Welcome to mirror list, hosted at ThFree Co, Russian Federation.

curves_sculpt_ops.cc « sculpt_paint « editors « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 893b2640427eb09ab81095b524b75176d08c285e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "BLI_utildefines.h"

#include "BKE_attribute_math.hh"
#include "BKE_brush.h"
#include "BKE_bvhutils.h"
#include "BKE_context.h"
#include "BKE_curves.hh"
#include "BKE_geometry_set.hh"
#include "BKE_lib_id.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_paint.h"
#include "BKE_spline.hh"

#include "WM_api.h"
#include "WM_toolsystem.h"

#include "ED_curves_sculpt.h"
#include "ED_object.h"
#include "ED_screen.h"
#include "ED_view3d.h"

#include "DEG_depsgraph.h"

#include "DNA_brush_types.h"
#include "DNA_curves_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_screen_types.h"

#include "RNA_access.h"

#include "BLI_index_mask_ops.hh"
#include "BLI_kdtree.h"
#include "BLI_math_vector.hh"
#include "BLI_rand.hh"

#include "PIL_time.h"

#include "curves_sculpt_intern.h"
#include "curves_sculpt_intern.hh"
#include "paint_intern.h"

/* -------------------------------------------------------------------- */
/** \name Poll Functions
 * \{ */

bool CURVES_SCULPT_mode_poll(bContext *C)
{
  Object *ob = CTX_data_active_object(C);
  return ob && ob->mode & OB_MODE_SCULPT_CURVES;
}

bool CURVES_SCULPT_mode_poll_view3d(bContext *C)
{
  if (!CURVES_SCULPT_mode_poll(C)) {
    return false;
  }
  if (CTX_wm_region_view3d(C) == nullptr) {
    return false;
  }
  return true;
}

/** \} */

namespace blender::ed::sculpt_paint {

using blender::bke::CurvesGeometry;

/* -------------------------------------------------------------------- */
/** \name * SCULPT_CURVES_OT_brush_stroke
 * \{ */

class DensityAddOperation : public CurvesSculptStrokeOperation {
 private:
  /** Contains the root points of the curves that existed before this operation started. */
  KDTree_3d *old_kdtree_ = nullptr;
  /** Number of points in the kdtree above. */
  int old_kdtree_size_ = 0;

  /**
   * Indicates that the corresponding curve has already been created and can't be changed by this
   * operation anymore.
   */
  static constexpr int ExistsAlreadyIndex = INT32_MAX;

  struct NewPointsData {
    Vector<float3> bary_coords;
    Vector<int> looptri_indices;
    Vector<float3> positions;
    Vector<float3> normals;
  };

 public:
  ~DensityAddOperation() override
  {
    if (old_kdtree_ != nullptr) {
      BLI_kdtree_3d_free(old_kdtree_);
    }
  }

  void on_stroke_extended(bContext *C, const StrokeExtension &stroke_extension) override
  {
    Depsgraph &depsgraph = *CTX_data_depsgraph_pointer(C);
    Scene &scene = *CTX_data_scene(C);
    Object &object = *CTX_data_active_object(C);
    ARegion *region = CTX_wm_region(C);
    View3D *v3d = CTX_wm_view3d(C);

    Curves &curves_id = *static_cast<Curves *>(object.data);
    CurvesGeometry &curves = CurvesGeometry::wrap(curves_id.geometry);

    if (curves_id.surface == nullptr || curves_id.surface->type != OB_MESH) {
      return;
    }

    const Object &surface_ob = *curves_id.surface;
    const Mesh &surface = *static_cast<const Mesh *>(surface_ob.data);
    const float4x4 surface_ob_mat = surface_ob.obmat;
    const float4x4 surface_ob_imat = surface_ob_mat.inverted();

    ToolSettings &tool_settings = *scene.toolsettings;
    CurvesSculpt &curves_sculpt = *tool_settings.curves_sculpt;
    Brush &brush = *BKE_paint_brush(&curves_sculpt.paint);
    const float brush_radius_screen = BKE_brush_size_get(&scene, &brush);
    const float strength = BKE_brush_alpha_get(&scene, &brush);
    const float minimum_distance = curves_sculpt.distance;

