Welcome to mirror list, hosted at ThFree Co, Russian Federation.

eevee_light.cc « eevee_next « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: aa8268dbaa72855282b97ab4b0c673d6656fd986 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2021 Blender Foundation.
 */

/** \file
 * \ingroup eevee
 *
 * The light module manages light data buffers and light culling system.
 */

#include "draw_debug.hh"

#include "eevee_instance.hh"

#include "eevee_light.hh"

namespace blender::eevee {

/* -------------------------------------------------------------------- */
/** \name LightData
 * \{ */

static eLightType to_light_type(short blender_light_type, short blender_area_type)
{
  switch (blender_light_type) {
    default:
    case LA_LOCAL:
      return LIGHT_POINT;
    case LA_SUN:
      return LIGHT_SUN;
    case LA_SPOT:
      return LIGHT_SPOT;
    case LA_AREA:
      return ELEM(blender_area_type, LA_AREA_DISK, LA_AREA_ELLIPSE) ? LIGHT_ELLIPSE : LIGHT_RECT;
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Light Object
 * \{ */

void Light::sync(/* ShadowModule &shadows , */ const Object *ob, float threshold)
{
  const ::Light *la = (const ::Light *)ob->data;
  float scale[3];

  float max_power = max_fff(la->r, la->g, la->b) * fabsf(la->energy / 100.0f);
  float surface_max_power = max_ff(la->diff_fac, la->spec_fac) * max_power;
  float volume_max_power = la->volume_fac * max_power;

  float influence_radius_surface = attenuation_radius_get(la, threshold, surface_max_power);
  float influence_radius_volume = attenuation_radius_get(la, threshold, volume_max_power);

  this->influence_radius_max = max_ff(influence_radius_surface, influence_radius_volume);
  this->influence_radius_invsqr_surface = 1.0f / square_f(max_ff(influence_radius_surface, 1e-8f));
  this->influence_radius_invsqr_volume = 1.0f / square_f(max_ff(influence_radius_volume, 1e-8f));

  this->color = float3(&la->r) * la->energy;
  normalize_m4_m4_ex(this->object_mat.ptr(), ob->object_to_world, scale);
  /* Make sure we have consistent handedness (in case of negatively scaled Z axis). */
  float3 cross = math::cross(float3(this->_right), float3(this->_up));
  if (math::dot(cross, float3(this->_back)) < 0.0f) {
    negate_v3(this->_up);
  }

  shape_parameters_set(la, scale);

  float shape_power = shape_power_get(la);
  float point_power = point_power_get(la);
  this->diffuse_power = la->diff_fac * shape_power;
  this->transmit_power = la->diff_fac * point_power;
  this->specular_power = la->spec_fac * shape_power;
  this->volume_power = la->volume_fac * point_power;

  eLightType new_type = to_light_type(la->type, la->area_shape);
  if (this->type != new_type) {
    /* shadow_discard_safe(shadows); */
    this->type = new_type;
  }

#if 0
  if (la->mode & LA_SHADOW) {
    if (la->type == LA_SUN) {
      if (this->shadow_id == LIGHT_NO_SHADOW) {
        this->shadow_id = shadows.directionals.alloc();
      }

      ShadowDirectional &shadow = shadows.directionals[this->shadow_id];
      shadow.sync(this->object_mat, la->bias * 0.05f, 1.0f);
    }
    else {
      float cone_aperture = DEG2RAD(360.0);
      if (la->type == LA_SPOT) {
        cone_aperture = min_ff(DEG2RAD(179.9), la->spotsize);
      }
      else if (la->type == LA_AREA) {
        cone_aperture = DEG2RAD(179.9);
      }

      if (this->shadow_id == LIGHT_NO_SHADOW) {
        this->shadow_id = shadows.punctuals.alloc();
      }

      ShadowPunctual &shadow = shadows.punctuals[this->shadow_id];
      shadow.sync(this->type,
                  this->object_mat,
                  cone_aperture,
                  la->clipsta,
                  this->influence_radius_max,
                  la->bias * 0.05f);
    }
  }
  else {
    shadow_discard_safe(shadows);
  }
#endif

  this->initialized = true;
}

#if 0
void Light::shadow_discard_safe(ShadowModule &shadows)
{
  if (shadow_id != LIGHT_NO_SHADOW) {
    if (this->type != LIGHT_SUN) {
      shadows.punctuals.free(shadow_id);
    }
    else {
      shadows.directionals.free(shadow_id);
    }
    shadow_id = LIGHT_NO_SHADOW;
  }
}
#endif

