Welcome to mirror list, hosted at ThFree Co, Russian Federation.

sculpt_automasking.cc « sculpt_paint « editors « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: cb59b591e5c36c002382109eed606297224839a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2020 Blender Foundation. All rights reserved. */

/** \file
 * \ingroup edsculpt
 */

#include "MEM_guardedalloc.h"

#include "BLI_array.hh"
#include "BLI_blenlib.h"
#include "BLI_hash.h"
#include "BLI_index_range.hh"
#include "BLI_math.h"
#include "BLI_math_vec_types.hh"
#include "BLI_set.hh"
#include "BLI_task.h"
#include "BLI_vector.hh"

#include "DNA_brush_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"

#include "BKE_brush.h"
#include "BKE_colortools.h"
#include "BKE_context.h"
#include "BKE_mesh.h"
#include "BKE_mesh_mapping.h"
#include "BKE_object.h"
#include "BKE_paint.h"
#include "BKE_pbvh.h"
#include "BKE_scene.h"

#include "DEG_depsgraph.h"

#include "WM_api.h"
#include "WM_message.h"
#include "WM_toolsystem.h"
#include "WM_types.h"

#include "ED_object.h"
#include "ED_screen.h"
#include "ED_sculpt.h"
#include "paint_intern.h"
#include "sculpt_intern.h"

#include "RNA_access.h"
#include "RNA_define.h"

#include "bmesh.h"

#include <cmath>
#include <cstdlib>

using blender::float3;
using blender::IndexRange;
using blender::Set;
using blender::Vector;

AutomaskingCache *SCULPT_automasking_active_cache_get(SculptSession *ss)
{
  if (ss->cache) {
    return ss->cache->automasking;
  }
  if (ss->filter_cache) {
    return ss->filter_cache->automasking;
  }
  return nullptr;
}

bool SCULPT_is_automasking_mode_enabled(const Sculpt *sd,
                                        const Brush *br,
                                        const eAutomasking_flag mode)
{
  int automasking = sd->automasking_flags;

  if (br) {
    automasking |= br->automasking_flags;
  }

  return (eAutomasking_flag)automasking & mode;
}

bool SCULPT_is_automasking_enabled(const Sculpt *sd, const SculptSession *ss, const Brush *br)
{
  if (br && SCULPT_stroke_is_dynamic_topology(ss, br)) {
    return false;
  }
  if (SCULPT_is_automasking_mode_enabled(sd, br, BRUSH_AUTOMASKING_TOPOLOGY)) {
    return true;
  }
  if (SCULPT_is_automasking_mode_enabled(sd, br, BRUSH_AUTOMASKING_FACE_SETS)) {
    return true;
  }
  if (SCULPT_is_automasking_mode_enabled(sd, br, BRUSH_AUTOMASKING_BOUNDARY_EDGES)) {
    return true;
  }
  if (SCULPT_is_automasking_mode_enabled(sd, br, BRUSH_AUTOMASKING_BOUNDARY_FACE_SETS)) {
    return true;
  }
  if (SCULPT_is_automasking_mode_enabled(sd, br, BRUSH_AUTOMASKING_CAVITY_ALL)) {
    return true;
  }

  return false;
}

static int sculpt_automasking_mode_effective_bits(const Sculpt *sculpt, const Brush *brush)
{
  if (brush) {
    int flags = sculpt->automasking_flags | brush->automasking_flags;

    /* Check if we are using brush cavity settings. */
    if (brush->automasking_flags & BRUSH_AUTOMASKING_CAVITY_ALL) {
      flags &= ~(BRUSH_AUTOMASKING_CAVITY_ALL | BRUSH_AUTOMASKING_CAVITY_USE_CURVE |
                 BRUSH_AUTOMASKING_CAVITY_NORMAL);
      flags |= brush->automasking_flags;
    }
    else if (sculpt->automasking_flags & BRUSH_AUTOMASKING_CAVITY_ALL) {
      flags &= ~(BRUSH_AUTOMASKING_CAVITY_ALL | BRUSH_AUTOMASKING_CAVITY_USE_CURVE |
                 BRUSH_AUTOMASKING_CAVITY_NORMAL);
      flags |= sculpt->automasking_flags;
    }

    return flags;
  }
  return sculpt->automasking_flags;
}

static bool SCULPT_automasking_needs_factors_cache(const Sculpt *sd, const Brush *brush)
{