    /* This is the main ray that is used to determine the brush position in 3D space. */
    float3 ray_start, ray_end;
    ED_view3d_win_to_segment_clipped(
        &depsgraph, region, v3d, stroke_extension.mouse_position, ray_start, ray_end, true);
    ray_start = surface_ob_imat * ray_start;
    ray_end = surface_ob_imat * ray_end;
    const float3 ray_direction = math::normalize(ray_end - ray_start);

    /* This ray is used to determine the brush radius in 3d space. */
    float3 offset_ray_start, offset_ray_end;
    ED_view3d_win_to_segment_clipped(&depsgraph,
                                     region,
                                     v3d,
                                     stroke_extension.mouse_position +
                                         float2(0, brush_radius_screen),
                                     offset_ray_start,
                                     offset_ray_end,
                                     true);
    offset_ray_start = surface_ob_imat * offset_ray_start;
    offset_ray_end = surface_ob_imat * offset_ray_end;

    float4x4 ob_imat;
    invert_m4_m4(ob_imat.values, object.obmat);

    const float4x4 transform = ob_imat * surface_ob_mat;

    BVHTreeFromMesh bvhtree;
    BKE_bvhtree_from_mesh_get(&bvhtree, &surface, BVHTREE_FROM_LOOPTRI, 2);

    /* Do a raycast against the surface object to find the brush position. */
    BVHTreeRayHit ray_hit;
    ray_hit.dist = FLT_MAX;
    ray_hit.index = -1;
    BLI_bvhtree_ray_cast(bvhtree.tree,
                         ray_start,
                         ray_direction,
                         0.0f,
                         &ray_hit,
                         bvhtree.raycast_callback,
                         &bvhtree);

    if (ray_hit.index == -1) {
      /* The ray did not hit the surface. */
      free_bvhtree_from_mesh(&bvhtree);
      return;
    }
    /* Brush position in the space of the surface object. */
    const float3 brush_pos_3d_surface = ray_hit.co;
    const float brush_radius_3d_surface = dist_to_line_v3(
        brush_pos_3d_surface, offset_ray_start, offset_ray_end);

    /* Brush position in the space of the curves object. */
    const float3 brush_pos_3d_curves = transform * brush_pos_3d_surface;
    const float brush_radius_3d_curves = dist_to_line_v3(
        brush_pos_3d_curves, transform * offset_ray_start, transform * offset_ray_end);

    Vector<int> looptri_indices = this->find_looptri_indices_to_consider(
        bvhtree, brush_pos_3d_surface, brush_radius_3d_surface);

    free_bvhtree_from_mesh(&bvhtree);

    if (old_kdtree_ == nullptr && minimum_distance > 0.0f) {
      old_kdtree_ = this->kdtree_from_curve_roots_and_positions(curves, curves.curves_range(), {});
      old_kdtree_size_ = curves.curves_num();
    }

    float density;
    if (minimum_distance > 0.0f) {
      /* Estimate the sampling density based on the target minimum distance. */
      density = strength * pow2f(1.0f / minimum_distance);
    }
    else {
      /* Sample a somewhat constant amount of points based on the strength. */
      const float brush_circle_area_3d = M_PI * pow2f(brush_radius_3d_curves);
      density = strength * 100.0f / brush_circle_area_3d;
    }

    NewPointsData new_points = this->sample_new_points(density,
                                                       minimum_distance,
                                                       brush_radius_3d_curves,
                                                       brush_pos_3d_curves,
                                                       looptri_indices,
                                                       transform,
                                                       surface);
    if (minimum_distance > 0.0f) {
      this->eliminate_too_close_points(new_points, curves, minimum_distance);
    }
    this->insert_new_curves(new_points, curves);

    DEG_id_tag_update(&curves_id.id, ID_RECALC_GEOMETRY);
    ED_region_tag_redraw(region);
  }

 private:
  Vector<int> find_looptri_indices_to_consider(BVHTreeFromMesh &bvhtree,
                                               const float3 &brush_pos,
                                               const float brush_radius_3d)
  {
    Vector<int> looptri_indices;

    struct RangeQueryUserData {
      Vector<int> &indices;
    } range_query_user_data = {looptri_indices};

