Welcome to mirror list, hosted at ThFree Co, Russian Federation.

curves_sculpt_add.cc « sculpt_paint « editors « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f013fa05f4cdaf5bb7a0aaded45be25f8ae5818e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include <algorithm>

#include "curves_sculpt_intern.hh"

#include "BLI_float4x4.hh"
#include "BLI_kdtree.h"
#include "BLI_rand.hh"
#include "BLI_vector.hh"

#include "PIL_time.h"

#include "DEG_depsgraph.h"

#include "BKE_attribute_math.hh"
#include "BKE_brush.h"
#include "BKE_bvhutils.h"
#include "BKE_context.h"
#include "BKE_curves.hh"
#include "BKE_curves_utils.hh"
#include "BKE_geometry_set.hh"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_paint.h"
#include "BKE_report.h"
#include "BKE_spline.hh"

#include "DNA_brush_enums.h"
#include "DNA_brush_types.h"
#include "DNA_curves_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_screen_types.h"
#include "DNA_space_types.h"

#include "ED_screen.h"
#include "ED_view3d.h"

#include "WM_api.h"

/**
 * The code below uses a prefix naming convention to indicate the coordinate space:
 * cu: Local space of the curves object that is being edited.
 * su: Local space of the surface object.
 * wo: World space.
 * re: 2D coordinates within the region.
 */

namespace blender::ed::sculpt_paint {

using bke::CurvesGeometry;

class AddOperation : public CurvesSculptStrokeOperation {
 private:
  /** Used when some data should be interpolated from existing curves. */
  KDTree_3d *curve_roots_kdtree_ = nullptr;

  friend struct AddOperationExecutor;

 public:
  ~AddOperation() override
  {
    if (curve_roots_kdtree_ != nullptr) {
      BLI_kdtree_3d_free(curve_roots_kdtree_);
    }
  }

  void on_stroke_extended(const bContext &C, const StrokeExtension &stroke_extension) override;
};

static void initialize_straight_curve_positions(const float3 &p1,
                                                const float3 &p2,
                                                MutableSpan<float3> r_positions)
{
  const float step = 1.0f / (float)(r_positions.size() - 1);
  for (const int i : r_positions.index_range()) {
    r_positions[i] = math::interpolate(p1, p2, i * step);
  }
}

/**
 * Utility class that actually executes the update when the stroke is updated. That's useful
 * because it avoids passing a very large number of parameters between functions.
 */
struct AddOperationExecutor {
  AddOperation *self_ = nullptr;
  CurvesSculptCommonContext ctx_;

  Object *object_ = nullptr;
  Curves *curves_id_ = nullptr;
  CurvesGeometry *curves_ = nullptr;

  Object *surface_ob_ = nullptr;
  Mesh *surface_ = nullptr;
  Span<MLoopTri> surface_looptris_;
  Span<float3> corner_normals_su_;
  VArray_Span<float2> surface_uv_map_;

  const CurvesSculpt *curves_sculpt_ = nullptr;
  const Brush *brush_ = nullptr;
  const BrushCurvesSculptSettings *brush_settings_ = nullptr;

  float brush_radius_re_;
  float2 brush_pos_re_;

  bool use_front_face_;
  bool interpolate_length_;
  bool interpolate_shape_;
  bool interpolate_point_count_;
  bool use_interpolation_;
  float new_curve_length_;
  int add_amount_;
  int constant_points_per_curve_;

  /** Various matrices to convert between coordinate spaces. */
  float4x4 curves_to_world_mat_;
  float4x4 curves_to_surface_mat_;
  float4x4 world_to_curves_mat_;
  float4x4 world_to_surface_mat_;
  float4x4 surface_to_world_mat_;
  float4x4 surface_to_curves_mat_;
  float4x4 surface_to_curves_normal_mat_;

  BVHTreeFromMesh surface_bvh_;

  int tot_old_curves_;
  int tot_old_points_;

  struct AddedPoints {
    Vector<float3> positions_cu;
    Vector<float3> bary_coords;
    Vector<int> looptri_indices;
  };

  struct NeighborInfo {
    /* Curve index of the neighbor. */
    int index;
    /* The weights of all neighbors of a new curve add up to 1. */
    float weight;
  };
  static constexpr int max_neighbors = 5;
  using NeighborsVector = Vector<NeighborInfo, max_neighbors>;