  const int automasking_flags = sculpt_automasking_mode_effective_bits(sd, brush);
  if (automasking_flags & BRUSH_AUTOMASKING_TOPOLOGY) {
    return true;
  }
  if (automasking_flags &
      (BRUSH_AUTOMASKING_BOUNDARY_FACE_SETS | BRUSH_AUTOMASKING_BOUNDARY_EDGES)) {
    return brush && brush->automasking_boundary_edges_propagation_steps != 1;
  }
  return false;
}

static float sculpt_cavity_calc_factor(AutomaskingCache *automasking, float factor)
{
  float sign = signf(factor);

  factor = fabsf(factor) * automasking->settings.cavity_factor * 50.0f;

  factor = factor * sign * 0.5f + 0.5f;
  CLAMP(factor, 0.0f, 1.0f);

  return (automasking->settings.flags & BRUSH_AUTOMASKING_CAVITY_INVERTED) ? 1.0f - factor :
                                                                             factor;
}

struct CavityBlurVert {
  PBVHVertRef vertex;
  float dist;
  int depth;

  CavityBlurVert(PBVHVertRef vertex_, float dist_, int depth_)
      : vertex(vertex_), dist(dist_), depth(depth_)
  {
  }

  CavityBlurVert()
  {
  }

  CavityBlurVert(const CavityBlurVert &b)
  {
    vertex = b.vertex;
    dist = b.dist;
    depth = b.depth;
  }
};

static void sculpt_calc_blurred_cavity(SculptSession *ss,
                                       AutomaskingCache *automasking,
                                       int steps,
                                       PBVHVertRef vertex)
{
  float3 sno1(0.0f);
  float3 sno2(0.0f);
  float3 sco1(0.0f);
  float3 sco2(0.0f);
  float len1_sum = 0.0f, len2_sum = 0.0f;
  int sco1_len = 0, sco2_len = 0;

  /* Steps starts at 1, but API and user interface
   * are zero-based.
   */
  steps++;

  Vector<CavityBlurVert, 64> queue;
  Set<int64_t, 64> visit;

  int start = 0, end = 0;

  queue.resize(64);

  CavityBlurVert initial(vertex, 0.0f, 0);

  visit.add_new(vertex.i);
  queue[0] = initial;
  end = 1;

  const float *co1 = SCULPT_vertex_co_get(ss, vertex);

  while (start != end) {
    CavityBlurVert &blurvert = queue[start];
    PBVHVertRef v = blurvert.vertex;
    start = (start + 1) % queue.size();

    float3 no;

    const float *co = SCULPT_vertex_co_get(ss, v);
    SCULPT_vertex_normal_get(ss, v, no);

    float centdist = len_v3v3(co, co1);

    sco1 += co;
    sno1 += no;
    len1_sum += centdist;
    sco1_len++;

    if (blurvert.depth < steps) {
      sco2 += co;
      sno2 += no;
      len2_sum += centdist;
      sco2_len++;
    }

    if (blurvert.depth >= steps) {
      continue;
    }

    SculptVertexNeighborIter ni;
    SCULPT_VERTEX_NEIGHBORS_ITER_BEGIN (ss, v, ni) {
      PBVHVertRef v2 = ni.vertex;

      if (visit.contains(v2.i)) {
        continue;
      }

      float dist = len_v3v3(SCULPT_vertex_co_get(ss, v2), SCULPT_vertex_co_get(ss, v));

      visit.add_new(v2.i);
      CavityBlurVert blurvert2(v2, dist, blurvert.depth + 1);

      int nextend = (end + 1) % queue.size();

      if (nextend == start) {
        int oldsize = queue.size();

        queue.resize(queue.size() << 1);

        if (end < start) {
          int n = oldsize - start;

          for (int i = 0; i < n; i++) {
            queue[queue.size() - n + i] = queue[i + start];
          }

          start = queue.size() - n;
        }
      }

      queue[end] = blurvert2;
      end = (end + 1) % queue.size();
    }
    SCULPT_VERTEX_NEIGHBORS_ITER_END(ni);
  }

  BLI_assert(sco1_len != sco2_len);

  if (!sco1_len) {
    sco1 = SCULPT_vertex_co_get(ss, vertex);
  }
  else {
    sco1 /= (float)sco1_len;
    len1_sum /= sco1_len;
  }

  if (!sco2_len) {
    sco2 = SCULPT_vertex_co_get(ss, vertex);
  }
  else {
    sco2 /= (float)sco2_len;
    len2_sum /= sco2_len;
  }

  normalize_v3(sno1);
  if (dot_v3v3(sno1, sno1) == 0.0f) {
    SCULPT_vertex_normal_get(ss, vertex, sno1);
  }

  normalize_v3(sno2);
  if (dot_v3v3(sno2, sno2) == 0.0f) {
    SCULPT_vertex_normal_get(ss, vertex, sno2);
  }

  float3 vec = sco1 - sco2;
  float factor_sum = dot_v3v3(vec, sno2) / len1_sum;

  factor_sum = sculpt_cavity_calc_factor(automasking, factor_sum);

