(clamp(tot_weight, 0.0, 3.0));
  float blend = fract(tot_weight);
  float vis = weights.w;
  vec4 coord, shpos;
  /* Main cascade. */
  shpos = scascade(data_id).shadowmat[cascade] * vec4(W, 1.0);
  coord = vec4(shpos.xy, tex_id + float(cascade), shpos.z - sd(shadow_id).sh_bias);
  vis += texture(shadowCascadeTexture, coord) * (1.0 - blend);

  cascade = min(3, cascade + 1);
  /* Second cascade. */
  shpos = scascade(data_id).shadowmat[cascade] * vec4(W, 1.0);
  coord = vec4(shpos.xy, tex_id + float(cascade), shpos.z - sd(shadow_id).sh_bias);
  vis += texture(shadowCascadeTexture, coord) * blend;

  return saturate(vis);
}
#undef sd
#undef scube
#undef scsmd

/* ----------------------------------------------------------- */
/* --------------------- Light Functions --------------------- */
/* ----------------------------------------------------------- */

/* From Frostbite PBR Course
 * Distance based attenuation
 * http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
float distance_attenuation(float dist_sqr, float inv_sqr_influence)
{
  float factor = dist_sqr * inv_sqr_influence;
  float fac = saturate(1.0 - factor * factor);
  return fac * fac;
}

float spot_attenuation(LightData ld, vec3 l_vector)
{
  float z = dot(ld.l_forward, l_vector.xyz);
  vec3 lL = l_vector.xyz / z;
  float x = dot(ld.l_right, lL) / ld.l_sizex;
  float y = dot(ld.l_up, lL) / ld.l_sizey;
  float ellipse = inversesqrt(1.0 + x * x + y * y);
  float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);
  return spotmask;
}

float light_attenuation(LightData ld, vec4 l_vector)
{
  float vis = 1.0;
  if (ld.l_type == SPOT) {
    vis *= spot_attenuation(ld, l_vector.xyz);
  }
  if (ld.l_type >= SPOT) {
    vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
  }
  if (ld.l_type != SUN) {
    vis *= distance_attenuation(l_vector.w * l_vector.w, ld.l_influence);
  }
  return vis;
}

float light_shadowing(LightData ld,
                      vec3 W,
#ifndef VOLUMETRICS
                      vec3 viewPosition,
                      float tracing_depth,
                      vec3 true_normal,
                      float rand_x,
                      const bool use_contact_shadows,
#endif
                      float vis)
{
#if !defined(VOLUMETRICS) || defined(VOLUME_SHADOW)
  /* shadowing */
  if (ld.l_shadowid >= 0.0 && vis > 0.001) {

    if (ld.l_type == SUN) {
      vis *= sample_cascade_shadow(int(ld.l_shadowid), W);
    }
    else {
      vis *= sample_cube_shadow(int(ld.l_shadowid), W);
    }

#  ifndef VOLUMETRICS
    ShadowData sd = shadows_data[int(ld.l_shadowid)];
    /* Only compute if not already in shadow. */
    if (use_contact_shadows && sd.sh_contact_dist > 0.0 && vis > 1e-8) {
      /* Contact Shadows. */
      vec3 ray_ori, ray_dir;
      float trace_distance;

      if (ld.l_type == SUN) {
        trace_distance = sd.sh_contact_dist;
        ray_dir = shadows_cascade_data[int(sd.sh_data_index)].sh_shadow_vec * trace_distance;
      }
      else {
        ray_dir = shadows_cube_data[int(sd.sh_data_index)].position.xyz - W;
        float len = length(ray_dir);
        trace_distance = min(sd.sh_contact_dist, len);
        ray_dir *= trace_distance / len;
      }

      ray_dir = transform_direction(ViewMatrix, ray_dir);
      ray_ori = vec3(viewPosition.xy, tracing_depth) + true_normal * sd.sh_contact_offset;