  AddOperationExecutor(const bContext &C) : ctx_(C)
  {
  }

  void execute(AddOperation &self, const bContext &C, const StrokeExtension &stroke_extension)
  {
    self_ = &self;
    object_ = CTX_data_active_object(&C);

    curves_id_ = static_cast<Curves *>(object_->data);
    curves_ = &CurvesGeometry::wrap(curves_id_->geometry);

    if (curves_id_->surface == nullptr || curves_id_->surface->type != OB_MESH) {
      return;
    }

    curves_to_world_mat_ = object_->obmat;
    world_to_curves_mat_ = curves_to_world_mat_.inverted();

    surface_ob_ = curves_id_->surface;
    surface_ = static_cast<Mesh *>(surface_ob_->data);
    surface_to_world_mat_ = surface_ob_->obmat;
    world_to_surface_mat_ = surface_to_world_mat_.inverted();
    surface_to_curves_mat_ = world_to_curves_mat_ * surface_to_world_mat_;
    surface_to_curves_normal_mat_ = surface_to_curves_mat_.inverted().transposed();
    curves_to_surface_mat_ = world_to_surface_mat_ * curves_to_world_mat_;

    if (!CustomData_has_layer(&surface_->ldata, CD_NORMAL)) {
      BKE_mesh_calc_normals_split(surface_);
    }
    corner_normals_su_ = {
        reinterpret_cast<const float3 *>(CustomData_get_layer(&surface_->ldata, CD_NORMAL)),
        surface_->totloop};

    curves_sculpt_ = ctx_.scene->toolsettings->curves_sculpt;
    brush_ = BKE_paint_brush_for_read(&curves_sculpt_->paint);
    brush_settings_ = brush_->curves_sculpt_settings;
    brush_radius_re_ = brush_radius_get(*ctx_.scene, *brush_, stroke_extension);
    brush_pos_re_ = stroke_extension.mouse_position;

    use_front_face_ = brush_->flag & BRUSH_FRONTFACE;
    const eBrushFalloffShape falloff_shape = static_cast<eBrushFalloffShape>(
        brush_->falloff_shape);
    add_amount_ = std::max(0, brush_settings_->add_amount);
    constant_points_per_curve_ = std::max(2, brush_settings_->points_per_curve);
    interpolate_length_ = brush_settings_->flag & BRUSH_CURVES_SCULPT_FLAG_INTERPOLATE_LENGTH;
    interpolate_shape_ = brush_settings_->flag & BRUSH_CURVES_SCULPT_FLAG_INTERPOLATE_SHAPE;
    interpolate_point_count_ = brush_settings_->flag &
                               BRUSH_CURVES_SCULPT_FLAG_INTERPOLATE_POINT_COUNT;
    use_interpolation_ = interpolate_length_ || interpolate_shape_ || interpolate_point_count_;
    new_curve_length_ = brush_settings_->curve_length;

    tot_old_curves_ = curves_->curves_num();
    tot_old_points_ = curves_->points_num();

    if (add_amount_ == 0) {
      return;
    }

    const double time = PIL_check_seconds_timer() * 1000000.0;
    /* Use a pointer cast to avoid overflow warnings. */
    RandomNumberGenerator rng{*(uint32_t *)(&time)};

    BKE_bvhtree_from_mesh_get(&surface_bvh_, surface_, BVHTREE_FROM_LOOPTRI, 2);
    BLI_SCOPED_DEFER([&]() { free_bvhtree_from_mesh(&surface_bvh_); });

    surface_looptris_ = {BKE_mesh_runtime_looptri_ensure(surface_),
                         BKE_mesh_runtime_looptri_len(surface_)};

    if (curves_id_->surface_uv_map != nullptr) {
      MeshComponent surface_component;
      surface_component.replace(surface_, GeometryOwnershipType::ReadOnly);
      surface_uv_map_ = surface_component
                            .attribute_try_get_for_read(curves_id_->surface_uv_map,
                                                        ATTR_DOMAIN_CORNER)
                            .typed<float2>();
    }

    /* Sample points on the surface using one of multiple strategies. */
    AddedPoints added_points;
    if (add_amount_ == 1) {
      this->sample_in_center_with_symmetry(added_points);
    }
    else if (falloff_shape == PAINT_FALLOFF_SHAPE_TUBE) {
      this->sample_projected_with_symmetry(rng, added_points);
    }
    else if (falloff_shape == PAINT_FALLOFF_SHAPE_SPHERE) {
      this->sample_spherical_with_symmetry(rng, added_points);
    }
    else {
      BLI_assert_unreachable();
    }

    if (added_points.bary_coords.is_empty()) {
      /* No new points have been added. */
      return;
    }

    Array<NeighborsVector> neighbors_per_curve;
    if (use_interpolation_) {
      this->ensure_curve_roots_kdtree();
      neighbors_per_curve = this->find_curve_neighbors(added_points);
    }

    /* Resize to add the new curves, building the offsets in the array owned by the curves. */
    const int tot_added_curves = added_points.bary_coords.size();
    curves_->resize(curves_->points_num(), curves_->curves_num() + tot_added_curves);
    if (interpolate_point_count_) {
      this->initialize_curve_offsets_with_interpolation(neighbors_per_curve);
    }
    else {
      this->initialize_curve_offsets_without_interpolation(constant_points_per_curve_);
    }