/* Returns attenuation radius inverted & squared for easy bound checking inside the shader. */
float Light::attenuation_radius_get(const ::Light *la, float light_threshold, float light_power)
{
  if (la->type == LA_SUN) {
    return (light_power > 1e-5f) ? 1e16f : 0.0f;
  }

  if (la->mode & LA_CUSTOM_ATTENUATION) {
    return la->att_dist;
  }
  /* Compute the distance (using the inverse square law)
   * at which the light power reaches the light_threshold. */
  /* TODO take area light scale into account. */
  return sqrtf(light_power / light_threshold);
}

void Light::shape_parameters_set(const ::Light *la, const float scale[3])
{
  if (la->type == LA_AREA) {
    float area_size_y = ELEM(la->area_shape, LA_AREA_RECT, LA_AREA_ELLIPSE) ? la->area_sizey :
                                                                              la->area_size;
    _area_size_x = max_ff(0.003f, la->area_size * scale[0] * 0.5f);
    _area_size_y = max_ff(0.003f, area_size_y * scale[1] * 0.5f);
    /* For volume point lighting. */
    radius_squared = max_ff(0.001f, hypotf(_area_size_x, _area_size_y) * 0.5f);
    radius_squared = square_f(radius_squared);
  }
  else {
    if (la->type == LA_SPOT) {
      /* Spot size & blend */
      spot_size_inv[0] = scale[2] / scale[0];
      spot_size_inv[1] = scale[2] / scale[1];
      float spot_size = cosf(la->spotsize * 0.5f);
      float spot_blend = (1.0f - spot_size) * la->spotblend;
      _spot_mul = 1.0f / max_ff(1e-8f, spot_blend);
      _spot_bias = -spot_size * _spot_mul;
      spot_tan = tanf(min_ff(la->spotsize * 0.5f, M_PI_2 - 0.0001f));
    }

    if (la->type == LA_SUN) {
      _area_size_x = tanf(min_ff(la->sun_angle, DEG2RADF(179.9f)) / 2.0f);
    }
    else {
      _area_size_x = la->area_size;
    }
    _area_size_y = _area_size_x = max_ff(0.001f, _area_size_x);
    radius_squared = square_f(_area_size_x);
  }
}

float Light::shape_power_get(const ::Light *la)
{
  /* Make illumination power constant */
  switch (la->type) {
    case LA_AREA: {
      float area = _area_size_x * _area_size_y;
      float power = 1.0f / (area * 4.0f * float(M_PI));
      /* FIXME : Empirical, Fit cycles power */
      power *= 0.8f;
      if (ELEM(la->area_shape, LA_AREA_DISK, LA_AREA_ELLIPSE)) {
        /* Scale power to account for the lower area of the ellipse compared to the surrounding
         * rectangle. */
        power *= 4.0f / M_PI;
      }
      return power;
    }
    case LA_SPOT:
    case LA_LOCAL: {
      return 1.0f / (4.0f * square_f(_radius) * float(M_PI * M_PI));
    }
    default:
    case LA_SUN: {
      float power = 1.0f / (square_f(_radius) * float(M_PI));
      /* Make illumination power closer to cycles for bigger radii. Cycles uses a cos^3 term that
       * we cannot reproduce so we account for that by scaling the light power. This function is
       * the result of a rough manual fitting. */
      /* Simplification of: power *= 1 + r²/2 */
      power += 1.0f / (2.0f * M_PI);

      return power;
    }
  }
}

float Light::point_power_get(const ::Light *la)
{
  /* Volume light is evaluated as point lights. Remove the shape power. */
  switch (la->type) {
    case LA_AREA: {
      /* Match cycles. Empirical fit... must correspond to some constant. */
      float power = 0.0792f * M_PI;

      /* This corrects for area light most representative point trick. The fit was found by
       * reducing the average error compared to cycles. */
      float area = _area_size_x * _area_size_y;
      float tmp = M_PI_2 / (M_PI_2 + sqrtf(area));
      /* Lerp between 1.0 and the limit (1 / pi). */
      power *= tmp + (1.0f - tmp) * M_1_PI;

      return power;
    }
    case LA_SPOT:
    case LA_LOCAL: {
      /* Match cycles. Empirical fit... must correspond to some constant. */
      return 0.0792f;
    }
    default:
    case LA_SUN: {
      return 1.0f;
    }
  }
}

void Light::debug_draw()
{
#ifdef DEBUG
  drw_debug_sphere(_position, influence_radius_max, float4(0.8f, 0.3f, 0.0f, 1.0f));
#endif
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name LightModule
 * \{ */

void LightModule::begin_sync()
{
  use_scene_lights_ = inst_.use_scene_lights();

