Welcome to mirror list, hosted at ThFree Co, Russian Federation.

curves_ops.cc « intern « curves « editors « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7d07c211542fc3e0b2ea3e88d73a1229c1323b12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/* SPDX-License-Identifier: GPL-2.0-or-later */

/** \file
 * \ingroup edcurves
 */

#include <atomic>

#include "BLI_utildefines.h"

#include "ED_curves.h"
#include "ED_object.h"
#include "ED_screen.h"

#include "WM_api.h"

#include "BKE_bvhutils.h"
#include "BKE_context.h"
#include "BKE_curves.hh"
#include "BKE_layer.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_paint.h"
#include "BKE_particle.h"
#include "BKE_report.h"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"

#include "DEG_depsgraph.h"

#include "RNA_access.h"
#include "RNA_define.h"

/**
 * The code below uses a suffix naming convention to indicate the coordinate space:
 * `cu`: Local space of the curves object that is being edited.
 * `su`: Local space of the surface object.
 * `wo`: World space.
 * `ha`: Local space of an individual hair in the legacy hair system.
 */

namespace blender::ed::curves {

using bke::CurvesGeometry;

namespace convert_to_particle_system {

static int find_mface_for_root_position(const Mesh &mesh,
                                        const Span<int> possible_mface_indices,
                                        const float3 &root_pos)
{
  BLI_assert(possible_mface_indices.size() >= 1);
  if (possible_mface_indices.size() == 1) {
    return possible_mface_indices.first();
  }
  /* Find the closest #MFace to #root_pos. */
  int mface_i;
  float best_distance_sq = FLT_MAX;
  for (const int possible_mface_i : possible_mface_indices) {
    const MFace &possible_mface = mesh.mface[possible_mface_i];
    {
      float3 point_in_triangle;
      closest_on_tri_to_point_v3(point_in_triangle,
                                 root_pos,
                                 mesh.mvert[possible_mface.v1].co,
                                 mesh.mvert[possible_mface.v2].co,
                                 mesh.mvert[possible_mface.v3].co);
      const float distance_sq = len_squared_v3v3(root_pos, point_in_triangle);
      if (distance_sq < best_distance_sq) {
        best_distance_sq = distance_sq;
        mface_i = possible_mface_i;
      }
    }
    /* Optionally check the second triangle if the #MFace is a quad. */
    if (possible_mface.v4) {
      float3 point_in_triangle;
      closest_on_tri_to_point_v3(point_in_triangle,
                                 root_pos,
                                 mesh.mvert[possible_mface.v1].co,
                                 mesh.mvert[possible_mface.v3].co,
                                 mesh.mvert[possible_mface.v4].co);
      const float distance_sq = len_squared_v3v3(root_pos, point_in_triangle);
      if (distance_sq < best_distance_sq) {
        best_distance_sq = distance_sq;
        mface_i = possible_mface_i;
      }
    }
  }
  return mface_i;
}

/**
 * \return Barycentric coordinates in the #MFace.
 */
static float4 compute_mface_weights_for_position(const Mesh &mesh,
                                                 const MFace &mface,
                                                 const float3 &position)
{
  float4 mface_weights;
  if (mface.v4) {
    float mface_verts_su[4][3];
    copy_v3_v3(mface_verts_su[0], mesh.mvert[mface.v1].co);
    copy_v3_v3(mface_verts_su[1], mesh.mvert[mface.v2].co);
    copy_v3_v3(mface_verts_su[2], mesh.mvert[mface.v3].co);
    copy_v3_v3(mface_verts_su[3], mesh.mvert[mface.v4].co);
    interp_weights_poly_v3(mface_weights, mface_verts_su, 4, position);
  }
  else {
    interp_weights_tri_v3(mface_weights,
                          mesh.mvert[mface.v1].co,
                          mesh.mvert[mface.v2].co,
                          mesh.mvert[mface.v3].co,
                          position);
    mface_weights[3] = 0.0f;
  }
  return mface_weights;
}