    /* Resize to add the correct point count calculated as part of building the offsets. */
    curves_->resize(curves_->offsets().last(), curves_->curves_num());

    this->initialize_attributes(added_points, neighbors_per_curve);

    curves_->update_curve_types();

    DEG_id_tag_update(&curves_id_->id, ID_RECALC_GEOMETRY);
    WM_main_add_notifier(NC_GEOM | ND_DATA, &curves_id_->id);
    ED_region_tag_redraw(ctx_.region);
  }

  /**
   * Sample a single point exactly at the mouse position.
   */
  void sample_in_center_with_symmetry(AddedPoints &r_added_points)
  {
    float3 ray_start_wo, ray_end_wo;
    ED_view3d_win_to_segment_clipped(
        ctx_.depsgraph, ctx_.region, ctx_.v3d, brush_pos_re_, ray_start_wo, ray_end_wo, true);
    const float3 ray_start_cu = world_to_curves_mat_ * ray_start_wo;
    const float3 ray_end_cu = world_to_curves_mat_ * ray_end_wo;

    const Vector<float4x4> symmetry_brush_transforms = get_symmetry_brush_transforms(
        eCurvesSymmetryType(curves_id_->symmetry));

    for (const float4x4 &brush_transform : symmetry_brush_transforms) {
      const float4x4 transform = curves_to_surface_mat_ * brush_transform;
      this->sample_in_center(r_added_points, transform * ray_start_cu, transform * ray_end_cu);
    }
  }

  void sample_in_center(AddedPoints &r_added_points,
                        const float3 &ray_start_su,
                        const float3 &ray_end_su)
  {
    const float3 ray_direction_su = math::normalize(ray_end_su - ray_start_su);

    BVHTreeRayHit ray_hit;
    ray_hit.dist = FLT_MAX;
    ray_hit.index = -1;
    BLI_bvhtree_ray_cast(surface_bvh_.tree,
                         ray_start_su,
                         ray_direction_su,
                         0.0f,
                         &ray_hit,
                         surface_bvh_.raycast_callback,
                         &surface_bvh_);

    if (ray_hit.index == -1) {
      return;
    }

    const int looptri_index = ray_hit.index;
    const float3 brush_pos_su = ray_hit.co;
    const float3 bary_coords = compute_bary_coord_in_triangle(
        *surface_, surface_looptris_[looptri_index], brush_pos_su);

    const float3 brush_pos_cu = surface_to_curves_mat_ * brush_pos_su;

    r_added_points.positions_cu.append(brush_pos_cu);
    r_added_points.bary_coords.append(bary_coords);
    r_added_points.looptri_indices.append(looptri_index);
  }

  /**
   * Sample points by shooting rays within the brush radius in the 3D view.
   */
  void sample_projected_with_symmetry(RandomNumberGenerator &rng, AddedPoints &r_added_points)
  {
    const Vector<float4x4> symmetry_brush_transforms = get_symmetry_brush_transforms(
        eCurvesSymmetryType(curves_id_->symmetry));
    for (const float4x4 &brush_transform : symmetry_brush_transforms) {
      this->sample_projected(rng, r_added_points, brush_transform);
    }
  }

  void sample_projected(RandomNumberGenerator &rng,
                        AddedPoints &r_added_points,
                        const float4x4 &brush_transform)
  {
    const int old_amount = r_added_points.bary_coords.size();
    const int max_iterations = std::max(100'000, add_amount_ * 10);
    int current_iteration = 0;
    while (r_added_points.bary_coords.size() < old_amount + add_amount_) {
      if (current_iteration++ >= max_iterations) {
        break;
      }

      const float r = brush_radius_re_ * std::sqrt(rng.get_float());
      const float angle = rng.get_float() * 2.0f * M_PI;
      const float2 pos_re = brush_pos_re_ + r * float2(std::cos(angle), std::sin(angle));

      float3 ray_start_wo, ray_end_wo;
      ED_view3d_win_to_segment_clipped(
          ctx_.depsgraph, ctx_.region, ctx_.v3d, pos_re, ray_start_wo, ray_end_wo, true);
      const float3 ray_start_cu = brush_transform * (world_to_curves_mat_ * ray_start_wo);
      const float3 ray_end_cu = brush_transform * (world_to_curves_mat_ * ray_end_wo);

      const float3 ray_start_su = curves_to_surface_mat_ * ray_start_cu;
      const float3 ray_end_su = curves_to_surface_mat_ * ray_end_cu;
      const float3 ray_direction_su = math::normalize(ray_end_su - ray_start_su);