    BLI_bvhtree_range_query(
        bvhtree.tree,
        brush_pos,
        brush_radius_3d,
        [](void *userdata, int index, const float co[3], float dist_sq) {
          UNUSED_VARS(co, dist_sq);
          RangeQueryUserData &data = *static_cast<RangeQueryUserData *>(userdata);
          data.indices.append(index);
        },
        &range_query_user_data);

    return looptri_indices;
  }

  KDTree_3d *kdtree_from_curve_roots_and_positions(const CurvesGeometry &curves,
                                                   const IndexRange curves_range,
                                                   Span<float3> extra_positions)
  {
    const int tot_points = curves_range.size() + extra_positions.size();
    KDTree_3d *kdtree = BLI_kdtree_3d_new(tot_points);
    for (const int curve_i : curves_range) {
      const int first_point_i = curves.offsets()[curve_i];
      const float3 root_position = curves.positions()[first_point_i];
      BLI_kdtree_3d_insert(kdtree, ExistsAlreadyIndex, root_position);
    }
    for (const int i : extra_positions.index_range()) {
      BLI_kdtree_3d_insert(kdtree, i, extra_positions[i]);
    }
    BLI_kdtree_3d_balance(kdtree);
    return kdtree;
  }

  bool is_too_close_to_existing_point(const float3 position, const float minimum_distance) const
  {
    if (old_kdtree_ == nullptr) {
      return false;
    }
    KDTreeNearest_3d nearest;
    nearest.index = -1;
    BLI_kdtree_3d_find_nearest(old_kdtree_, position, &nearest);
    if (nearest.index >= 0 && nearest.dist < minimum_distance) {
      return true;
    }
    return false;
  }

  NewPointsData sample_new_points(const float density,
                                  const float minimum_distance,
                                  const float brush_radius_3d,
                                  const float3 &brush_pos,
                                  const Span<int> looptri_indices,
                                  const float4x4 &transform,
                                  const Mesh &surface)
  {
    const float brush_radius_3d_sq = brush_radius_3d * brush_radius_3d;
    const float area_threshold = M_PI * brush_radius_3d_sq;

    const Span<MLoopTri> looptris{BKE_mesh_runtime_looptri_ensure(&surface),
                                  BKE_mesh_runtime_looptri_len(&surface)};

    threading::EnumerableThreadSpecific<NewPointsData> new_points_per_thread;

    const double time = PIL_check_seconds_timer();
    const uint64_t time_as_int = *reinterpret_cast<const uint64_t *>(&time);
    const uint32_t rng_base_seed = time_as_int ^ (time_as_int >> 32);

    RandomNumberGenerator rng{rng_base_seed};

    threading::parallel_for(looptri_indices.index_range(), 512, [&](const IndexRange range) {
      RandomNumberGenerator looptri_rng{rng_base_seed + (uint32_t)range.start()};

      for (const int looptri_index : looptri_indices.slice(range)) {
        const MLoopTri &looptri = looptris[looptri_index];
        const float3 &v0 = transform * float3(surface.mvert[surface.mloop[looptri.tri[0]].v].co);
        const float3 &v1 = transform * float3(surface.mvert[surface.mloop[looptri.tri[1]].v].co);
        const float3 &v2 = transform * float3(surface.mvert[surface.mloop[looptri.tri[2]].v].co);
        const float looptri_area = area_tri_v3(v0, v1, v2);

        float3 normal;
        normal_tri_v3(normal, v0, v1, v2);

        /* Use a different sampling strategy depending on whether the triangle is large or small
         * compared to the brush size. When the triangle is small, points are distributed within
         * the triangle directly. If the triangle is larger than the brush, distribute new points
         * in a circle on the triangle plane. */
        if (looptri_area < area_threshold) {
          const int amount = looptri_rng.round_probabilistic(looptri_area * density);

          threading::parallel_for(IndexRange(amount), 512, [&](const IndexRange amount_range) {
            RandomNumberGenerator point_rng{rng_base_seed + looptri_index * 1000 +
                                            (uint32_t)amount_range.start()};
            NewPointsData &new_points = new_points_per_thread.local();

            for ([[maybe_unused]] const int i : amount_range) {
              const float3 bary_coord = point_rng.get_barycentric_coordinates();
              const float3 point_pos = attribute_math::mix3(bary_coord, v0, v1, v2);

              if (math::distance(point_pos, brush_pos) > brush_radius_3d) {
                continue;
              }
              if (minimum_distance > 0.0f &&
                  this->is_too_close_to_existing_point(point_pos, minimum_distance)) {
                continue;
              }