static void try_convert_single_object(Object &curves_ob,
                                      Main &bmain,
                                      Scene &scene,
                                      bool *r_could_not_convert_some_curves)
{
  if (curves_ob.type != OB_CURVES) {
    return;
  }
  Curves &curves_id = *static_cast<Curves *>(curves_ob.data);
  CurvesGeometry &curves = CurvesGeometry::wrap(curves_id.geometry);
  if (curves_id.surface == nullptr) {
    return;
  }
  Object &surface_ob = *curves_id.surface;
  if (surface_ob.type != OB_MESH) {
    return;
  }
  Mesh &surface_me = *static_cast<Mesh *>(surface_ob.data);

  const Span<float3> positions_cu = curves.positions();
  const VArray<int> looptri_indices = curves.surface_triangle_indices();
  const Span<MLoopTri> looptris{BKE_mesh_runtime_looptri_ensure(&surface_me),
                                BKE_mesh_runtime_looptri_len(&surface_me)};

  /* Find indices of curves that can be transferred to the old hair system. */
  Vector<int> curves_indices_to_transfer;
  for (const int curve_i : curves.curves_range()) {
    const int looptri_i = looptri_indices[curve_i];
    if (looptri_i >= 0 && looptri_i < looptris.size()) {
      curves_indices_to_transfer.append(curve_i);
    }
    else {
      *r_could_not_convert_some_curves = true;
    }
  }

  const int hairs_num = curves_indices_to_transfer.size();
  if (hairs_num == 0) {
    return;
  }

  ParticleSystem *particle_system = nullptr;
  LISTBASE_FOREACH (ParticleSystem *, psys, &surface_ob.particlesystem) {
    if (STREQ(psys->name, curves_ob.id.name + 2)) {
      particle_system = psys;
      break;
    }
  }
  if (particle_system == nullptr) {
    ParticleSystemModifierData &psmd = *reinterpret_cast<ParticleSystemModifierData *>(
        object_add_particle_system(&bmain, &scene, &surface_ob, curves_ob.id.name + 2));
    particle_system = psmd.psys;
    particle_system->part->draw_step = 3;
  }

  ParticleSettings &settings = *particle_system->part;

  psys_free_particles(particle_system);
  settings.type = PART_HAIR;
  settings.totpart = 0;
  psys_changed_type(&surface_ob, particle_system);

  MutableSpan<ParticleData> particles{
      static_cast<ParticleData *>(MEM_calloc_arrayN(hairs_num, sizeof(ParticleData), __func__)),
      hairs_num};

  /* The old hair system still uses #MFace, so make sure those are available on the mesh. */
  BKE_mesh_tessface_calc(&surface_me);

  /* Prepare utility data structure to map hair roots to mfaces. */
  const Span<int> mface_to_poly_map{
      static_cast<int *>(CustomData_get_layer(&surface_me.fdata, CD_ORIGINDEX)),
      surface_me.totface};
  Array<Vector<int>> poly_to_mface_map(surface_me.totpoly);
  for (const int mface_i : mface_to_poly_map.index_range()) {
    const int poly_i = mface_to_poly_map[mface_i];
    poly_to_mface_map[poly_i].append(mface_i);
  }

  /* Prepare transformation matrices. */
  const float4x4 curves_to_world_mat = curves_ob.obmat;
  const float4x4 surface_to_world_mat = surface_ob.obmat;
  const float4x4 world_to_surface_mat = surface_to_world_mat.inverted();
  const float4x4 curves_to_surface_mat = world_to_surface_mat * curves_to_world_mat;

  for (const int new_hair_i : curves_indices_to_transfer.index_range()) {
    const int curve_i = curves_indices_to_transfer[new_hair_i];
    const IndexRange points = curves.points_for_curve(curve_i);

    const int looptri_i = looptri_indices[curve_i];
    const MLoopTri &looptri = looptris[looptri_i];
    const int poly_i = looptri.poly;

    const float3 &root_pos_cu = positions_cu[points.first()];
    const float3 root_pos_su = curves_to_surface_mat * root_pos_cu;

    const int mface_i = find_mface_for_root_position(
        surface_me, poly_to_mface_map[poly_i], root_pos_su);
    const MFace &mface = surface_me.mface[mface_i];

    const float4 mface_weights = compute_mface_weights_for_position(
        surface_me, mface, root_pos_su);

