Welcome to mirror list, hosted at ThFree Co, Russian Federation.

raytrace_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c1d6b7537ff0b9461794d698b37b18b1e50db47d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#define MAX_STEP 256

uniform vec4 ssrParameters;

#define ssrQuality    ssrParameters.x
#define ssrThickness  ssrParameters.y
#define ssrPixelSize  ssrParameters.zw

uniform float borderFadeFactor;

float sample_depth(vec2 uv, int index, float lod)
{
	if (index > -1) {
		return textureLod(planarDepth, vec3(uv, index), 0.0).r;
	}
	else {
		/* Correct UVs for mipmaping mis-alignment */
		uv *= mipRatio[int(lod + 1.0)];
		return textureLod(maxzBuffer, uv, lod).r;
	}
}

vec4 sample_depth_grouped(vec4 uv1, vec4 uv2, int index, float lod)
{
	vec4 depths;
	if (index > -1) {
		depths.x = textureLod(planarDepth, vec3(uv1.xy, index), 0.0).r;
		depths.y = textureLod(planarDepth, vec3(uv1.zw, index), 0.0).r;
		depths.z = textureLod(planarDepth, vec3(uv2.xy, index), 0.0).r;
		depths.w = textureLod(planarDepth, vec3(uv2.zw, index), 0.0).r;
	}
	else {
		depths.x = textureLod(maxzBuffer, uv1.xy, lod).r;
		depths.y = textureLod(maxzBuffer, uv1.zw, lod).r;
		depths.z = textureLod(maxzBuffer, uv2.xy, lod).r;
		depths.w = textureLod(maxzBuffer, uv2.zw, lod).r;
	}
	return depths;
}

float refine_isect(float prev_delta, float curr_delta)
{
	/**
	 * Simplification of 2D intersection :
	 * r0 = (0.0, prev_ss_ray.z);
	 * r1 = (1.0, curr_ss_ray.z);
	 * d0 = (0.0, prev_hit_depth_sample);
	 * d1 = (1.0, curr_hit_depth_sample);
	 * vec2 r = r1 - r0;
	 * vec2 d = d1 - d0;
	 * vec2 isect = ((d * cross(r1, r0)) - (r * cross(d1, d0))) / cross(r,d);
	 *
	 * We only want isect.x to know how much stride we need. So it simplifies :
	 *
	 * isect_x = (cross(r1, r0) - cross(d1, d0)) / cross(r,d);
	 * isect_x = (prev_ss_ray.z - prev_hit_depth_sample.z) / cross(r,d);
	 */
	return saturate(prev_delta / (prev_delta - curr_delta));
}

void prepare_raycast(vec3 ray_origin, vec3 ray_end, float thickness, out vec4 ss_step, out vec4 ss_ray, out float max_time)
{
	/* Negate the ray direction if it goes towards the camera.
	 * This way we don't need to care if the projected point
	 * is behind the near plane. */
	float z_sign = -sign(ray_end.z);
	ray_end = z_sign * ray_end + ray_origin;

	/* Project into screen space. */
	vec4 ss_start, ss_end;
	ss_start.xyz = project_point(ProjectionMatrix, ray_origin);
	ss_end.xyz = project_point(ProjectionMatrix, ray_end);

	/* We interpolate the ray Z + thickness values to check if depth is within threshold. */
	ray_origin.z -= thickness;
	ray_end.z -= thickness;
	ss_start.w = project_point(ProjectionMatrix, ray_origin).z;
	ss_end.w = project_point(ProjectionMatrix, ray_end).z;

	/* XXX This is a hack a better method is welcome ! */
	/* We take the delta between the offseted depth and the depth and substract it from the ray depth.
	 * This will change the world space thickness appearance a bit but we can have negative
	 * values without worries. We cannot do this in viewspace because of the perspective division. */
	ss_start.w = 2.0 * ss_start.z - ss_start.w;
	ss_end.w = 2.0 * ss_end.z - ss_end.w;

	ss_step = ss_end - ss_start;
	max_time = length(ss_step.xyz);
	ss_step = z_sign * ss_step / length(ss_step.xyz);

	/* If the line is degenerate, make it cover at least one pixel
	 * to not have to handle zero-pixel extent as a special case later */
	ss_step.xy += vec2((dot(ss_step.xy, ss_step.xy) < 0.000001) ? 0.001 : 0.0);

	/* Make ss_step cover one pixel. */
	ss_step /= max(abs(ss_step.x), abs(ss_step.y));
	ss_step *= ((abs(ss_step.x) > abs(ss_step.y)) ? ssrPixelSize.x : ssrPixelSize.y);

	/* Clip to segment's end. */
	max_time /= length(ss_step.xyz);

	/* Clipping to frustum sides. */
	max_time = min(max_time, line_unit_box_intersect_dist(ss_start.xyz, ss_step.xyz));

	/* Convert to texture coords. Z component included
	 * since this is how it's stored in the depth buffer.
	 * 4th component how far we are on the ray */
	ss_ray = ss_start * 0.5 + 0.5;
	ss_step *= 0.5;
}

/* See times_and_deltas. */
#define curr_time   times_and_deltas.x
#define prev_time   times_and_deltas.y
#define curr_delta  times_and_deltas.z
#define prev_delta  times_and_deltas.w

