Welcome to mirror list, hosted at ThFree Co, Russian Federation.

lit_surface_frag.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5b6f30a116bf2a043517dd58d6d34d41ff3f6e51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

uniform int light_count;
uniform int probe_count;
uniform int grid_count;
uniform int planar_count;
uniform mat4 ViewMatrix;
uniform mat4 ViewMatrixInverse;

uniform sampler2DArray probePlanars;

uniform sampler2DArray probeCubes;
uniform float lodMax;
uniform bool specToggle;

#ifndef UTIL_TEX
#define UTIL_TEX
uniform sampler2DArray utilTex;
#endif /* UTIL_TEX */

uniform sampler2DArray shadowCubes;
uniform sampler2DArrayShadow shadowCascades;

layout(std140) uniform probe_block {
	ProbeData probes_data[MAX_PROBE];
};

layout(std140) uniform grid_block {
	GridData grids_data[MAX_GRID];
};

layout(std140) uniform planar_block {
	PlanarData planars_data[MAX_PLANAR];
};

layout(std140) uniform light_block {
	LightData lights_data[MAX_LIGHT];
};

layout(std140) uniform shadow_block {
	ShadowCubeData    shadows_cube_data[MAX_SHADOW_CUBE];
	ShadowMapData     shadows_map_data[MAX_SHADOW_MAP];
	ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
};

in vec3 worldPosition;
in vec3 viewPosition;

#ifdef USE_FLAT_NORMAL
flat in vec3 worldNormal;
flat in vec3 viewNormal;
#else
in vec3 worldNormal;
in vec3 viewNormal;
#endif

#define cameraForward   normalize(ViewMatrixInverse[2].xyz)
#define cameraPos       ViewMatrixInverse[3].xyz

/* type */
#define POINT    0.0
#define SUN      1.0
#define SPOT     2.0
#define HEMI     3.0
#define AREA     4.0

#ifdef HAIR_SHADER
vec3 light_diffuse(LightData ld, ShadingData sd, vec3 albedo)
{
       if (ld.l_type == SUN) {
               return direct_diffuse_sun(ld, sd) * albedo;
       }
       else if (ld.l_type == AREA) {
               return direct_diffuse_rectangle(ld, sd) * albedo;
       }
       else {
               return direct_diffuse_sphere(ld, sd) * albedo;
       }
}

vec3 light_specular(LightData ld, ShadingData sd, float roughness, vec3 f0)
{
       if (ld.l_type == SUN) {
               return direct_ggx_sun(ld, sd, roughness, f0);
       }
       else if (ld.l_type == AREA) {
               return direct_ggx_rectangle(ld, sd, roughness, f0);
       }
       else {
               return direct_ggx_sphere(ld, sd, roughness, f0);
       }
}

void light_shade(
        LightData ld, ShadingData sd, vec3 albedo, float roughness, vec3 f0,
        out vec3 diffuse, out vec3 specular)
{
       const float transmission = 0.3; /* Uniform internal scattering factor */
       ShadingData sd_new = sd;

       vec3 lamp_vec;

      if (ld.l_type == SUN || ld.l_type == AREA) {
               lamp_vec = ld.l_forward;
       }
       else {
               lamp_vec = -sd.l_vector;
       }

       vec3 norm_view = cross(sd.V, sd.N);
       norm_view = normalize(cross(norm_view, sd.N)); /* Normal facing view */

       vec3 norm_lamp = cross(lamp_vec, sd.N);
       norm_lamp = normalize(cross(sd.N, norm_lamp)); /* Normal facing lamp */