    ParticleData &particle = particles[new_hair_i];
    const int num_keys = points.size();
    MutableSpan<HairKey> hair_keys{
        static_cast<HairKey *>(MEM_calloc_arrayN(num_keys, sizeof(HairKey), __func__)), num_keys};

    particle.hair = hair_keys.data();
    particle.totkey = hair_keys.size();
    copy_v4_v4(particle.fuv, mface_weights);
    particle.num = mface_i;
    /* Not sure if there is a better way to initialize this. */
    particle.num_dmcache = DMCACHE_NOTFOUND;

    float4x4 hair_to_surface_mat;
    psys_mat_hair_to_object(
        &surface_ob, &surface_me, PART_FROM_FACE, &particle, hair_to_surface_mat.values);
    /* In theory, #psys_mat_hair_to_object should handle this, but it doesn't right now. */
    copy_v3_v3(hair_to_surface_mat.values[3], root_pos_su);
    const float4x4 surface_to_hair_mat = hair_to_surface_mat.inverted();

    for (const int key_i : hair_keys.index_range()) {
      const float3 &key_pos_cu = positions_cu[points[key_i]];
      const float3 key_pos_su = curves_to_surface_mat * key_pos_cu;
      const float3 key_pos_ha = surface_to_hair_mat * key_pos_su;

      HairKey &key = hair_keys[key_i];
      copy_v3_v3(key.co, key_pos_ha);
      key.time = 100.0f * key_i / (float)(hair_keys.size() - 1);
    }
  }

  particle_system->particles = particles.data();
  particle_system->totpart = particles.size();
  particle_system->flag |= PSYS_EDITED;
  particle_system->recalc |= ID_RECALC_PSYS_RESET;

  DEG_id_tag_update(&surface_ob.id, ID_RECALC_GEOMETRY);
  DEG_id_tag_update(&settings.id, ID_RECALC_COPY_ON_WRITE);
}

static int curves_convert_to_particle_system_exec(bContext *C, wmOperator *op)
{
  Main &bmain = *CTX_data_main(C);
  Scene &scene = *CTX_data_scene(C);

  bool could_not_convert_some_curves = false;

  Object &active_object = *CTX_data_active_object(C);
  try_convert_single_object(active_object, bmain, scene, &could_not_convert_some_curves);

  CTX_DATA_BEGIN (C, Object *, curves_ob, selected_objects) {
    if (curves_ob != &active_object) {
      try_convert_single_object(*curves_ob, bmain, scene, &could_not_convert_some_curves);
    }
  }
  CTX_DATA_END;

  if (could_not_convert_some_curves) {
    BKE_report(op->reports,
               RPT_INFO,
               "Some curves could not be converted because they were not attached to the surface");
  }

  WM_main_add_notifier(NC_OBJECT | ND_PARTICLE | NA_EDITED, nullptr);

  return OPERATOR_FINISHED;
}

static bool curves_convert_to_particle_system_poll(bContext *C)
{
  Object *ob = CTX_data_active_object(C);
  if (ob == nullptr || ob->type != OB_CURVES) {
    return false;
  }
  Curves &curves = *static_cast<Curves *>(ob->data);
  return curves.surface != nullptr;
}

}  // namespace convert_to_particle_system

static void CURVES_OT_convert_to_particle_system(wmOperatorType *ot)
{
  ot->name = "Convert Curves to Particle System";
  ot->idname = "CURVES_OT_convert_to_particle_system";
  ot->description = "Add a new or update an existing hair particle system on the surface object";

  ot->poll = convert_to_particle_system::curves_convert_to_particle_system_poll;
  ot->exec = convert_to_particle_system::curves_convert_to_particle_system_exec;

  ot->flag = OPTYPE_UNDO | OPTYPE_REGISTER;
}

namespace snap_curves_to_surface {

enum class AttachMode {
  Nearest,
  Deform,
};