  /* In begin_sync so it can be animated. */
  if (assign_if_different(light_threshold_, max_ff(1e-16f, inst_.scene->eevee.light_threshold))) {
    inst_.sampling.reset();
  }

  sun_lights_len_ = 0;
  local_lights_len_ = 0;
}

void LightModule::sync_light(const Object *ob, ObjectHandle &handle)
{
  if (use_scene_lights_ == false) {
    return;
  }
  Light &light = light_map_.lookup_or_add_default(handle.object_key);
  light.used = true;
  if (handle.recalc != 0 || !light.initialized) {
    light.sync(/* inst_.shadows, */ ob, light_threshold_);
  }
  sun_lights_len_ += int(light.type == LIGHT_SUN);
  local_lights_len_ += int(light.type != LIGHT_SUN);
}

void LightModule::end_sync()
{
  // ShadowModule &shadows = inst_.shadows;

  /* NOTE: We resize this buffer before removing deleted lights. */
  int lights_allocated = ceil_to_multiple_u(max_ii(light_map_.size(), 1), LIGHT_CHUNK);
  light_buf_.resize(lights_allocated);

  /* Track light deletion. */
  Vector<ObjectKey, 0> deleted_keys;
  /* Indices inside GPU data array. */
  int sun_lights_idx = 0;
  int local_lights_idx = sun_lights_len_;

  /* Fill GPU data with scene data. */
  for (auto item : light_map_.items()) {
    Light &light = item.value;

    if (!light.used) {
      /* Deleted light. */
      deleted_keys.append(item.key);
      // light.shadow_discard_safe(shadows);
      continue;
    }

    int dst_idx = (light.type == LIGHT_SUN) ? sun_lights_idx++ : local_lights_idx++;
    /* Put all light data into global data SSBO. */
    light_buf_[dst_idx] = light;

#if 0
    if (light.shadow_id != LIGHT_NO_SHADOW) {
      if (light.type == LIGHT_SUN) {
        light_buf_[dst_idx].shadow_data = shadows.directionals[light.shadow_id];
      }
      else {
        light_buf_[dst_idx].shadow_data = shadows.punctuals[light.shadow_id];
      }
    }
#endif
    /* Untag for next sync. */
    light.used = false;
  }
  /* This scene data buffer is then immutable after this point. */
  light_buf_.push_update();

  for (auto &key : deleted_keys) {
    light_map_.remove(key);
  }

  /* Update sampling on deletion or un-hiding (use_scene_lights). */
  if (assign_if_different(light_map_size_, light_map_.size())) {
    inst_.sampling.reset();
  }

  /* If exceeding the limit, just trim off the excess to avoid glitchy rendering. */
  if (sun_lights_len_ + local_lights_len_ > CULLING_MAX_ITEM) {
    sun_lights_len_ = min_ii(sun_lights_len_, CULLING_MAX_ITEM);
    local_lights_len_ = min_ii(local_lights_len_, CULLING_MAX_ITEM - sun_lights_len_);
    inst_.info = "Error: Too many lights in the scene.";
  }
  lights_len_ = sun_lights_len_ + local_lights_len_;

  /* Resize to the actual number of lights after pruning. */
  lights_allocated = ceil_to_multiple_u(max_ii(lights_len_, 1), LIGHT_CHUNK);
  culling_key_buf_.resize(lights_allocated);
  culling_zdist_buf_.resize(lights_allocated);
  culling_light_buf_.resize(lights_allocated);

  {
    /* Compute tile size and total word count. */
    uint word_per_tile = divide_ceil_u(max_ii(lights_len_, 1), 32);
    int2 render_extent = inst_.film.render_extent_get();
    int2 tiles_extent;
    /* Default to 32 as this is likely to be the maximum
     * tile size used by hardware or compute shading. */
    uint tile_size = 16;
    do {
      tile_size *= 2;
      tiles_extent = math::divide_ceil(render_extent, int2(tile_size));
      uint tile_count = tiles_extent.x * tiles_extent.y;
      if (tile_count > max_tile_count_threshold) {
        continue;
      }
      total_word_count_ = tile_count * word_per_tile;

    } while (total_word_count_ > max_word_count_threshold);
    /* Keep aligned with storage buffer requirements. */
    total_word_count_ = ceil_to_multiple_u(total_word_count_, 32);

    culling_data_buf_.tile_word_len = word_per_tile;
    culling_data_buf_.tile_size = tile_size;
    culling_data_buf_.tile_x_len = tiles_extent.x;
    culling_data_buf_.tile_y_len = tiles_extent.y;
    culling_data_buf_.items_count = lights_len_;
    culling_data_buf_.local_lights_len = local_lights_len_;
    culling_data_buf_.sun_lights_len = sun_lights_len_;
  }
  culling_tile_buf_.resize(total_word_count_);

  culling_pass_sync();
  debug_pass_sync();
}

void LightModule::culling_pass_sync()
{
  uint safe_lights_len = max_ii(lights_len_, 1);
  uint culling_select_dispatch_size = divide_ceil_u(safe_lights_len, CULLING_SELECT_GROUP_SIZE);
  uint culling_sort_dispatch_size = divide_ceil_u(safe_lights_len, CULLING_SORT_GROUP_SIZE);
  uint culling_tile_dispatch_size = divide_ceil_u(total_word_count_, CULLING_TILE_GROUP_SIZE);