      BVHTreeRayHit ray_hit;
      ray_hit.dist = FLT_MAX;
      ray_hit.index = -1;
      BLI_bvhtree_ray_cast(surface_bvh_.tree,
                           ray_start_su,
                           ray_direction_su,
                           0.0f,
                           &ray_hit,
                           surface_bvh_.raycast_callback,
                           &surface_bvh_);

      if (ray_hit.index == -1) {
        continue;
      }

      if (use_front_face_) {
        const float3 normal_su = ray_hit.no;
        if (math::dot(ray_direction_su, normal_su) >= 0.0f) {
          continue;
        }
      }

      const int looptri_index = ray_hit.index;
      const float3 pos_su = ray_hit.co;

      const float3 bary_coords = compute_bary_coord_in_triangle(
          *surface_, surface_looptris_[looptri_index], pos_su);

      const float3 pos_cu = surface_to_curves_mat_ * pos_su;

      r_added_points.positions_cu.append(pos_cu);
      r_added_points.bary_coords.append(bary_coords);
      r_added_points.looptri_indices.append(looptri_index);
    }
  }

  /**
   * Sample points in a 3D sphere around the surface position that the mouse hovers over.
   */
  void sample_spherical_with_symmetry(RandomNumberGenerator &rng, AddedPoints &r_added_points)
  {
    /* Find ray that starts in the center of the brush. */
    float3 brush_ray_start_wo, brush_ray_end_wo;
    ED_view3d_win_to_segment_clipped(ctx_.depsgraph,
                                     ctx_.region,
                                     ctx_.v3d,
                                     brush_pos_re_,
                                     brush_ray_start_wo,
                                     brush_ray_end_wo,
                                     true);
    const float3 brush_ray_start_cu = world_to_curves_mat_ * brush_ray_start_wo;
    const float3 brush_ray_end_cu = world_to_curves_mat_ * brush_ray_end_wo;

    /* Find ray that starts on the boundary of the brush. That is used to compute the brush radius
     * in 3D. */
    float3 brush_radius_ray_start_wo, brush_radius_ray_end_wo;
    ED_view3d_win_to_segment_clipped(ctx_.depsgraph,
                                     ctx_.region,
                                     ctx_.v3d,
                                     brush_pos_re_ + float2(brush_radius_re_, 0),
                                     brush_radius_ray_start_wo,
                                     brush_radius_ray_end_wo,
                                     true);
    const float3 brush_radius_ray_start_cu = world_to_curves_mat_ * brush_radius_ray_start_wo;
    const float3 brush_radius_ray_end_cu = world_to_curves_mat_ * brush_radius_ray_end_wo;

    const Vector<float4x4> symmetry_brush_transforms = get_symmetry_brush_transforms(
        eCurvesSymmetryType(curves_id_->symmetry));
    for (const float4x4 &brush_transform : symmetry_brush_transforms) {
      const float4x4 transform = curves_to_surface_mat_ * brush_transform;
      this->sample_spherical(rng,
                             r_added_points,
                             transform * brush_ray_start_cu,
                             transform * brush_ray_end_cu,
                             transform * brush_radius_ray_start_cu,
                             transform * brush_radius_ray_end_cu);
    }
  }

  void sample_spherical(RandomNumberGenerator &rng,
                        AddedPoints &r_added_points,
                        const float3 &brush_ray_start_su,
                        const float3 &brush_ray_end_su,
                        const float3 &brush_radius_ray_start_su,
                        const float3 &brush_radius_ray_end_su)
  {
    const float3 brush_ray_direction_su = math::normalize(brush_ray_end_su - brush_ray_start_su);

    BVHTreeRayHit ray_hit;
    ray_hit.dist = FLT_MAX;
    ray_hit.index = -1;
    BLI_bvhtree_ray_cast(surface_bvh_.tree,
                         brush_ray_start_su,
                         brush_ray_direction_su,
                         0.0f,
                         &ray_hit,
                         surface_bvh_.raycast_callback,
                         &surface_bvh_);

    if (ray_hit.index == -1) {
      return;
    }

    /* Compute brush radius. */
    const float3 brush_pos_su = ray_hit.co;
    const float brush_radius_su = dist_to_line_v3(
        brush_pos_su, brush_radius_ray_start_su, brush_radius_ray_end_su);
    const float brush_radius_sq_su = pow2f(brush_radius_su);

    /* Find surface triangles within brush radius. */
    Vector<int> looptri_indices;
    if (use_front_face_) {
      BLI_bvhtree_range_query_cpp(
          *surface_bvh_.tree,
          brush_pos_su,
          brush_radius_su,
          [&](const int index, const float3 &UNUSED(co), const float UNUSED(dist_sq)) {
            const MLoopTri &looptri = surface_looptris_[index];
            const float3 v0_su = surface_->mvert[surface_->mloop[looptri.tri[0]].v].co;
            const float3 v1_su = surface_->mvert[surface_->mloop[looptri.tri[1]].v].co;
            const float3 v2_su = surface_->mvert[surface_->mloop[looptri.tri[2]].v].co;
            float3 normal_su;
            normal_tri_v3(normal_su, v0_su, v1_su, v2_su);
            if (math::dot(normal_su, brush_ray_direction_su) >= 0.0f) {
              return;
            }
            looptri_indices.append(index);
          });
    }
    else {
      BLI_bvhtree_range_query_cpp(
          *surface_bvh_.tree,
          brush_pos_su,
          brush_radius_su,
          [&](const int index, const float3 &UNUSED(co), const float UNUSED(dist_sq)) {
            looptri_indices.append(index);
          });
    }

