Welcome to mirror list, hosted at ThFree Co, Russian Federation.

volumetric_frag.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7f44dd53163a58e110d86478e6a6973ebf9ca8af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

#ifdef VOLUMETRICS

#define NODETREE_EXEC

#define VOLUMETRIC_INTEGRATION_MAX_STEP 256
#define VOLUMETRIC_SHADOW_MAX_STEP 128

uniform int light_count;
uniform vec2 volume_start_end;
uniform vec4 volume_samples_clamp;

#define volume_start                   volume_start_end.x
#define volume_end                     volume_start_end.y

#define volume_integration_steps       volume_samples_clamp.x
#define volume_shadows_steps           volume_samples_clamp.y
#define volume_sample_distribution     volume_samples_clamp.z
#define volume_light_clamp             volume_samples_clamp.w

#ifdef COLOR_TRANSMITTANCE
layout(location = 0) out vec4 outScattering;
layout(location = 1) out vec4 outTransmittance;
#else
out vec4 outScatteringTransmittance;
#endif

/* Warning: theses are not attributes, theses are global vars. */
vec3 worldPosition = vec3(0.0);
vec3 viewPosition = vec3(0.0);
vec3 viewNormal = vec3(0.0);

uniform sampler2D depthFull;

void participating_media_properties(vec3 wpos, out vec3 extinction, out vec3 scattering, out vec3 emission, out float anisotropy)
{
#ifndef VOLUME_HOMOGENEOUS
	worldPosition = wpos;
	viewPosition = (ViewMatrix * vec4(wpos, 1.0)).xyz; /* warning, Perf. */
#endif

	Closure cl = nodetree_exec();

	scattering = cl.scatter;
	emission = cl.emission;
	anisotropy = cl.anisotropy;
	extinction = max(vec3(1e-4), cl.absorption + cl.scatter);
}

vec3 participating_media_extinction(vec3 wpos)
{
#ifndef VOLUME_HOMOGENEOUS
	worldPosition = wpos;
	viewPosition = (ViewMatrix * vec4(wpos, 1.0)).xyz; /* warning, Perf. */
#endif

	Closure cl = nodetree_exec();

	return max(vec3(1e-4), cl.absorption + cl.scatter);
}

float phase_function_isotropic()
{
	return 1.0 / (4.0 * M_PI);
}

float phase_function(vec3 v, vec3 l, float g)
{
#ifndef VOLUME_ISOTROPIC /* TODO Use this flag when only isotropic closures are used */
	/* Henyey-Greenstein */
	float cos_theta = dot(v, l);
	g = clamp(g, -1.0 + 1e-3, 1.0 - 1e-3);
	float sqr_g = g * g;
	return (1- sqr_g) / (4.0 * M_PI * pow(1 + sqr_g - 2 * g * cos_theta, 3.0 / 2.0));
#else
	return phase_function_isotropic();
#endif
}

float light_volume(LightData ld, vec4 l_vector)
{
	float power;
	float dist = max(1e-4, abs(l_vector.w - ld.l_radius));
	/* TODO : Area lighting ? */
	/* Removing Area Power. */
	/* TODO : put this out of the shader. */
	if (ld.l_type == AREA) {
		power = 0.0962 * (ld.l_sizex * ld.l_sizey * 4.0f * M_PI);
	}
	else {
		power = 0.0248 * (4.0 * ld.l_radius * ld.l_radius * M_PI * M_PI);
	}
	return min(power / (l_vector.w * l_vector.w), volume_light_clamp);
}

vec3 irradiance_volumetric(vec3 wpos)
{
	IrradianceData ir_data = load_irradiance_cell(0, vec3(1.0));
	vec3 irradiance = ir_data.cubesides[0] + ir_data.cubesides[1] + ir_data.cubesides[2];
	ir_data = load_irradiance_cell(0, vec3(-1.0));
	irradiance += ir_data.cubesides[0] + ir_data.cubesides[1] + ir_data.cubesides[2];
	irradiance *= 0.16666666; /* 1/6 */
	return irradiance;
}

vec3 light_volume_shadow(LightData ld, vec3 ray_wpos, vec4 l_vector, vec3 s_extinction)
{
#ifdef VOLUME_SHADOW