// #define GROUPED_FETCHES /* is still slower, need to see where is the bottleneck. */
/* Return the hit position, and negate the z component (making it positive) if not hit occured. */
/* __ray_end__ is the ray direction premultiplied by it's maximum length */
vec3 raycast(int index, vec3 ray_origin, vec3 ray_end, float thickness, float ray_jitter, float trace_quality, float roughness)
{
	vec4 ss_step, ss_start;
	float max_time;
	prepare_raycast(ray_origin, ray_end, thickness, ss_step, ss_start, max_time);

	float max_trace_time = max(0.001, max_time - 0.01);

#ifdef GROUPED_FETCHES
	ray_jitter *= 0.25;
#endif

	/* x : current_time, y: previous_time, z: current_delta, w: previous_delta */
	vec4 times_and_deltas = vec4(0.0);

	float ray_time = 0.0;
	float depth_sample = sample_depth(ss_start.xy, index, 0.0);
	curr_delta = depth_sample - ss_start.z;

	float lod_fac = saturate(fast_sqrt(roughness) * 2.0 - 0.4);
	bool hit = false;
	float iter;
	for (iter = 1.0; !hit && (ray_time < max_time) && (iter < MAX_STEP); iter++) {
		/* Minimum stride of 2 because we are using half res minmax zbuffer. */
		float stride = max(1.0, iter * trace_quality) * 2.0;
		float lod = log2(stride * 0.5 * trace_quality) * lod_fac;
		ray_time += stride;

		/* Save previous values. */
		times_and_deltas.xyzw = times_and_deltas.yxwz;

#ifdef GROUPED_FETCHES
		stride *= 4.0;
		vec4 jit_stride = mix(vec4(2.0), vec4(stride), vec4(0.0, 0.25, 0.5, 0.75) + ray_jitter);

		vec4 times = min(vec4(ray_time) + jit_stride, vec4(max_trace_time));

		vec4 uv1 = ss_start.xyxy + ss_step.xyxy * times.xxyy;
		vec4 uv2 = ss_start.xyxy + ss_step.xyxy * times.zzww;

		vec4 depth_samples = sample_depth_grouped(uv1, uv2, index, lod);

		vec4 ray_z = ss_start.zzzz + ss_step.zzzz * times.xyzw;
		vec4 ray_w = ss_start.wwww + ss_step.wwww * vec4(prev_time, times.xyz);

		vec4 deltas = depth_samples - ray_z;
		/* Same as component wise (curr_delta <= 0.0) && (prev_w <= depth_sample). */
		bvec4 test = equal(step(deltas, vec4(0.0)) * step(ray_w, depth_samples), vec4(1.0));
		hit = any(test);

		if (hit) {
			vec2 m = vec2(1.0, 0.0); /* Mask */

			vec4 ret_times_and_deltas = times.wzzz * m.xxyy + deltas.wwwz * m.yyxx;
			ret_times_and_deltas      = (test.z) ? times.zyyy * m.xxyy + deltas.zzzy * m.yyxx : ret_times_and_deltas;
			ret_times_and_deltas      = (test.y) ? times.yxxx * m.xxyy + deltas.yyyx * m.yyxx : ret_times_and_deltas;
			times_and_deltas          = (test.x) ? times.xxxx * m.xyyy + deltas.xxxx * m.yyxy + times_and_deltas.yyww * m.yxyx : ret_times_and_deltas;

			depth_sample = depth_samples.w;
			depth_sample = (test.z) ? depth_samples.z : depth_sample;
			depth_sample = (test.y) ? depth_samples.y : depth_sample;
			depth_sample = (test.x) ? depth_samples.x : depth_sample;
		}
		else {
			curr_time = times.w;
			curr_delta = deltas.w;
		}
#else
		float jit_stride = mix(2.0, stride, ray_jitter);

		curr_time = min(ray_time + jit_stride, max_trace_time);
		vec4 ss_ray = ss_start + ss_step * curr_time;

		depth_sample = sample_depth(ss_ray.xy, index, lod);

		float prev_w = ss_start.w + ss_step.w * prev_time;
		curr_delta = depth_sample - ss_ray.z;
		hit = (curr_delta <= 0.0) && (prev_w <= depth_sample);
#endif
	}

	/* Discard backface hits */
	hit = hit && (prev_delta > 0.0);

	/* Reject hit if background. */
	hit = hit && (depth_sample != 1.0);

	curr_time = (hit) ? mix(prev_time, curr_time, refine_isect(prev_delta, curr_delta)) : curr_time;
	ray_time = (hit) ? curr_time : ray_time;

	/* Clip to frustum. */
	ray_time = max(0.001, min(ray_time, max_time - 1.5));

	vec4 ss_ray = ss_start + ss_step * ray_time;

	/* Tag Z if ray failed. */
	ss_ray.z *= (hit) ? 1.0 : -1.0;
	return ss_ray.xyz;
}

float screen_border_mask(vec2 hit_co)
{
	const float margin = 0.003;
	float atten = borderFadeFactor + margin; /* Screen percentage */
	hit_co = smoothstep(margin, atten, hit_co) * (1 - smoothstep(1.0 - atten, 1.0 - margin, hit_co));

	float screenfade = hit_co.x * hit_co.y;

	return screenfade;
}