    /* Density used for sampling points. This does not have to be exact, because the loop below
     * automatically runs until enough samples have been found. If too many samples are found, some
     * will be discarded afterwards. */
    const float brush_plane_area_su = M_PI * brush_radius_sq_su;
    const float approximate_density_su = add_amount_ / brush_plane_area_su;

    /* Used for switching between two triangle sampling strategies. */
    const float area_threshold = brush_plane_area_su;

    /* Usually one or two iterations should be enough. */
    const int max_iterations = 5;
    int current_iteration = 0;

    const int old_amount = r_added_points.bary_coords.size();
    while (r_added_points.bary_coords.size() < old_amount + add_amount_) {
      if (current_iteration++ >= max_iterations) {
        break;
      }

      for (const int looptri_index : looptri_indices) {
        const MLoopTri &looptri = surface_looptris_[looptri_index];

        const float3 v0_su = surface_->mvert[surface_->mloop[looptri.tri[0]].v].co;
        const float3 v1_su = surface_->mvert[surface_->mloop[looptri.tri[1]].v].co;
        const float3 v2_su = surface_->mvert[surface_->mloop[looptri.tri[2]].v].co;

        const float looptri_area_su = area_tri_v3(v0_su, v1_su, v2_su);

        if (looptri_area_su < area_threshold) {
          /* The triangle is small compared to the brush radius. Sample by generating random
           * barycentric coordinates. */
          const int amount = rng.round_probabilistic(approximate_density_su * looptri_area_su);
          for ([[maybe_unused]] const int i : IndexRange(amount)) {
            const float3 bary_coord = rng.get_barycentric_coordinates();
            const float3 point_pos_su = attribute_math::mix3(bary_coord, v0_su, v1_su, v2_su);
            const float distance_to_brush_sq_su = math::distance_squared(point_pos_su,
                                                                         brush_pos_su);
            if (distance_to_brush_sq_su > brush_radius_sq_su) {
              continue;
            }

            r_added_points.bary_coords.append(bary_coord);
            r_added_points.looptri_indices.append(looptri_index);
            r_added_points.positions_cu.append(surface_to_curves_mat_ * point_pos_su);
          }
        }
        else {
          /* The triangle is large compared to the brush radius. Sample by generating random points
           * on the triangle plane within the brush radius. */
          float3 normal_su;
          normal_tri_v3(normal_su, v0_su, v1_su, v2_su);

          float3 brush_pos_proj_su = brush_pos_su;
          project_v3_plane(brush_pos_proj_su, normal_su, v0_su);

          const float proj_distance_sq_su = math::distance_squared(brush_pos_proj_su,
                                                                   brush_pos_su);
          const float brush_radius_factor_sq = 1.0f -
                                               std::min(1.0f,
                                                        proj_distance_sq_su / brush_radius_sq_su);
          const float radius_proj_sq_su = brush_radius_sq_su * brush_radius_factor_sq;
          const float radius_proj_su = std::sqrt(radius_proj_sq_su);
          const float circle_area_su = M_PI * radius_proj_su;

          const int amount = rng.round_probabilistic(approximate_density_su * circle_area_su);

          const float3 axis_1_su = math::normalize(v1_su - v0_su) * radius_proj_su;
          const float3 axis_2_su = math::normalize(math::cross(
                                       axis_1_su, math::cross(axis_1_su, v2_su - v0_su))) *
                                   radius_proj_su;

          for ([[maybe_unused]] const int i : IndexRange(amount)) {
            const float r = std::sqrt(rng.get_float());
            const float angle = rng.get_float() * 2.0f * M_PI;
            const float x = r * std::cos(angle);
            const float y = r * std::sin(angle);
            const float3 point_pos_su = brush_pos_proj_su + axis_1_su * x + axis_2_su * y;
            if (!isect_point_tri_prism_v3(point_pos_su, v0_su, v1_su, v2_su)) {
              /* Sampled point is not in the triangle. */
              continue;
            }

            float3 bary_coord;
            interp_weights_tri_v3(bary_coord, v0_su, v1_su, v2_su, point_pos_su);

            r_added_points.bary_coords.append(bary_coord);
            r_added_points.looptri_indices.append(looptri_index);
            r_added_points.positions_cu.append(surface_to_curves_mat_ * point_pos_su);
          }
        }
      }
    }