       /* Rotate view vector onto the cross(tangent, light) plane */
       vec3 view_vec = normalize(norm_lamp * dot(norm_view, sd.V) + sd.N * dot(sd.N, sd.V));

       float occlusion = (dot(norm_view, norm_lamp) * 0.5 + 0.5);
       float occltrans = transmission + (occlusion * (1.0 - transmission)); /* Includes transmission component */

       sd_new.N = -norm_lamp;

       diffuse = light_diffuse(ld, sd_new, albedo) * occltrans;

       sd_new.V = view_vec;

       specular = light_specular(ld, sd_new, roughness, f0) * occlusion;
}
#else
void light_shade(
        LightData ld, ShadingData sd, vec3 albedo, float roughness, vec3 f0,
        out vec3 diffuse, out vec3 specular)
{
#ifdef USE_LTC
	if (ld.l_type == SUN) {
		/* TODO disk area light */
		diffuse = direct_diffuse_sun(ld, sd) * albedo;
		specular = direct_ggx_sun(ld, sd, roughness, f0);
	}
	else if (ld.l_type == AREA) {
		diffuse =  direct_diffuse_rectangle(ld, sd) * albedo;
		specular =  direct_ggx_rectangle(ld, sd, roughness, f0);
	}
	else {
		diffuse =  direct_diffuse_sphere(ld, sd) * albedo;
		specular =  direct_ggx_sphere(ld, sd, roughness, f0);
	}
#else
	if (ld.l_type == SUN) {
		diffuse = direct_diffuse_sun(ld, sd) * albedo;
		specular = direct_ggx_sun(ld, sd, roughness, f0);
	}
	else {
		diffuse = direct_diffuse_point(ld, sd) * albedo;
		specular = direct_ggx_point(sd, roughness, f0);
	}
#endif

	specular *= float(specToggle);
}
#endif

void light_visibility(LightData ld, ShadingData sd, out float vis)
{
	vis = 1.0;

	if (ld.l_type == SPOT) {
		float z = dot(ld.l_forward, sd.l_vector);
		vec3 lL = sd.l_vector / z;
		float x = dot(ld.l_right, lL) / ld.l_sizex;
		float y = dot(ld.l_up, lL) / ld.l_sizey;

		float ellipse = 1.0 / sqrt(1.0 + x * x + y * y);

		float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);

		vis *= spotmask;
		vis *= step(0.0, -dot(sd.l_vector, ld.l_forward));
	}
	else if (ld.l_type == AREA) {
		vis *= step(0.0, -dot(sd.l_vector, ld.l_forward));
	}

	/* shadowing */
	if (ld.l_shadowid >= (MAX_SHADOW_MAP + MAX_SHADOW_CUBE)) {
		/* Shadow Cascade */
		float shid = ld.l_shadowid - (MAX_SHADOW_CUBE + MAX_SHADOW_MAP);
		ShadowCascadeData smd = shadows_cascade_data[int(shid)];

		/* Finding Cascade index */
		vec4 z = vec4(-dot(cameraPos - worldPosition, cameraForward));
		vec4 comp = step(z, smd.split_distances);
		float cascade = dot(comp, comp);
		mat4 shadowmat;
		float bias;

		/* Manual Unrolling of a loop for better performance.
		 * Doing fetch directly with cascade index leads to
		 * major performance impact. (0.27ms -> 10.0ms for 1 light) */
		if (cascade == 0.0) {
			shadowmat = smd.shadowmat[0];
			bias = smd.bias[0];
		}
		else if (cascade == 1.0) {
			shadowmat = smd.shadowmat[1];
			bias = smd.bias[1];
		}
		else if (cascade == 2.0) {
			shadowmat = smd.shadowmat[2];
			bias = smd.bias[2];
		}
		else {
			shadowmat = smd.shadowmat[3];
			bias = smd.bias[3];
		}

		vec4 shpos = shadowmat * vec4(sd.W, 1.0);
		shpos.z -= bias * shpos.w;
		shpos.xyz /= shpos.w;

		vis *= texture(shadowCascades, vec4(shpos.xy, shid * float(MAX_CASCADE_NUM) + cascade, shpos.z));
	}
	else if (ld.l_shadowid >= 0.0) {
		/* Shadow Cube */
		float shid = ld.l_shadowid;
		ShadowCubeData scd = shadows_cube_data[int(shid)];