              new_points.bary_coords.append(bary_coord);
              new_points.looptri_indices.append(looptri_index);
              new_points.positions.append(point_pos);
              new_points.normals.append(normal);
            }
          });
        }
        else {
          float3 hit_pos_proj = brush_pos;
          project_v3_plane(hit_pos_proj, normal, v0);
          const float proj_distance_sq = math::distance_squared(hit_pos_proj, brush_pos);
          const float brush_radius_factor_sq = 1.0f -
                                               std::min(1.0f,
                                                        proj_distance_sq / brush_radius_3d_sq);
          const float radius_proj_sq = brush_radius_3d_sq * brush_radius_factor_sq;
          const float radius_proj = std::sqrt(radius_proj_sq);
          const float circle_area = M_PI * radius_proj_sq;

          const int amount = rng.round_probabilistic(circle_area * density);

          const float3 axis_1 = math::normalize(v1 - v0) * radius_proj;
          const float3 axis_2 = math::normalize(
                                    math::cross(axis_1, math::cross(axis_1, v2 - v0))) *
                                radius_proj;

          threading::parallel_for(IndexRange(amount), 512, [&](const IndexRange amount_range) {
            RandomNumberGenerator point_rng{rng_base_seed + looptri_index * 1000 +
                                            (uint32_t)amount_range.start()};
            NewPointsData &new_points = new_points_per_thread.local();

            for ([[maybe_unused]] const int i : amount_range) {
              const float r = std::sqrt(rng.get_float());
              const float angle = rng.get_float() * 2 * M_PI;
              const float x = r * std::cos(angle);
              const float y = r * std::sin(angle);

              const float3 point_pos = hit_pos_proj + axis_1 * x + axis_2 * y;

              if (!isect_point_tri_prism_v3(point_pos, v0, v1, v2)) {
                continue;
              }
              if (minimum_distance > 0.0f &&
                  this->is_too_close_to_existing_point(point_pos, minimum_distance)) {
                continue;
              }

              float3 bary_coord;
              interp_weights_tri_v3(bary_coord, v0, v1, v2, point_pos);

              new_points.bary_coords.append(bary_coord);
              new_points.looptri_indices.append(looptri_index);
              new_points.positions.append(point_pos);
              new_points.normals.append(normal);
            }
          });
        }
      }
    });

    NewPointsData new_points;
    for (const NewPointsData &local_new_points : new_points_per_thread) {
      new_points.bary_coords.extend(local_new_points.bary_coords);
      new_points.looptri_indices.extend(local_new_points.looptri_indices);
      new_points.positions.extend(local_new_points.positions);
      new_points.normals.extend(local_new_points.normals);
    }
    return new_points;
  }

  void eliminate_too_close_points(NewPointsData &points,
                                  const CurvesGeometry &curves,
                                  const float minimum_distance)
  {
    Array<bool> elimination_mask(points.positions.size(), false);

    const int curves_added_previously = curves.curves_num() - old_kdtree_size_;
    KDTree_3d *new_points_kdtree = this->kdtree_from_curve_roots_and_positions(
        curves, IndexRange(old_kdtree_size_, curves_added_previously), points.positions);

    Array<Vector<int>> points_in_range(points.positions.size());
    threading::parallel_for(points.positions.index_range(), 256, [&](const IndexRange range) {
      for (const int point_i : range) {
        const float3 query_position = points.positions[point_i];

        struct CallbackData {
          int point_i;
          Vector<int> &found_indices;
          MutableSpan<bool> elimination_mask;
        } callback_data = {point_i, points_in_range[point_i], elimination_mask};

        BLI_kdtree_3d_range_search_cb(
            new_points_kdtree,
            query_position,
            minimum_distance,
            [](void *user_data, int index, const float *UNUSED(co), float UNUSED(dist_sq)) {
              CallbackData &data = *static_cast<CallbackData *>(user_data);
              if (index == data.point_i) {
                /* Ignore self. */
                return true;
              }
              if (index == ExistsAlreadyIndex) {
                /* An already existing point is too close, so this new point will be eliminated. */
                data.elimination_mask[data.point_i] = true;
                return false;
              }
              data.found_indices.append(index);
              return true;
            },
            &callback_data);
      }
    });

    for (const int point_i : points.positions.index_range()) {
      if (elimination_mask[point_i]) {
        /* Point is eliminated already. */
        continue;
      }

      for (const int other_point_i : points_in_range[point_i]) {
        elimination_mask[other_point_i] = true;
      }
    }