    /* Remove samples when there are too many. */
    while (r_added_points.bary_coords.size() > old_amount + add_amount_) {
      const int index_to_remove = rng.get_int32(add_amount_) + old_amount;
      r_added_points.bary_coords.remove_and_reorder(index_to_remove);
      r_added_points.looptri_indices.remove_and_reorder(index_to_remove);
      r_added_points.positions_cu.remove_and_reorder(index_to_remove);
    }
  }

  void ensure_curve_roots_kdtree()
  {
    if (self_->curve_roots_kdtree_ == nullptr) {
      self_->curve_roots_kdtree_ = BLI_kdtree_3d_new(curves_->curves_num());
      for (const int curve_i : curves_->curves_range()) {
        const int root_point_i = curves_->offsets()[curve_i];
        const float3 &root_pos_cu = curves_->positions()[root_point_i];
        BLI_kdtree_3d_insert(self_->curve_roots_kdtree_, curve_i, root_pos_cu);
      }
      BLI_kdtree_3d_balance(self_->curve_roots_kdtree_);
    }
  }

  void initialize_curve_offsets_with_interpolation(const Span<NeighborsVector> neighbors_per_curve)
  {
    MutableSpan<int> new_offsets = curves_->offsets_for_write().drop_front(tot_old_curves_);

    attribute_math::DefaultMixer<int> mixer{new_offsets};
    threading::parallel_for(neighbors_per_curve.index_range(), 1024, [&](IndexRange curves_range) {
      for (const int i : curves_range) {
        if (neighbors_per_curve[i].is_empty()) {
          mixer.mix_in(i, constant_points_per_curve_, 1.0f);
        }
        else {
          for (const NeighborInfo &neighbor : neighbors_per_curve[i]) {
            const int neighbor_points_num = curves_->points_for_curve(neighbor.index).size();
            mixer.mix_in(i, neighbor_points_num, neighbor.weight);
          }
        }
      }
    });
    mixer.finalize();

    bke::curves::accumulate_counts_to_offsets(new_offsets, tot_old_points_);
  }

  void initialize_curve_offsets_without_interpolation(const int points_per_curve)
  {
    MutableSpan<int> new_offsets = curves_->offsets_for_write().drop_front(tot_old_curves_);
    int offset = tot_old_points_;
    for (const int i : new_offsets.index_range()) {
      new_offsets[i] = offset;
      offset += points_per_curve;
    }
  }

  void initialize_attributes(const AddedPoints &added_points,
                             const Span<NeighborsVector> neighbors_per_curve)
  {
    Array<float> new_lengths_cu(added_points.bary_coords.size());
    if (interpolate_length_) {
      this->interpolate_lengths(neighbors_per_curve, new_lengths_cu);
    }
    else {
      new_lengths_cu.fill(new_curve_length_);
    }

    Array<float3> new_normals_su = this->compute_normals_for_added_curves_su(added_points);
    if (!surface_uv_map_.is_empty()) {
      this->initialize_surface_attachment(added_points);
    }

    this->fill_new_selection();

    if (interpolate_shape_) {
      this->initialize_position_with_interpolation(
          added_points, neighbors_per_curve, new_normals_su, new_lengths_cu);
    }
    else {
      this->initialize_position_without_interpolation(
          added_points, new_lengths_cu, new_normals_su);
    }
  }

  /**
   * Select newly created points or curves in new curves if necessary.
   */
  void fill_new_selection()
  {
    switch (curves_id_->selection_domain) {
      case ATTR_DOMAIN_CURVE: {
        const VArray<float> selection = curves_->selection_curve_float();
        if (selection.is_single() && selection.get_internal_single() >= 1.0f) {
          return;
        }
        curves_->selection_curve_float_for_write().drop_front(tot_old_curves_).fill(1.0f);
        break;
      }
      case ATTR_DOMAIN_POINT: {
        const VArray<float> selection = curves_->selection_point_float();
        if (selection.is_single() && selection.get_internal_single() >= 1.0f) {
          return;
        }
        curves_->selection_point_float_for_write().drop_front(tot_old_points_).fill(1.0f);
        break;
      }
      default:
        BLI_assert_unreachable();
    }
  }

  Array<NeighborsVector> find_curve_neighbors(const AddedPoints &added_points)
  {
    const int tot_added_curves = added_points.bary_coords.size();
    Array<NeighborsVector> neighbors_per_curve(tot_added_curves);
    threading::parallel_for(IndexRange(tot_added_curves), 128, [&](const IndexRange range) {
      for (const int i : range) {
        const float3 root_cu = added_points.positions_cu[i];
        std::array<KDTreeNearest_3d, max_neighbors> nearest_n;
        const int found_neighbors = BLI_kdtree_3d_find_nearest_n(
            self_->curve_roots_kdtree_, root_cu, nearest_n.data(), max_neighbors);
        float tot_weight = 0.0f;
        for (const int neighbor_i : IndexRange(found_neighbors)) {
          KDTreeNearest_3d &nearest = nearest_n[neighbor_i];
          const float weight = 1.0f / std::max(nearest.dist, 0.00001f);
          tot_weight += weight;
          neighbors_per_curve[i].append({nearest.index, weight});
        }
        /* Normalize weights. */
        for (NeighborInfo &neighbor : neighbors_per_curve[i]) {
          neighbor.weight /= tot_weight;
        }
      }
    });
    return neighbors_per_curve;
  }