		vec3 cubevec = sd.W - ld.l_position;
		float dist = length(cubevec) - scd.sh_cube_bias;

		float z = texture_octahedron(shadowCubes, vec4(cubevec, shid)).r;

		float esm_test = saturate(exp(scd.sh_cube_exp * (z - dist)));
		float sh_test = step(0, z - dist);

		vis *= esm_test;
	}
}

vec3 probe_parallax_correction(vec3 W, vec3 spec_dir, ProbeData pd, inout float roughness)
{
	vec3 localpos = (pd.parallaxmat * vec4(W, 1.0)).xyz;
	vec3 localray = (pd.parallaxmat * vec4(spec_dir, 0.0)).xyz;

	float dist;
	if (pd.p_parallax_type == PROBE_PARALLAX_BOX) {
		dist = line_unit_box_intersect_dist(localpos, localray);
	}
	else {
		dist = line_unit_sphere_intersect_dist(localpos, localray);
	}

	/* Use Distance in WS directly to recover intersection */
	vec3 intersection = W + spec_dir * dist - pd.p_position;

	/* From Frostbite PBR Course
	 * Distance based roughness
	 * http://www.frostbite.com/wp-content/uploads/2014/11/course_notes_moving_frostbite_to_pbr.pdf */
	float original_roughness = roughness;
	float linear_roughness = sqrt(roughness);
	float distance_roughness = saturate(dist * linear_roughness / length(intersection));
	linear_roughness = mix(distance_roughness, linear_roughness, linear_roughness);
	roughness = linear_roughness * linear_roughness;

	float fac = saturate(original_roughness * 2.0 - 1.0);
	return mix(intersection, spec_dir, fac * fac);
}

float probe_attenuation(vec3 W, ProbeData pd)
{
	vec3 localpos = (pd.influencemat * vec4(W, 1.0)).xyz;

	float fac;
	if (pd.p_atten_type == PROBE_ATTENUATION_BOX) {
		vec3 axes_fac = saturate(pd.p_atten_fac - pd.p_atten_fac * abs(localpos));
		fac = min_v3(axes_fac);
	}
	else {
		fac = saturate(pd.p_atten_fac - pd.p_atten_fac * length(localpos));
	}

	return fac;
}

float planar_attenuation(vec3 W, vec3 N, PlanarData pd)
{
	float fac;

	/* Normal Facing */
	fac = saturate(dot(pd.pl_normal, N) * pd.pl_facing_scale + pd.pl_facing_bias);

	/* Distance from plane */
	fac *= saturate(abs(dot(pd.pl_plane_eq, vec4(W, 1.0))) * pd.pl_fade_scale + pd.pl_fade_bias);

	/* Fancy fast clipping calculation */
	vec2 dist_to_clip;
	dist_to_clip.x = dot(pd.pl_clip_pos_x, W);
	dist_to_clip.y = dot(pd.pl_clip_pos_y, W);
	fac *= step(2.0, dot(step(pd.pl_clip_edges, dist_to_clip.xxyy), vec2(-1.0, 1.0).xyxy)); /* compare and add all tests */

	return fac;
}

float compute_occlusion(vec3 N, float micro_occlusion, vec2 randuv, out vec3 bent_normal)
{
#ifdef USE_AO /* Screen Space Occlusion */

	float macro_occlusion;
	vec3 vnor = mat3(ViewMatrix) * N;

#ifdef USE_BENT_NORMAL
	gtao(vnor, viewPosition, randuv, macro_occlusion, bent_normal);
	bent_normal = mat3(ViewMatrixInverse) * bent_normal;
#else
	gtao(vnor, viewPosition, randuv, macro_occlusion);
	bent_normal = N;
#endif
	return min(macro_occlusion, micro_occlusion);

#else /* No added Occlusion. */

	bent_normal = N;
	return micro_occlusion;