    BLI_kdtree_3d_free(new_points_kdtree);
    for (int i = points.positions.size() - 1; i >= 0; i--) {
      if (elimination_mask[i]) {
        points.positions.remove_and_reorder(i);
        points.bary_coords.remove_and_reorder(i);
        points.looptri_indices.remove_and_reorder(i);
        points.normals.remove_and_reorder(i);
      }
    }
  }

  void insert_new_curves(const NewPointsData &new_points, CurvesGeometry &curves)
  {
    const int tot_new_curves = new_points.positions.size();

    const int points_per_curve = 8;
    curves.resize(curves.points_num() + tot_new_curves * points_per_curve,
                  curves.curves_num() + tot_new_curves);

    MutableSpan<int> offsets = curves.offsets();
    MutableSpan<float3> positions = curves.positions();

    for (const int i : IndexRange(tot_new_curves)) {
      const int curve_i = curves.curves_num() - tot_new_curves + i;
      const int first_point_i = offsets[curve_i];
      offsets[curve_i + 1] = offsets[curve_i] + points_per_curve;

      const float3 root = new_points.positions[i];
      const float3 tip = root + 0.1f * new_points.normals[i];

      for (const int j : IndexRange(points_per_curve)) {
        positions[first_point_i + j] = math::interpolate(
            root, tip, j / (float)(points_per_curve - 1));
      }
    }
  }
};

static std::unique_ptr<CurvesSculptStrokeOperation> start_brush_operation(bContext *C,
                                                                          wmOperator *op)
{
  const BrushStrokeMode mode = static_cast<BrushStrokeMode>(RNA_enum_get(op->ptr, "mode"));

  Scene &scene = *CTX_data_scene(C);
  CurvesSculpt &curves_sculpt = *scene.toolsettings->curves_sculpt;
  Brush &brush = *BKE_paint_brush(&curves_sculpt.paint);
  switch (brush.curves_sculpt_tool) {
    case CURVES_SCULPT_TOOL_COMB:
      return new_comb_operation();
    case CURVES_SCULPT_TOOL_DELETE:
      return new_delete_operation();
    case CURVES_SCULPT_TOOL_SNAKE_HOOK:
      return new_snake_hook_operation();
    case CURVES_SCULPT_TOOL_ADD:
      return new_add_operation();
    case CURVES_SCULPT_TOOL_GROW_SHRINK:
      return new_grow_shrink_operation(mode, C);
    case CURVES_SCULPT_TOOL_TEST1:
      return std::make_unique<DensityAddOperation>();
  }
  BLI_assert_unreachable();
  return {};
}

struct SculptCurvesBrushStrokeData {
  std::unique_ptr<CurvesSculptStrokeOperation> operation;
  PaintStroke *stroke;
};

static bool stroke_get_location(bContext *C, float out[3], const float mouse[2])
{
  out[0] = mouse[0];
  out[1] = mouse[1];
  out[2] = 0;
  UNUSED_VARS(C);
  return true;
}

static bool stroke_test_start(bContext *C, struct wmOperator *op, const float mouse[2])
{
  UNUSED_VARS(C, op, mouse);
  return true;
}

static void stroke_update_step(bContext *C,
                               wmOperator *op,
                               PaintStroke *UNUSED(stroke),
                               PointerRNA *stroke_element)
{
  SculptCurvesBrushStrokeData *op_data = static_cast<SculptCurvesBrushStrokeData *>(
      op->customdata);

  StrokeExtension stroke_extension;
  RNA_float_get_array(stroke_element, "mouse", stroke_extension.mouse_position);

  if (!op_data->operation) {
    stroke_extension.is_first = true;
    op_data->operation = start_brush_operation(C, op);
  }
  else {
    stroke_extension.is_first = false;
  }

  if (op_data->operation) {
    op_data->operation->on_stroke_extended(C, stroke_extension);
  }
}

static void stroke_done(const bContext *C, PaintStroke *stroke)
{
  UNUSED_VARS(C, stroke);
}

static int sculpt_curves_stroke_invoke(bContext *C, wmOperator *op, const wmEvent *event)
{
  SculptCurvesBrushStrokeData *op_data = MEM_new<SculptCurvesBrushStrokeData>(__func__);
  op_data->stroke = paint_stroke_new(C,
                                     op,
                                     stroke_get_location,
                                     stroke_test_start,
                                     stroke_update_step,
                                     nullptr,
                                     stroke_done,
                                     event->type);
  op->customdata = op_data;

  int return_value = op->type->modal(C, op, event);
  if (return_value == OPERATOR_FINISHED) {
    paint_stroke_free(C, op, op_data->stroke);
    MEM_delete(op_data);
    return OPERATOR_FINISHED;
  }