#ifdef VOLUME_HOMOGENEOUS
	/* Simple extinction */
	return exp(-s_extinction * l_vector.w);
#else
	/* Heterogeneous volume shadows */
	float dd = l_vector.w / volume_shadows_steps;
	vec3 L = l_vector.xyz * l_vector.w;
	vec3 shadow = vec3(1.0);
	for (float s = 0.5; s < VOLUMETRIC_SHADOW_MAX_STEP && s < (volume_shadows_steps - 0.1); s += 1.0) {
		vec3 pos = ray_wpos + L * (s / volume_shadows_steps);
		vec3 s_extinction = participating_media_extinction(pos);
		shadow *= exp(-s_extinction * dd);
	}
	return shadow;
#endif /* VOLUME_HOMOGENEOUS */

#else
	return vec3(1.0);
#endif /* VOLUME_SHADOW */
}

float find_next_step(float iter, float noise)
{
	float progress = (iter + noise) / volume_integration_steps;

	float linear_split = mix(volume_start, volume_end, progress);

	if (ProjectionMatrix[3][3] == 0.0) {
		float exp_split = volume_start * pow(volume_end / volume_start, progress);
		return mix(linear_split, exp_split, volume_sample_distribution);
	}
	else {
		return linear_split;
	}
}

/* Based on Frosbite Unified Volumetric.
 * https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite */
void main()
{
	vec2 uv = (gl_FragCoord.xy * 2.0) / ivec2(textureSize(depthFull, 0));
	float scene_depth = texelFetch(depthFull, ivec2(gl_FragCoord.xy) * 2, 0).r; /* use the same depth as in the upsample step */
	vec3 vpos = get_view_space_from_depth(uv, scene_depth);
	vec3 wpos = (ViewMatrixInverse * vec4(vpos, 1.0)).xyz;
	vec3 wdir = (ProjectionMatrix[3][3] == 0.0) ? normalize(cameraPos - wpos) : cameraForward;

	/* Note: this is NOT the distance to the camera. */
	float max_z = vpos.z;

	/* project ray to clip plane so we can integrate in even steps in clip space. */
	vec3 wdir_proj = wdir / abs(dot(cameraForward, wdir));
	float wlen = length(wdir_proj);

	/* Transmittance: How much light can get through. */
	vec3 transmittance = vec3(1.0);

	/* Scattering: Light that has been accumulated from scattered light sources. */
	vec3 scattering = vec3(0.0);

	vec3 ray_origin = (ProjectionMatrix[3][3] == 0.0)
		? cameraPos
		: (ViewMatrixInverse * vec4(get_view_space_from_depth(uv, 0.5), 1.0)).xyz;

#ifdef VOLUME_HOMOGENEOUS
	/* Put it out of the loop for homogeneous media. */
	vec3 s_extinction, s_scattering, s_emission;
	float s_anisotropy;
	participating_media_properties(vec3(0.0), s_extinction, s_scattering, s_emission, s_anisotropy);
#endif

	/* Start from near clip. TODO make start distance an option. */
	float rand = texture(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0)).r;
	/* Less noisy but noticeable patterns, could work better with temporal AA. */
	// float rand = (1.0 / 16.0) * float(((int(gl_FragCoord.x + gl_FragCoord.y) & 0x3) << 2) + (int(gl_FragCoord.x) & 0x3));
	float dist = volume_start;
	for (float i = 0.5; i < VOLUMETRIC_INTEGRATION_MAX_STEP && i < (volume_integration_steps - 0.1); ++i) {
		float new_dist = max(max_z, find_next_step(rand, i));
		float step = dist - new_dist; /* Marching step */
		dist = new_dist;

		vec3 ray_wpos = ray_origin + wdir_proj * dist;