  *(float *)SCULPT_vertex_attr_get(vertex, ss->attrs.cavity) = factor_sum;
  *(uchar *)SCULPT_vertex_attr_get(vertex, ss->attrs.stroke_id) = automasking->cavity_stroke_id;
}

int SCULPT_automasking_settings_hash(Object *ob, AutomaskingCache *automasking)
{
  SculptSession *ss = ob->sculpt;

  int hash;
  int totvert = SCULPT_vertex_count_get(ss);

  hash = BLI_hash_int(automasking->settings.flags);
  hash = BLI_hash_int_2d(hash, totvert);

  if (automasking->settings.flags & BRUSH_AUTOMASKING_CAVITY_ALL) {
    hash = BLI_hash_int_2d(hash, automasking->settings.cavity_blur_steps);
    hash = BLI_hash_int_2d(hash, *reinterpret_cast<uint *>(&automasking->settings.cavity_factor));

    if (automasking->settings.cavity_curve) {
      CurveMap *cm = automasking->settings.cavity_curve->cm;

      for (int i = 0; i < cm->totpoint; i++) {
        hash = BLI_hash_int_2d(hash, *reinterpret_cast<uint *>(&cm->curve[i].x));
        hash = BLI_hash_int_2d(hash, *reinterpret_cast<uint *>(&cm->curve[i].y));
        hash = BLI_hash_int_2d(hash, (uint)cm->curve[i].flag);
        hash = BLI_hash_int_2d(hash, (uint)cm->curve[i].shorty);
      }
    }
  }

  if (automasking->settings.flags & BRUSH_AUTOMASKING_FACE_SETS) {
    hash = BLI_hash_int_2d(hash, automasking->settings.initial_face_set);
  }

  return hash;
}

static float sculpt_automasking_cavity_factor(AutomaskingCache *automasking,
                                              SculptSession *ss,
                                              PBVHVertRef vertex)
{
  uchar stroke_id = *(uchar *)SCULPT_vertex_attr_get(vertex, ss->attrs.stroke_id);

  if (stroke_id != automasking->cavity_stroke_id) {
    sculpt_calc_blurred_cavity(ss, automasking, automasking->settings.cavity_blur_steps, vertex);
  }

  float factor = *(float *)SCULPT_vertex_attr_get(vertex, ss->attrs.cavity);
  bool inverted = automasking->settings.flags & BRUSH_AUTOMASKING_CAVITY_INVERTED;

  if ((automasking->settings.flags & BRUSH_AUTOMASKING_CAVITY_ALL) &&
      (automasking->settings.flags & BRUSH_AUTOMASKING_CAVITY_USE_CURVE)) {
    factor = inverted ? 1.0f - factor : factor;
    factor = BKE_curvemapping_evaluateF(automasking->settings.cavity_curve, 0, factor);
    factor = inverted ? 1.0f - factor : factor;
  }

  return factor;
}

float SCULPT_automasking_factor_get(AutomaskingCache *automasking,
                                    SculptSession *ss,
                                    PBVHVertRef vert)
{
  if (!automasking) {
    return 1.0f;
  }

  /* If the cache is initialized with valid info, use the cache. This is used when the
   * automasking information can't be computed in real time per vertex and needs to be
   * initialized for the whole mesh when the stroke starts. */
  if (ss->attrs.automasking_factor) {
    float factor = *(float *)SCULPT_vertex_attr_get(vert, ss->attrs.automasking_factor);

    if (automasking->settings.flags & BRUSH_AUTOMASKING_CAVITY_ALL) {
      factor *= sculpt_automasking_cavity_factor(automasking, ss, vert);
    }

    return factor;
  }

  if (automasking->settings.flags & BRUSH_AUTOMASKING_FACE_SETS) {
    if (!SCULPT_vertex_has_face_set(ss, vert, automasking->settings.initial_face_set)) {
      return 0.0f;
    }
  }

  if (automasking->settings.flags & BRUSH_AUTOMASKING_BOUNDARY_EDGES) {
    if (SCULPT_vertex_is_boundary(ss, vert)) {
      return 0.0f;
    }
  }

  if (automasking->settings.flags & BRUSH_AUTOMASKING_BOUNDARY_FACE_SETS) {
    if (!SCULPT_vertex_has_unique_face_set(ss, vert)) {
      return 0.0f;
    }
  }

  if (automasking->settings.flags & BRUSH_AUTOMASKING_CAVITY_ALL) {
    return sculpt_automasking_cavity_factor(automasking, ss, vert);
  }

  return 1.0f;
}

void SCULPT_automasking_cache_free(AutomaskingCache *automasking)
{
  if (!automasking) {
    return;
  }