#endif
}

vec3 eevee_surface_lit(vec3 world_normal, vec3 albedo, vec3 f0, float roughness, float ao)
{
	roughness = clamp(roughness, 1e-8, 0.9999);
	float roughnessSquared = roughness * roughness;

	ShadingData sd;
	sd.N = normalize(world_normal);
	sd.V = (ProjectionMatrix[3][3] == 0.0) /* if perspective */
	            ? normalize(cameraPos - worldPosition)
	            : cameraForward;
	sd.W = worldPosition;

	vec3 radiance = vec3(0.0);

#ifdef HAIR_SHADER
       /* View facing normal */
       vec3 norm_view = cross(sd.V, sd.N);
       norm_view = normalize(cross(norm_view, sd.N)); /* Normal facing view */
#endif


	/* Analytic Lights */
	for (int i = 0; i < MAX_LIGHT && i < light_count; ++i) {
		LightData ld = lights_data[i];
		vec3 diff, spec;
		float vis = 1.0;

		sd.l_vector = ld.l_position - worldPosition;

#ifndef HAIR_SHADER
		light_visibility(ld, sd, vis);
#endif
		light_shade(ld, sd, albedo, roughnessSquared, f0, diff, spec);

		radiance += vis * (diff + spec) * ld.l_color;
	}

#ifdef HAIR_SHADER
	sd.N = -norm_view;
#endif

	vec3 bent_normal;
	vec4 rand = textureLod(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0), 0.0).rgba;
	float final_ao = compute_occlusion(sd.N, ao, rand.rg, bent_normal);

	/* Envmaps */
	vec3 R = reflect(-sd.V, sd.N);
	vec3 spec_dir = get_specular_dominant_dir(sd.N, R, roughnessSquared);
	vec2 uv = lut_coords(dot(sd.N, sd.V), roughness);
	vec2 brdf_lut = texture(utilTex, vec3(uv, 1.0)).rg;

	vec4 spec_accum = vec4(0.0);
	vec4 diff_accum = vec4(0.0);

	/* Planar Reflections */
	for (int i = 0; i < MAX_PLANAR && i < planar_count && spec_accum.a < 0.999; ++i) {
		PlanarData pd = planars_data[i];

		float influence = planar_attenuation(sd.W, sd.N, pd);

		if (influence > 0.0) {
			float influ_spec = min(influence, (1.0 - spec_accum.a));

			/* Sample reflection depth. */
			vec4 refco = pd.reflectionmat * vec4(sd.W, 1.0);
			refco.xy /= refco.w;
			float ref_depth = textureLod(probePlanars, vec3(refco.xy, i), 0.0).a;

			/* Find view vector / reflection plane intersection. (dist_to_plane is negative) */
			float dist_to_plane = line_plane_intersect_dist(cameraPos, sd.V, pd.pl_plane_eq);
			vec3 point_on_plane = cameraPos + sd.V * dist_to_plane;

			/* How far the pixel is from the plane. */
			ref_depth = ref_depth + dist_to_plane;

			/* Compute distorded reflection vector based on the distance to the reflected object.
			 * In other words find intersection between reflection vector and the sphere center
			 * around point_on_plane. */
			vec3 proj_ref = reflect(R * ref_depth, pd.pl_normal);

			/* Final point in world space. */
			vec3 ref_pos = point_on_plane + proj_ref;

			/* Reproject to find texture coords. */
			refco = pd.reflectionmat * vec4(ref_pos, 1.0);
			refco.xy /= refco.w;

			vec3 sample = textureLod(probePlanars, vec3(refco.xy, i), 0.0).rgb;

			spec_accum.rgb += sample * influ_spec;
			spec_accum.a += influ_spec;
		}
	}

	/* Specular probes */
	/* Start at 1 because 0 is world probe */
	for (int i = 1; i < MAX_PROBE && i < probe_count && spec_accum.a < 0.999; ++i) {
		ProbeData pd = probes_data[i];

		float dist_attenuation = probe_attenuation(sd.W, pd);

		if (dist_attenuation > 0.0) {
			float roughness_copy = roughness;

