Welcome to mirror list, hosted at ThFree Co, Russian Federation.

lit_surface_frag.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ecfc670c0d6e53a140d41aece84a00a494ba4ccd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

uniform int light_count;
uniform vec3 cameraPos;
uniform vec3 eye;
uniform mat4 ProjectionMatrix;

uniform samplerCube probeFiltered;
uniform float lodMax;
uniform vec3 shCoefs[9];

#ifndef USE_LTC
uniform sampler2D brdfLut;
#endif
uniform sampler2DArray shadowCubes;
uniform sampler2DArrayShadow shadowCascades;

layout(std140) uniform light_block {
	LightData lights_data[MAX_LIGHT];
};

layout(std140) uniform shadow_block {
	ShadowCubeData    shadows_cube_data[MAX_SHADOW_CUBE];
	ShadowMapData     shadows_map_data[MAX_SHADOW_MAP];
	ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
};

in vec3 worldPosition;
in vec3 viewPosition;

#ifdef USE_FLAT_NORMAL
flat in vec3 worldNormal;
flat in vec3 viewNormal;
#else
in vec3 worldNormal;
in vec3 viewNormal;
#endif

/* type */
#define POINT    0.0
#define SUN      1.0
#define SPOT     2.0
#define HEMI     3.0
#define AREA     4.0

vec3 light_diffuse(LightData ld, ShadingData sd, vec3 albedo)
{
	if (ld.l_type == SUN) {
		return direct_diffuse_sun(ld, sd) * albedo;
	}
	else if (ld.l_type == AREA) {
		return direct_diffuse_rectangle(ld, sd) * albedo;
	}
	else {
		return direct_diffuse_sphere(ld, sd) * albedo;
	}
}

vec3 light_specular(LightData ld, ShadingData sd, float roughness, vec3 f0)
{
	if (ld.l_type == SUN) {
		return direct_ggx_point(sd, roughness, f0);
	}
	else if (ld.l_type == AREA) {
		return direct_ggx_rectangle(ld, sd, roughness, f0);
	}
	else {
		// return direct_ggx_point(sd, roughness, f0);
		return direct_ggx_sphere(ld, sd, roughness, f0);
	}
}

float light_visibility(LightData ld, ShadingData sd)
{
	float vis = 1.0;

	if (ld.l_type == SPOT) {
		float z = dot(ld.l_forward, sd.l_vector);
		vec3 lL = sd.l_vector / z;
		float x = dot(ld.l_right, lL) / ld.l_sizex;
		float y = dot(ld.l_up, lL) / ld.l_sizey;

		float ellipse = 1.0 / sqrt(1.0 + x * x + y * y);

		float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);

		vis *= spotmask;
		vis *= step(0.0, -dot(sd.L, ld.l_forward));
	}
	else if (ld.l_type == AREA) {
		vis *= step(0.0, -dot(sd.L, ld.l_forward));
	}

	/* shadowing */
	if (ld.l_shadowid >= (MAX_SHADOW_MAP + MAX_SHADOW_CUBE)) {
		/* Shadow Cascade */
		float shid = ld.l_shadowid - (MAX_SHADOW_CUBE + MAX_SHADOW_MAP);
		ShadowCascadeData smd = shadows_cascade_data[int(shid)];

		/* Finding Cascade index */
		vec4 z = vec4(-dot(cameraPos - worldPosition, normalize(eye)));
		vec4 comp = step(z, smd.split_distances);
		float cascade = dot(comp, comp);
		mat4 shadowmat;
		float bias;

		/* Manual Unrolling of a loop for better performance.
		 * Doing fetch directly with cascade index leads to
		 * major performance impact. (0.27ms -> 10.0ms for 1 light) */
		if (cascade == 0.0) {
			shadowmat = smd.shadowmat[0];
			bias = smd.bias[0];
		}
		else if (cascade == 1.0) {
			shadowmat = smd.shadowmat[1];
			bias = smd.bias[1];
		}
		else if (cascade == 2.0) {
			shadowmat = smd.shadowmat[2];
			bias = smd.bias[2];
		}
		else {
			shadowmat = smd.shadowmat[3];
			bias = smd.bias[3];
		}

		vec4 shpos = shadowmat * vec4(sd.W, 1.0);
		shpos.z -= bias * shpos.w;
		shpos.xyz /= shpos.w;

		vis *= texture(shadowCascades, vec4(shpos.xy, shid * float(MAX_CASCADE_NUM) + cascade, shpos.z));
	}
	else if (ld.l_shadowid >= 0.0) {
		/* Shadow Cube */
		float shid = ld.l_shadowid;
		ShadowCubeData scd = shadows_cube_data[int(shid)];

		vec3 cubevec = sd.W - ld.l_position;
		float dist = length(cubevec);