  MEM_SAFE_FREE(automasking);
}

static bool sculpt_automasking_is_constrained_by_radius(Brush *br)
{
  /* 2D falloff is not constrained by radius. */
  if (br->falloff_shape == PAINT_FALLOFF_SHAPE_TUBE) {
    return false;
  }

  if (ELEM(br->sculpt_tool, SCULPT_TOOL_GRAB, SCULPT_TOOL_THUMB, SCULPT_TOOL_ROTATE)) {
    return true;
  }
  return false;
}

struct AutomaskFloodFillData {
  float radius;
  bool use_radius;
  float location[3];
  char symm;
};

static bool automask_floodfill_cb(SculptSession *ss,
                                  PBVHVertRef from_v,
                                  PBVHVertRef to_v,
                                  bool UNUSED(is_duplicate),
                                  void *userdata)
{
  AutomaskFloodFillData *data = (AutomaskFloodFillData *)userdata;

  *(float *)SCULPT_vertex_attr_get(to_v, ss->attrs.automasking_factor) = 1.0f;
  *(float *)SCULPT_vertex_attr_get(from_v, ss->attrs.automasking_factor) = 1.0f;
  return (!data->use_radius ||
          SCULPT_is_vertex_inside_brush_radius_symm(
              SCULPT_vertex_co_get(ss, to_v), data->location, data->radius, data->symm));
}

static void SCULPT_topology_automasking_init(Sculpt *sd, Object *ob)
{
  SculptSession *ss = ob->sculpt;
  Brush *brush = BKE_paint_brush(&sd->paint);

  if (BKE_pbvh_type(ss->pbvh) == PBVH_FACES && !ss->pmap) {
    BLI_assert_unreachable();
    return;
  }

  const int totvert = SCULPT_vertex_count_get(ss);
  for (int i : IndexRange(totvert)) {
    PBVHVertRef vertex = BKE_pbvh_index_to_vertex(ss->pbvh, i);

    (*(float *)SCULPT_vertex_attr_get(vertex, ss->attrs.automasking_factor)) = 0.0f;
  }

  /* Flood fill automask to connected vertices. Limited to vertices inside
   * the brush radius if the tool requires it. */
  SculptFloodFill flood;
  SCULPT_floodfill_init(ss, &flood);
  const float radius = ss->cache ? ss->cache->radius : FLT_MAX;
  SCULPT_floodfill_add_active(sd, ob, ss, &flood, radius);

  AutomaskFloodFillData fdata = {0};

  fdata.radius = radius;
  fdata.use_radius = ss->cache && sculpt_automasking_is_constrained_by_radius(brush);
  fdata.symm = SCULPT_mesh_symmetry_xyz_get(ob);

  copy_v3_v3(fdata.location, SCULPT_active_vertex_co_get(ss));
  SCULPT_floodfill_execute(ss, &flood, automask_floodfill_cb, &fdata);
  SCULPT_floodfill_free(&flood);
}

static void sculpt_face_sets_automasking_init(Sculpt *sd, Object *ob)
{
  SculptSession *ss = ob->sculpt;
  Brush *brush = BKE_paint_brush(&sd->paint);

  if (!SCULPT_is_automasking_enabled(sd, ss, brush)) {
    return;
  }

  if (BKE_pbvh_type(ss->pbvh) == PBVH_FACES && !ss->pmap) {
    BLI_assert_msg(0, "Face Sets automasking: pmap missing");
    return;
  }

  int tot_vert = SCULPT_vertex_count_get(ss);
  int active_face_set = SCULPT_active_face_set_get(ss);
  for (int i : IndexRange(tot_vert)) {
    PBVHVertRef vertex = BKE_pbvh_index_to_vertex(ss->pbvh, i);

    if (!SCULPT_vertex_has_face_set(ss, vertex, active_face_set)) {
      *(float *)SCULPT_vertex_attr_get(vertex, ss->attrs.automasking_factor) = 0.0f;
    }
  }
}