      vec3 hit_pos = raycast(
          -1, ray_ori, ray_dir, sd.sh_contact_thickness, rand_x, 0.1, 0.001, false);

      if (hit_pos.z > 0.0) {
        hit_pos = get_view_space_from_depth(hit_pos.xy, hit_pos.z);
        float hit_dist = distance(viewPosition, hit_pos);
        float dist_ratio = hit_dist / trace_distance;
        return vis * saturate(dist_ratio * 3.0 - 2.0);
      }
    }
#  endif /* VOLUMETRICS */
  }
#endif

  return vis;
}

float light_visibility(LightData ld,
                       vec3 W,
#ifndef VOLUMETRICS
                       vec3 viewPosition,
                       float tracing_depth,
                       vec3 true_normal,
                       float rand_x,
                       const bool use_contact_shadows,
#endif
                       vec4 l_vector)
{
  float l_atten = light_attenuation(ld, l_vector);
  return light_shadowing(ld,
                         W,
#ifndef VOLUMETRICS
                         viewPosition,
                         tracing_depth,
                         true_normal,
                         rand_x,
                         use_contact_shadows,
#endif
                         l_atten);
}

#ifdef USE_LTC
float light_diffuse(LightData ld, vec3 N, vec3 V, vec4 l_vector)
{
  if (ld.l_type == AREA_RECT) {
    vec3 corners[4];
    corners[0] = normalize((l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * ld.l_sizey);
    corners[1] = normalize((l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * -ld.l_sizey);
    corners[2] = normalize((l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * -ld.l_sizey);
    corners[3] = normalize((l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * ld.l_sizey);

    return ltc_evaluate_quad(corners, N);
  }
  else if (ld.l_type == AREA_ELLIPSE) {
    vec3 points[3];
    points[0] = (l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * -ld.l_sizey;
    points[1] = (l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * -ld.l_sizey;
    points[2] = (l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * ld.l_sizey;

    return ltc_evaluate_disk(N, V, mat3(1.0), points);
  }
  else {
    float radius = ld.l_radius;
    radius /= (ld.l_type == SUN) ? 1.0 : l_vector.w;
    vec3 L = (ld.l_type == SUN) ? -ld.l_forward : (l_vector.xyz / l_vector.w);

    return ltc_evaluate_disk_simple(radius, dot(N, L));
  }
}

float light_specular(LightData ld, vec4 ltc_mat, vec3 N, vec3 V, vec4 l_vector)
{
  if (ld.l_type == AREA_RECT) {
    vec3 corners[4];
    corners[0] = (l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * ld.l_sizey;
    corners[1] = (l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * -ld.l_sizey;
    corners[2] = (l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * -ld.l_sizey;
    corners[3] = (l_vector.xyz + ld.l_right * ld.l_sizex) + ld.l_up * ld.l_sizey;

    ltc_transform_quad(N, V, ltc_matrix(ltc_mat), corners);

    return ltc_evaluate_quad(corners, vec3(0.0, 0.0, 1.0));
  }
  else {
    bool is_ellipse = (ld.l_type == AREA_ELLIPSE);
    float radius_x = is_ellipse ? ld.l_sizex : ld.l_radius;
    float radius_y = is_ellipse ? ld.l_sizey : ld.l_radius;

    vec3 L = (ld.l_type == SUN) ? -ld.l_forward : l_vector.xyz;
    vec3 Px = ld.l_right;
    vec3 Py = ld.l_up;

    if (ld.l_type == SPOT || ld.l_type == POINT) {
      make_orthonormal_basis(l_vector.xyz / l_vector.w, Px, Py);
    }

    vec3 points[3];
    points[0] = (L + Px * -radius_x) + Py * -radius_y;
    points[1] = (L + Px * radius_x) + Py * -radius_y;
    points[2] = (L + Px * radius_x) + Py * radius_y;

    return ltc_evaluate_disk(N, V, ltc_matrix(ltc_mat), points);
  }
}
#endif