  void interpolate_lengths(const Span<NeighborsVector> neighbors_per_curve,
                           MutableSpan<float> r_lengths)
  {
    const Span<float3> positions_cu = curves_->positions();

    threading::parallel_for(r_lengths.index_range(), 128, [&](const IndexRange range) {
      for (const int added_curve_i : range) {
        const Span<NeighborInfo> neighbors = neighbors_per_curve[added_curve_i];
        float length_sum = 0.0f;
        for (const NeighborInfo &neighbor : neighbors) {
          const IndexRange neighbor_points = curves_->points_for_curve(neighbor.index);
          float neighbor_length = 0.0f;
          for (const int segment_i : neighbor_points.drop_back(1)) {
            const float3 &p1 = positions_cu[segment_i];
            const float3 &p2 = positions_cu[segment_i + 1];
            neighbor_length += math::distance(p1, p2);
          }
          length_sum += neighbor.weight * neighbor_length;
        }
        const float length = neighbors.is_empty() ? new_curve_length_ : length_sum;
        r_lengths[added_curve_i] = length;
      }
    });
  }

  float3 compute_point_normal_su(const int looptri_index, const float3 &bary_coord)
  {
    const MLoopTri &looptri = surface_looptris_[looptri_index];
    const int l0 = looptri.tri[0];
    const int l1 = looptri.tri[1];
    const int l2 = looptri.tri[2];

    const float3 &l0_normal_su = corner_normals_su_[l0];
    const float3 &l1_normal_su = corner_normals_su_[l1];
    const float3 &l2_normal_su = corner_normals_su_[l2];

    const float3 normal_su = math::normalize(
        attribute_math::mix3(bary_coord, l0_normal_su, l1_normal_su, l2_normal_su));
    return normal_su;
  }

  Array<float3> compute_normals_for_added_curves_su(const AddedPoints &added_points)
  {
    Array<float3> normals_su(added_points.bary_coords.size());
    threading::parallel_for(normals_su.index_range(), 256, [&](const IndexRange range) {
      for (const int i : range) {
        const int looptri_index = added_points.looptri_indices[i];
        const float3 &bary_coord = added_points.bary_coords[i];
        normals_su[i] = compute_surface_point_normal(
            surface_looptris_[looptri_index], bary_coord, corner_normals_su_);
      }
    });
    return normals_su;
  }

  void initialize_surface_attachment(const AddedPoints &added_points)
  {
    MutableSpan<float2> surface_uv_coords = curves_->surface_uv_coords_for_write();
    threading::parallel_for(
        added_points.bary_coords.index_range(), 1024, [&](const IndexRange range) {
          for (const int i : range) {
            const int curve_i = tot_old_curves_ + i;
            const MLoopTri &looptri = surface_looptris_[added_points.looptri_indices[i]];
            const float2 &uv0 = surface_uv_map_[looptri.tri[0]];
            const float2 &uv1 = surface_uv_map_[looptri.tri[1]];
            const float2 &uv2 = surface_uv_map_[looptri.tri[2]];
            const float3 &bary_coords = added_points.bary_coords[i];
            const float2 uv = attribute_math::mix3(bary_coords, uv0, uv1, uv2);
            surface_uv_coords[curve_i] = uv;
          }
        });
  }

  /**
   * Initialize new curves so that they are just a straight line in the normal direction.
   */
  void initialize_position_without_interpolation(const AddedPoints &added_points,
                                                 const Span<float> lengths_cu,
                                                 const MutableSpan<float3> normals_su)
  {
    MutableSpan<float3> positions_cu = curves_->positions_for_write();

    threading::parallel_for(
        added_points.bary_coords.index_range(), 256, [&](const IndexRange range) {
          for (const int i : range) {
            const IndexRange points = curves_->points_for_curve(tot_old_curves_ + i);
            const float3 &root_cu = added_points.positions_cu[i];
            const float length = lengths_cu[i];
            const float3 &normal_su = normals_su[i];
            const float3 normal_cu = math::normalize(surface_to_curves_normal_mat_ * normal_su);
            const float3 tip_cu = root_cu + length * normal_cu;

            initialize_straight_curve_positions(root_cu, tip_cu, positions_cu.slice(points));
          }
        });
  }