		/* projection onto octahedron */
		cubevec /= dot( vec3(1), abs(cubevec) );

		/* out-folding of the downward faces */
		if ( cubevec.z < 0.0 ) {
			cubevec.xy = (1.0 - abs(cubevec.yx)) * sign(cubevec.xy);
		}
		vec2 texelSize = vec2(1.0 / 512.0);

		/* mapping to [0;1]ˆ2 texture space */
		vec2 uvs = cubevec.xy * (0.5) + 0.5;
		uvs = uvs * (1.0 - 2.0 * texelSize) + 1.0 * texelSize; /* edge filtering fix */

		float z = texture(shadowCubes, vec3(uvs, shid)).r;

		float esm_test = min(1.0, exp(-5.0 * dist) * z);
		float sh_test = step(0, z - dist);

		vis *= esm_test;
	}

	return vis;
}

vec3 light_fresnel(LightData ld, ShadingData sd, vec3 f0)
{
	vec3 H = normalize(sd.L + sd.V);
	float NH = max(dot(sd.N, H), 1e-8);

	return F_schlick(f0, NH);
}

/* Calculation common to all bsdfs */
float light_common(inout LightData ld, inout ShadingData sd)
{
	float vis = 1.0;

	if (ld.l_type == SUN) {
		sd.L = -ld.l_forward;
	}
	else {
		sd.L = sd.l_vector / sd.l_distance;
	}

	if (ld.l_type == AREA) {
		sd.area_data.corner[0] = sd.l_vector + ld.l_right * -ld.l_sizex + ld.l_up *  ld.l_sizey;
		sd.area_data.corner[1] = sd.l_vector + ld.l_right * -ld.l_sizex + ld.l_up * -ld.l_sizey;
		sd.area_data.corner[2] = sd.l_vector + ld.l_right *  ld.l_sizex + ld.l_up * -ld.l_sizey;
		sd.area_data.corner[3] = sd.l_vector + ld.l_right *  ld.l_sizex + ld.l_up *  ld.l_sizey;
#ifndef USE_LTC
		sd.area_data.solid_angle = rectangle_solid_angle(sd.area_data);
#endif
	}

	return vis;
}

vec3 eevee_surface_lit(vec3 world_normal, vec3 albedo, vec3 f0, float roughness, float ao)
{
	float roughnessSquared = roughness * roughness;

	ShadingData sd;
	sd.N = normalize(world_normal);
	sd.V = (ProjectionMatrix[3][3] == 0.0) /* if perspective */
	            ? normalize(cameraPos - worldPosition)
	            : normalize(eye);
	sd.W = worldPosition;
	sd.R = reflect(-sd.V, sd.N);
	sd.spec_dominant_dir = get_specular_dominant_dir(sd.N, sd.R, roughnessSquared);

	vec3 radiance = vec3(0.0);
	vec3 indirect_radiance = vec3(0.0);

	/* Analitic Lights */
	for (int i = 0; i < MAX_LIGHT && i < light_count; ++i) {
		LightData ld = lights_data[i];

		sd.l_vector = ld.l_position - worldPosition;
		sd.l_distance = length(sd.l_vector);

		light_common(ld, sd);

		float vis = light_visibility(ld, sd);
		vec3 spec = light_specular(ld, sd, roughnessSquared, f0);
		vec3 diff = light_diffuse(ld, sd, albedo);

		radiance += vis * (diff + spec) * ld.l_color;
	}

	/* Envmaps */
	vec2 uv = lut_coords(dot(sd.N, sd.V), sqrt(roughness));
	vec2 brdf_lut = texture(brdfLut, uv).rg;
	vec3 Li = textureLod(probeFiltered, sd.spec_dominant_dir, roughness * lodMax).rgb;
	indirect_radiance += Li * F_ibl(f0, brdf_lut);

	indirect_radiance += spherical_harmonics(sd.N, shCoefs) * albedo;

	return radiance + indirect_radiance * ao;
}