#ifndef VOLUME_HOMOGENEOUS
		vec3 s_extinction, s_scattering, s_emission;
		float s_anisotropy;
		participating_media_properties(ray_wpos, s_extinction, s_scattering, s_emission, s_anisotropy);
#endif

		/* Evaluate each light */
		vec3 Lscat = s_emission;

#ifdef VOLUME_LIGHTING /* Lights */
		for (int i = 0; i < MAX_LIGHT && i < light_count; ++i) {
			LightData ld = lights_data[i];

			vec4 l_vector;
			l_vector.xyz = ld.l_position - ray_wpos;
			l_vector.w = length(l_vector.xyz);

			float Vis = light_visibility(ld, ray_wpos, l_vector);

			vec3 Li = ld.l_color * light_volume(ld, l_vector) * light_volume_shadow(ld, ray_wpos, l_vector, s_extinction);

			Lscat += Li * Vis * s_scattering * phase_function(-wdir, l_vector.xyz / l_vector.w, s_anisotropy);
		}
#endif

		/* Environment : Average color. */
		Lscat += irradiance_volumetric(wpos) * s_scattering * phase_function_isotropic();

		/* Evaluate Scattering */
		float s_len = wlen * step;
		vec3 Tr = exp(-s_extinction * s_len);

		/* integrate along the current step segment */
		Lscat = (Lscat - Lscat * Tr) / s_extinction;
		/* accumulate and also take into account the transmittance from previous steps */
		scattering += transmittance * Lscat;

		/* Evaluate transmittance to view independantely */
		transmittance *= Tr;

		if (dist <= max_z)
			break;
	}

#ifdef COLOR_TRANSMITTANCE
	outScattering = vec4(scattering, 1.0);
	outTransmittance = vec4(transmittance, 1.0);
#else
	float mono_transmittance = dot(transmittance, vec3(1.0)) / 3.0;

	outScatteringTransmittance = vec4(scattering, mono_transmittance);
#endif
}

#else /* STEP_UPSAMPLE */

out vec4 FragColor;

uniform sampler2D depthFull;
uniform sampler2D volumetricBuffer;

uniform mat4 ProjectionMatrix;

vec4 get_view_z_from_depth(vec4 depth)
{
	vec4 d = 2.0 * depth - 1.0;
	return -ProjectionMatrix[3][2] / (d + ProjectionMatrix[2][2]);
}

void main()
{
#if 0 /* 2 x 2 with bilinear */

	const vec4 bilinear_weights[4] = vec4[4](
		vec4(9.0 / 16.0,  3.0 / 16.0, 3.0 / 16.0, 1.0 / 16.0 ),
		vec4(3.0 / 16.0,  9.0 / 16.0, 1.0 / 16.0, 3.0 / 16.0 ),
		vec4(3.0 / 16.0,  1.0 / 16.0, 9.0 / 16.0, 3.0 / 16.0 ),
		vec4(1.0 / 16.0,  3.0 / 16.0, 3.0 / 16.0, 9.0 / 16.0 )
	);

	/* Depth aware upsampling */
	vec4 depths;
	ivec2 texel_co = ivec2(gl_FragCoord.xy * 0.5) * 2;

	/* TODO use textureGather on glsl 4.0 */
	depths.x = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 0)).r;
	depths.y = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 0)).r;
	depths.z = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 2)).r;
	depths.w = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 2)).r;

	vec4 target_depth = texelFetch(depthFull, ivec2(gl_FragCoord.xy), 0).rrrr;

	depths = get_view_z_from_depth(depths);
	target_depth = get_view_z_from_depth(target_depth);

	vec4 weights = 1.0 - step(0.05, abs(depths - target_depth));