  WM_event_add_modal_handler(C, op);
  return OPERATOR_RUNNING_MODAL;
}

static int sculpt_curves_stroke_modal(bContext *C, wmOperator *op, const wmEvent *event)
{
  SculptCurvesBrushStrokeData *op_data = static_cast<SculptCurvesBrushStrokeData *>(
      op->customdata);
  int return_value = paint_stroke_modal(C, op, event, &op_data->stroke);
  if (ELEM(return_value, OPERATOR_FINISHED, OPERATOR_CANCELLED)) {
    MEM_delete(op_data);
  }
  return return_value;
}

static void sculpt_curves_stroke_cancel(bContext *C, wmOperator *op)
{
  SculptCurvesBrushStrokeData *op_data = static_cast<SculptCurvesBrushStrokeData *>(
      op->customdata);
  paint_stroke_cancel(C, op, op_data->stroke);
  MEM_delete(op_data);
}

static void SCULPT_CURVES_OT_brush_stroke(struct wmOperatorType *ot)
{
  ot->name = "Stroke Curves Sculpt";
  ot->idname = "SCULPT_CURVES_OT_brush_stroke";
  ot->description = "Sculpt curves using a brush";

  ot->invoke = sculpt_curves_stroke_invoke;
  ot->modal = sculpt_curves_stroke_modal;
  ot->cancel = sculpt_curves_stroke_cancel;

  ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO;

  paint_stroke_operator_properties(ot);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name * CURVES_OT_sculptmode_toggle
 * \{ */

static bool curves_sculptmode_toggle_poll(bContext *C)
{
  Object *ob = CTX_data_active_object(C);
  if (ob == nullptr) {
    return false;
  }
  if (ob->type != OB_CURVES) {
    return false;
  }
  return true;
}

static void curves_sculptmode_enter(bContext *C)
{
  Scene *scene = CTX_data_scene(C);
  Object *ob = CTX_data_active_object(C);
  BKE_paint_ensure(scene->toolsettings, (Paint **)&scene->toolsettings->curves_sculpt);
  CurvesSculpt *curves_sculpt = scene->toolsettings->curves_sculpt;

  ob->mode = OB_MODE_SCULPT_CURVES;

  paint_cursor_start(&curves_sculpt->paint, CURVES_SCULPT_mode_poll_view3d);
}

static void curves_sculptmode_exit(bContext *C)
{
  Object *ob = CTX_data_active_object(C);
  ob->mode = OB_MODE_OBJECT;
}

static int curves_sculptmode_toggle_exec(bContext *C, wmOperator *op)
{
  Object *ob = CTX_data_active_object(C);
  const bool is_mode_set = ob->mode == OB_MODE_SCULPT_CURVES;

  if (is_mode_set) {
    if (!ED_object_mode_compat_set(C, ob, OB_MODE_SCULPT_CURVES, op->reports)) {
      return OPERATOR_CANCELLED;
    }
  }

  if (is_mode_set) {
    curves_sculptmode_exit(C);
  }
  else {
    curves_sculptmode_enter(C);
  }

  WM_toolsystem_update_from_context_view3d(C);
  WM_event_add_notifier(C, NC_SCENE | ND_MODE, nullptr);
  return OPERATOR_FINISHED;
}

static void CURVES_OT_sculptmode_toggle(wmOperatorType *ot)
{
  ot->name = "Curve Sculpt Mode Toggle";
  ot->idname = "CURVES_OT_sculptmode_toggle";
  ot->description = "Enter/Exit sculpt mode for curves";

  ot->exec = curves_sculptmode_toggle_exec;
  ot->poll = curves_sculptmode_toggle_poll;

  ot->flag = OPTYPE_UNDO | OPTYPE_REGISTER;
}

/** \} */

}  // namespace blender::ed::sculpt_paint

/* -------------------------------------------------------------------- */
/** \name * Registration
 * \{ */

void ED_operatortypes_sculpt_curves()
{
  using namespace blender::ed::sculpt_paint;
  WM_operatortype_append(SCULPT_CURVES_OT_brush_stroke);
  WM_operatortype_append(CURVES_OT_sculptmode_toggle);
}

/** \} */