static bool snap_curves_to_surface_poll(bContext *C)
{
  Object *ob = CTX_data_active_object(C);
  if (ob == nullptr || ob->type != OB_CURVES) {
    return false;
  }
  if (!ED_operator_object_active_editable_ex(C, ob)) {
    return false;
  }
  Curves &curves = *static_cast<Curves *>(ob->data);
  if (curves.surface == nullptr) {
    return false;
  }
  return true;
}

static int snap_curves_to_surface_exec(bContext *C, wmOperator *op)
{
  const AttachMode attach_mode = static_cast<AttachMode>(RNA_enum_get(op->ptr, "attach_mode"));

  std::atomic<bool> found_invalid_looptri_index = false;

  CTX_DATA_BEGIN (C, Object *, curves_ob, selected_objects) {
    if (curves_ob->type != OB_CURVES) {
      continue;
    }
    Curves &curves_id = *static_cast<Curves *>(curves_ob->data);
    CurvesGeometry &curves = CurvesGeometry::wrap(curves_id.geometry);
    if (curves_id.surface == nullptr) {
      continue;
    }
    Object &surface_ob = *curves_id.surface;
    if (surface_ob.type != OB_MESH) {
      continue;
    }
    Mesh &surface_mesh = *static_cast<Mesh *>(surface_ob.data);

    MutableSpan<float3> positions_cu = curves.positions_for_write();
    MutableSpan<int> surface_triangle_indices = curves.surface_triangle_indices_for_write();
    MutableSpan<float2> surface_triangle_coords = curves.surface_triangle_coords_for_write();

    const Span<MLoopTri> surface_looptris = {BKE_mesh_runtime_looptri_ensure(&surface_mesh),
                                             BKE_mesh_runtime_looptri_len(&surface_mesh)};

    const float4x4 curves_to_world_mat = curves_ob->obmat;
    const float4x4 world_to_curves_mat = curves_to_world_mat.inverted();
    const float4x4 surface_to_world_mat = surface_ob.obmat;
    const float4x4 world_to_surface_mat = surface_to_world_mat.inverted();
    const float4x4 curves_to_surface_mat = world_to_surface_mat * curves_to_world_mat;
    const float4x4 surface_to_curves_mat = world_to_curves_mat * surface_to_world_mat;

    switch (attach_mode) {
      case AttachMode::Nearest: {
        BVHTreeFromMesh surface_bvh;
        BKE_bvhtree_from_mesh_get(&surface_bvh, &surface_mesh, BVHTREE_FROM_LOOPTRI, 2);
        BLI_SCOPED_DEFER([&]() { free_bvhtree_from_mesh(&surface_bvh); });

        threading::parallel_for(curves.curves_range(), 256, [&](const IndexRange curves_range) {
          for (const int curve_i : curves_range) {
            const IndexRange points = curves.points_for_curve(curve_i);
            const int first_point_i = points.first();
            const float3 old_first_point_pos_cu = positions_cu[first_point_i];
            const float3 old_first_point_pos_su = curves_to_surface_mat * old_first_point_pos_cu;

            BVHTreeNearest nearest;
            nearest.index = -1;
            nearest.dist_sq = FLT_MAX;
            BLI_bvhtree_find_nearest(surface_bvh.tree,
                                     old_first_point_pos_su,
                                     &nearest,
                                     surface_bvh.nearest_callback,
                                     &surface_bvh);
            const int looptri_index = nearest.index;
            if (looptri_index == -1) {
              continue;
            }

            const float3 new_first_point_pos_su = nearest.co;
            const float3 new_first_point_pos_cu = surface_to_curves_mat * new_first_point_pos_su;
            const float3 pos_diff_cu = new_first_point_pos_cu - old_first_point_pos_cu;

            for (float3 &pos_cu : positions_cu.slice(points)) {
              pos_cu += pos_diff_cu;
            }

            surface_triangle_indices[curve_i] = looptri_index;