  /**
   * Use neighboring curves to determine the shape.
   */
  void initialize_position_with_interpolation(const AddedPoints &added_points,
                                              const Span<NeighborsVector> neighbors_per_curve,
                                              const Span<float3> new_normals_su,
                                              const Span<float> new_lengths_cu)
  {
    MutableSpan<float3> positions_cu = curves_->positions_for_write();

    threading::parallel_for(
        added_points.bary_coords.index_range(), 256, [&](const IndexRange range) {
          for (const int i : range) {
            const Span<NeighborInfo> neighbors = neighbors_per_curve[i];
            const IndexRange points = curves_->points_for_curve(tot_old_curves_ + i);

            const float length_cu = new_lengths_cu[i];
            const float3 &normal_su = new_normals_su[i];
            const float3 normal_cu = math::normalize(surface_to_curves_normal_mat_ * normal_su);

            const float3 &root_cu = added_points.positions_cu[i];

            if (neighbors.is_empty()) {
              /* If there are no neighbors, just make a straight line. */
              const float3 tip_cu = root_cu + length_cu * normal_cu;
              initialize_straight_curve_positions(root_cu, tip_cu, positions_cu.slice(points));
              continue;
            }

            positions_cu.slice(points).fill(root_cu);

            for (const NeighborInfo &neighbor : neighbors) {
              const int neighbor_curve_i = neighbor.index;
              const float3 &neighbor_first_pos_cu =
                  positions_cu[curves_->offsets()[neighbor_curve_i]];
              const float3 neighbor_first_pos_su = curves_to_surface_mat_ * neighbor_first_pos_cu;

              BVHTreeNearest nearest;
              nearest.dist_sq = FLT_MAX;
              BLI_bvhtree_find_nearest(surface_bvh_.tree,
                                       neighbor_first_pos_su,
                                       &nearest,
                                       surface_bvh_.nearest_callback,
                                       &surface_bvh_);
              const int neighbor_looptri_index = nearest.index;
              const MLoopTri &neighbor_looptri = surface_looptris_[neighbor_looptri_index];

              const float3 neighbor_bary_coord = compute_bary_coord_in_triangle(
                  *surface_, neighbor_looptri, nearest.co);

              const float3 neighbor_normal_su = compute_surface_point_normal(
                  surface_looptris_[neighbor_looptri_index],
                  neighbor_bary_coord,
                  corner_normals_su_);
              const float3 neighbor_normal_cu = math::normalize(surface_to_curves_normal_mat_ *
                                                                neighbor_normal_su);

              /* The rotation matrix used to transform relative coordinates of the neighbor curve
               * to the new curve. */
              float normal_rotation_cu[3][3];
              rotation_between_vecs_to_mat3(normal_rotation_cu, neighbor_normal_cu, normal_cu);

              const IndexRange neighbor_points = curves_->points_for_curve(neighbor_curve_i);
              const float3 &neighbor_root_cu = positions_cu[neighbor_points[0]];

              /* Use a temporary #PolySpline, because that's the easiest way to resample an
               * existing curve right now. Resampling is necessary if the length of the new curve
               * does not match the length of the neighbors or the number of handle points is
               * different. */
              PolySpline neighbor_spline;
              neighbor_spline.resize(neighbor_points.size());
              neighbor_spline.positions().copy_from(positions_cu.slice(neighbor_points));
              neighbor_spline.mark_cache_invalid();

              const float neighbor_length_cu = neighbor_spline.length();
              const float length_factor = std::min(1.0f, length_cu / neighbor_length_cu);

              const float resample_factor = (1.0f / (points.size() - 1.0f)) * length_factor;
              for (const int j : IndexRange(points.size())) {
                const Spline::LookupResult lookup = neighbor_spline.lookup_evaluated_factor(
                    j * resample_factor);
                const float index_factor = lookup.evaluated_index + lookup.factor;
                float3 p;
                neighbor_spline.sample_with_index_factors<float3>(
                    neighbor_spline.positions(), {&index_factor, 1}, {&p, 1});
                const float3 relative_coord = p - neighbor_root_cu;
                float3 rotated_relative_coord = relative_coord;
                mul_m3_v3(normal_rotation_cu, rotated_relative_coord);
                positions_cu[points[j]] += neighbor.weight * rotated_relative_coord;
              }
            }
          }
        });
  }
};

void AddOperation::on_stroke_extended(const bContext &C, const StrokeExtension &stroke_extension)
{
  AddOperationExecutor executor{C};
  executor.execute(*this, C, stroke_extension);
}

std::unique_ptr<CurvesSculptStrokeOperation> new_add_operation(const bContext &C,
                                                               ReportList *reports)
{
  const Object &ob_active = *CTX_data_active_object(&C);
  BLI_assert(ob_active.type == OB_CURVES);
  const Curves &curves_id = *static_cast<Curves *>(ob_active.data);
  if (curves_id.surface == nullptr || curves_id.surface->type != OB_MESH) {
    BKE_report(reports, RPT_WARNING, "Can not use Add brush when there is no surface mesh");
    return {};
  }

  return std::make_unique<AddOperation>();
}

}  // namespace blender::ed::sculpt_paint