	/* Index in range [0-3] */
	int pix_id = int(dot(mod(ivec2(gl_FragCoord.xy), 2), ivec2(1, 2)));
	weights *= bilinear_weights[pix_id];

	float weight_sum = dot(weights, vec4(1.0));

	if (weight_sum == 0.0) {
		weights.x = 1.0;
		weight_sum = 1.0;
	}

	texel_co = ivec2(gl_FragCoord.xy * 0.5);

	vec4 integration_result;
	integration_result  = texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 0)) * weights.x;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 0)) * weights.y;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 1)) * weights.z;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 1)) * weights.w;

#else /* 4 x 4 */

	/* Depth aware upsampling */
	vec4 depths[4];
	ivec2 texel_co = ivec2(gl_FragCoord.xy * 0.5) * 2;

	/* TODO use textureGather on glsl 4.0 */
	texel_co += ivec2(-2, -2);
	depths[0].x = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 0)).r;
	depths[0].y = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 0)).r;
	depths[0].z = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 2)).r;
	depths[0].w = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 2)).r;

	texel_co += ivec2(4, 0);
	depths[1].x = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 0)).r;
	depths[1].y = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 0)).r;
	depths[1].z = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 2)).r;
	depths[1].w = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 2)).r;

	texel_co += ivec2(-4, 4);
	depths[2].x = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 0)).r;
	depths[2].y = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 0)).r;
	depths[2].z = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 2)).r;
	depths[2].w = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 2)).r;

	texel_co += ivec2(4, 0);
	depths[3].x = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 0)).r;
	depths[3].y = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 0)).r;
	depths[3].z = texelFetchOffset(depthFull, texel_co, 0, ivec2(0, 2)).r;
	depths[3].w = texelFetchOffset(depthFull, texel_co, 0, ivec2(2, 2)).r;

	vec4 target_depth = texelFetch(depthFull, ivec2(gl_FragCoord.xy), 0).rrrr;

	depths[0] = get_view_z_from_depth(depths[0]);
	depths[1] = get_view_z_from_depth(depths[1]);
	depths[2] = get_view_z_from_depth(depths[2]);
	depths[3] = get_view_z_from_depth(depths[3]);

	target_depth = get_view_z_from_depth(target_depth);

	vec4 weights[4];
	weights[0] = 1.0 - step(0.05, abs(depths[0] - target_depth));
	weights[1] = 1.0 - step(0.05, abs(depths[1] - target_depth));
	weights[2] = 1.0 - step(0.05, abs(depths[2] - target_depth));
	weights[3] = 1.0 - step(0.05, abs(depths[3] - target_depth));

	float weight_sum;
	weight_sum  = dot(weights[0], vec4(1.0));
	weight_sum += dot(weights[1], vec4(1.0));
	weight_sum += dot(weights[2], vec4(1.0));
	weight_sum += dot(weights[3], vec4(1.0));

	if (weight_sum == 0.0) {
		weights[0].x = 1.0;
		weight_sum = 1.0;
	}

	texel_co = ivec2(gl_FragCoord.xy * 0.5);

	vec4 integration_result;

	texel_co += ivec2(-1, -1);
	integration_result  = texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 0)) * weights[0].x;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 0)) * weights[0].y;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 1)) * weights[0].z;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 1)) * weights[0].w;

	texel_co += ivec2(2, 0);
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 0)) * weights[1].x;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 0)) * weights[1].y;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 1)) * weights[1].z;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 1)) * weights[1].w;

	texel_co += ivec2(-2, 2);
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 0)) * weights[2].x;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 0)) * weights[2].y;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 1)) * weights[2].z;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 1)) * weights[2].w;

	texel_co += ivec2(2, 0);
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 0)) * weights[3].x;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 0)) * weights[3].y;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(0, 1)) * weights[3].z;
	integration_result += texelFetchOffset(volumetricBuffer, texel_co, 0, ivec2(1, 1)) * weights[3].w;
#endif

	FragColor = integration_result / weight_sum;
}
#endif