			vec3 sample_vec = probe_parallax_correction(sd.W, spec_dir, pd, roughness_copy);
			vec4 sample = textureLod_octahedron(probeCubes, vec4(sample_vec, i), roughness_copy * lodMax, lodMax).rgba;

			float influ_spec = min(dist_attenuation, (1.0 - spec_accum.a));

			spec_accum.rgb += sample.rgb * influ_spec;
			spec_accum.a += influ_spec;
		}
	}

	/* Start at 1 because 0 is world irradiance */
	for (int i = 1; i < MAX_GRID && i < grid_count && diff_accum.a < 0.999; ++i) {
		GridData gd = grids_data[i];

		vec3 localpos = (gd.localmat * vec4(sd.W, 1.0)).xyz;

		float fade = min(1.0, min_v3(1.0 - abs(localpos)));
		fade = saturate(fade * gd.g_atten_scale + gd.g_atten_bias);

		if (fade > 0.0) {
			localpos = localpos * 0.5 + 0.5;
			localpos = localpos * vec3(gd.g_resolution) - 0.5;

			vec3 localpos_floored = floor(localpos);
			vec3 trilinear_weight = fract(localpos);

			float weight_accum = 0.0;
			vec3 irradiance_accum = vec3(0.0);

			/* For each neighboor cells */
			for (int i = 0; i < 8; ++i) {
				ivec3 offset = ivec3(i, i >> 1, i >> 2) & ivec3(1);
				vec3 cell_cos = clamp(localpos_floored + vec3(offset), vec3(0.0), vec3(gd.g_resolution) - 1.0);

				/* We need this because we render probes in world space (so we need light vector in WS).
				 * And rendering them in local probe space is too much problem. */
				vec3 ws_cell_location = gd.g_corner +
					(gd.g_increment_x * cell_cos.x +
					 gd.g_increment_y * cell_cos.y +
					 gd.g_increment_z * cell_cos.z);
				vec3 ws_point_to_cell = ws_cell_location - sd.W;
				vec3 ws_light = normalize(ws_point_to_cell);

				vec3 trilinear = mix(1 - trilinear_weight, trilinear_weight, offset);
				float weight = trilinear.x * trilinear.y * trilinear.z;

				/* Smooth backface test */
				// weight *= sqrt(max(0.002, dot(ws_light, sd.N)));

				/* Avoid zero weight */
				weight = max(0.00001, weight);

				vec3 color = get_cell_color(ivec3(cell_cos), gd.g_resolution, gd.g_offset, bent_normal);

				weight_accum += weight;
				irradiance_accum += color * weight;
			}

			vec3 indirect_diffuse = irradiance_accum / weight_accum;

			float influ_diff = min(fade, (1.0 - diff_accum.a));

			diff_accum.rgb += indirect_diffuse * influ_diff;
			diff_accum.a += influ_diff;

			/* For Debug purpose */
			// return texture(irradianceGrid, sd.W.xy).rgb;
		}
	}

	/* World probe */
	if (diff_accum.a < 1.0 && grid_count > 0) {
		IrradianceData ir_data = load_irradiance_cell(0, bent_normal);

		vec3 diff = compute_irradiance(bent_normal, ir_data);
		diff_accum.rgb += diff * (1.0 - diff_accum.a);
	}

	if (spec_accum.a < 1.0) {
		ProbeData pd = probes_data[0];

		vec3 spec = textureLod_octahedron(probeCubes, vec4(spec_dir, 0), roughness * lodMax, lodMax).rgb;
		spec_accum.rgb += spec * (1.0 - spec_accum.a);
	}

	vec3 indirect_radiance =
	        spec_accum.rgb * F_ibl(f0, brdf_lut) * float(specToggle) * specular_occlusion(dot(sd.N, sd.V), final_ao, roughness) +
	        diff_accum.rgb * albedo * gtao_multibounce(final_ao, albedo);

	return radiance + indirect_radiance;
}