            const MLoopTri &looptri = surface_looptris[looptri_index];
            const float3 &p0_su = surface_mesh.mvert[surface_mesh.mloop[looptri.tri[0]].v].co;
            const float3 &p1_su = surface_mesh.mvert[surface_mesh.mloop[looptri.tri[1]].v].co;
            const float3 &p2_su = surface_mesh.mvert[surface_mesh.mloop[looptri.tri[2]].v].co;
            float3 bary_coords;
            interp_weights_tri_v3(bary_coords, p0_su, p1_su, p2_su, new_first_point_pos_su);
            surface_triangle_coords[curve_i] = bke::curves::encode_surface_bary_coord(bary_coords);
          }
        });
        break;
      }
      case AttachMode::Deform: {
        threading::parallel_for(curves.curves_range(), 256, [&](const IndexRange curves_range) {
          for (const int curve_i : curves_range) {
            const IndexRange points = curves.points_for_curve(curve_i);
            const int first_point_i = points.first();
            const float3 old_first_point_pos_cu = positions_cu[first_point_i];

            const int looptri_index = surface_triangle_indices[curve_i];
            if (!surface_looptris.index_range().contains(looptri_index)) {
              found_invalid_looptri_index = true;
              continue;
            }

            const MLoopTri &looptri = surface_looptris[looptri_index];

            const float3 bary_coords = bke::curves::decode_surface_bary_coord(
                surface_triangle_coords[curve_i]);

            const float3 &p0_su = surface_mesh.mvert[surface_mesh.mloop[looptri.tri[0]].v].co;
            const float3 &p1_su = surface_mesh.mvert[surface_mesh.mloop[looptri.tri[1]].v].co;
            const float3 &p2_su = surface_mesh.mvert[surface_mesh.mloop[looptri.tri[2]].v].co;

            float3 new_first_point_pos_su;
            interp_v3_v3v3v3(new_first_point_pos_su, p0_su, p1_su, p2_su, bary_coords);
            const float3 new_first_point_pos_cu = surface_to_curves_mat * new_first_point_pos_su;

            const float3 pos_diff_cu = new_first_point_pos_cu - old_first_point_pos_cu;
            for (float3 &pos_cu : positions_cu.slice(points)) {
              pos_cu += pos_diff_cu;
            }
          }
        });
        break;
      }
    }

    DEG_id_tag_update(&curves_id.id, ID_RECALC_GEOMETRY);
  }
  CTX_DATA_END;

  if (found_invalid_looptri_index) {
    BKE_report(op->reports, RPT_INFO, "Could not snap some curves to the surface");
  }

  WM_main_add_notifier(NC_OBJECT | ND_DRAW, nullptr);

  return OPERATOR_FINISHED;
}

}  // namespace snap_curves_to_surface

static void CURVES_OT_snap_curves_to_surface(wmOperatorType *ot)
{
  using namespace snap_curves_to_surface;

  ot->name = "Snap Curves to Surface";
  ot->idname = "CURVES_OT_snap_curves_to_surface";
  ot->description = "Move curves so that the first point is exactly on the surface mesh";

  ot->poll = snap_curves_to_surface_poll;
  ot->exec = snap_curves_to_surface_exec;

  ot->flag = OPTYPE_UNDO | OPTYPE_REGISTER;

  static const EnumPropertyItem attach_mode_items[] = {
      {static_cast<int>(AttachMode::Nearest),
       "NEAREST",
       0,
       "Nearest",
       "Find the closest point on the surface for the root point of every curve and move the root "
       "there"},
      {static_cast<int>(AttachMode::Deform),
       "DEFORM",
       0,
       "Deform",
       "Re-attach curves to a deformed surface using the existing attachment information. This "
       "only works when the topology of the surface mesh has not changed"},
      {0, nullptr, 0, nullptr, nullptr},
  };

  RNA_def_enum(ot->srna,
               "attach_mode",
               attach_mode_items,
               static_cast<int>(AttachMode::Nearest),
               "Attach Mode",
               "How to find the point on the surface to attach to");
}

}  // namespace blender::ed::curves

void ED_operatortypes_curves()
{
  using namespace blender::ed::curves;
  WM_operatortype_append(CURVES_OT_convert_to_particle_system);
  WM_operatortype_append(CURVES_OT_snap_curves_to_surface);
}