  /* NOTE: We reference the buffers that may be resized or updated later. */

  culling_ps_.init();
  {
    auto &sub = culling_ps_.sub("Select");
    sub.shader_set(inst_.shaders.static_shader_get(LIGHT_CULLING_SELECT));
    sub.bind_ssbo("light_cull_buf", &culling_data_buf_);
    sub.bind_ssbo("in_light_buf", light_buf_);
    sub.bind_ssbo("out_light_buf", culling_light_buf_);
    sub.bind_ssbo("out_zdist_buf", culling_zdist_buf_);
    sub.bind_ssbo("out_key_buf", culling_key_buf_);
    sub.dispatch(int3(culling_select_dispatch_size, 1, 1));
    sub.barrier(GPU_BARRIER_SHADER_STORAGE);
  }
  {
    auto &sub = culling_ps_.sub("Sort");
    sub.shader_set(inst_.shaders.static_shader_get(LIGHT_CULLING_SORT));
    sub.bind_ssbo("light_cull_buf", &culling_data_buf_);
    sub.bind_ssbo("in_light_buf", light_buf_);
    sub.bind_ssbo("out_light_buf", culling_light_buf_);
    sub.bind_ssbo("in_zdist_buf", culling_zdist_buf_);
    sub.bind_ssbo("in_key_buf", culling_key_buf_);
    sub.dispatch(int3(culling_sort_dispatch_size, 1, 1));
    sub.barrier(GPU_BARRIER_SHADER_STORAGE);
  }
  {
    auto &sub = culling_ps_.sub("Zbin");
    sub.shader_set(inst_.shaders.static_shader_get(LIGHT_CULLING_ZBIN));
    sub.bind_ssbo("light_cull_buf", &culling_data_buf_);
    sub.bind_ssbo("light_buf", culling_light_buf_);
    sub.bind_ssbo("out_zbin_buf", culling_zbin_buf_);
    sub.dispatch(int3(1, 1, 1));
    sub.barrier(GPU_BARRIER_SHADER_STORAGE);
  }
  {
    auto &sub = culling_ps_.sub("Tiles");
    sub.shader_set(inst_.shaders.static_shader_get(LIGHT_CULLING_TILE));
    sub.bind_ssbo("light_cull_buf", &culling_data_buf_);
    sub.bind_ssbo("light_buf", culling_light_buf_);
    sub.bind_ssbo("out_light_tile_buf", culling_tile_buf_);
    sub.dispatch(int3(culling_tile_dispatch_size, 1, 1));
    sub.barrier(GPU_BARRIER_SHADER_STORAGE);
  }
}

void LightModule::debug_pass_sync()
{
  if (inst_.debug_mode == eDebugMode::DEBUG_LIGHT_CULLING) {
    debug_draw_ps_.init();
    debug_draw_ps_.state_set(DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND_CUSTOM);
    debug_draw_ps_.shader_set(inst_.shaders.static_shader_get(LIGHT_CULLING_DEBUG));
    inst_.hiz_buffer.bind_resources(&debug_draw_ps_);
    debug_draw_ps_.bind_ssbo("light_buf", &culling_light_buf_);
    debug_draw_ps_.bind_ssbo("light_cull_buf", &culling_data_buf_);
    debug_draw_ps_.bind_ssbo("light_zbin_buf", &culling_zbin_buf_);
    debug_draw_ps_.bind_ssbo("light_tile_buf", &culling_tile_buf_);
    debug_draw_ps_.bind_texture("depth_tx", &inst_.render_buffers.depth_tx);
    debug_draw_ps_.draw_procedural(GPU_PRIM_TRIS, 1, 3);
  }
}

void LightModule::set_view(View &view, const int2 extent)
{
  float far_z = view.far_clip();
  float near_z = view.near_clip();

  culling_data_buf_.zbin_scale = -CULLING_ZBIN_COUNT / fabsf(far_z - near_z);
  culling_data_buf_.zbin_bias = -near_z * culling_data_buf_.zbin_scale;
  culling_data_buf_.tile_to_uv_fac = (culling_data_buf_.tile_size / float2(extent));
  culling_data_buf_.visible_count = 0;
  culling_data_buf_.push_update();

  inst_.manager->submit(culling_ps_, view);
}

void LightModule::debug_draw(View &view, GPUFrameBuffer *view_fb)
{
  if (inst_.debug_mode == eDebugMode::DEBUG_LIGHT_CULLING) {
    inst_.info = "Debug Mode: Light Culling Validation";
    inst_.hiz_buffer.update();
    GPU_framebuffer_bind(view_fb);
    inst_.manager->submit(debug_draw_ps_, view);
  }
}

/** \} */

}  // namespace blender::eevee