#define EDGE_DISTANCE_INF -1

static void SCULPT_boundary_automasking_init(Object *ob,
                                             eBoundaryAutomaskMode mode,
                                             int propagation_steps)
{
  SculptSession *ss = ob->sculpt;

  if (!ss->pmap) {
    BLI_assert_msg(0, "Boundary Edges masking: pmap missing");
    return;
  }

  const int totvert = SCULPT_vertex_count_get(ss);
  int *edge_distance = (int *)MEM_callocN(sizeof(int) * totvert, "automask_factor");

  for (int i : IndexRange(totvert)) {
    PBVHVertRef vertex = BKE_pbvh_index_to_vertex(ss->pbvh, i);

    edge_distance[i] = EDGE_DISTANCE_INF;
    switch (mode) {
      case AUTOMASK_INIT_BOUNDARY_EDGES:
        if (SCULPT_vertex_is_boundary(ss, vertex)) {
          edge_distance[i] = 0;
        }
        break;
      case AUTOMASK_INIT_BOUNDARY_FACE_SETS:
        if (!SCULPT_vertex_has_unique_face_set(ss, vertex)) {
          edge_distance[i] = 0;
        }
        break;
    }
  }

  for (int propagation_it : IndexRange(propagation_steps)) {
    for (int i : IndexRange(totvert)) {
      PBVHVertRef vertex = BKE_pbvh_index_to_vertex(ss->pbvh, i);

      if (edge_distance[i] != EDGE_DISTANCE_INF) {
        continue;
      }
      SculptVertexNeighborIter ni;
      SCULPT_VERTEX_NEIGHBORS_ITER_BEGIN (ss, vertex, ni) {
        if (edge_distance[ni.index] == propagation_it) {
          edge_distance[i] = propagation_it + 1;
        }
      }
      SCULPT_VERTEX_NEIGHBORS_ITER_END(ni);
    }
  }

  for (int i : IndexRange(totvert)) {
    PBVHVertRef vertex = BKE_pbvh_index_to_vertex(ss->pbvh, i);

    if (edge_distance[i] == EDGE_DISTANCE_INF) {
      continue;
    }
    const float p = 1.0f - (float(edge_distance[i]) / float(propagation_steps));
    const float edge_boundary_automask = pow2f(p);

    *(float *)SCULPT_vertex_attr_get(
        vertex, ss->attrs.automasking_factor) *= (1.0f - edge_boundary_automask);
  }

  MEM_SAFE_FREE(edge_distance);
}

static void SCULPT_automasking_cache_settings_update(AutomaskingCache *automasking,
                                                     SculptSession *ss,
                                                     Sculpt *sd,
                                                     Brush *brush)
{
  automasking->settings.flags = sculpt_automasking_mode_effective_bits(sd, brush);
  automasking->settings.initial_face_set = SCULPT_active_face_set_get(ss);

  if (brush && (brush->automasking_flags & BRUSH_AUTOMASKING_CAVITY_ALL)) {
    automasking->settings.cavity_curve = brush->automasking_cavity_curve;
    automasking->settings.cavity_factor = brush->automasking_cavity_factor;
    automasking->settings.cavity_blur_steps = brush->automasking_cavity_blur_steps;
  }
  else {
    automasking->settings.cavity_curve = sd->automasking_cavity_curve;
    automasking->settings.cavity_factor = sd->automasking_cavity_factor;
    automasking->settings.cavity_blur_steps = sd->automasking_cavity_blur_steps;
  }
}

bool SCULPT_tool_can_reuse_cavity_mask(int sculpt_tool)
{
  return ELEM(sculpt_tool,
              SCULPT_TOOL_PAINT,
              SCULPT_TOOL_SMEAR,
              SCULPT_TOOL_MASK,
              SCULPT_TOOL_DRAW_FACE_SETS);
}

AutomaskingCache *SCULPT_automasking_cache_init(Sculpt *sd, Brush *brush, Object *ob)
{
  SculptSession *ss = ob->sculpt;
  const int totvert = SCULPT_vertex_count_get(ss);

  if (!SCULPT_is_automasking_enabled(sd, ss, brush)) {
    return nullptr;
  }

  AutomaskingCache *automasking = (AutomaskingCache *)MEM_callocN(sizeof(AutomaskingCache),
                                                                  "automasking cache");
  SCULPT_automasking_cache_settings_update(automasking, ss, sd, brush);
  SCULPT_boundary_info_ensure(ob);

  if (SCULPT_is_automasking_mode_enabled(sd, brush, BRUSH_AUTOMASKING_CAVITY_ALL)) {
    if (SCULPT_is_automasking_mode_enabled(sd, brush, BRUSH_AUTOMASKING_CAVITY_USE_CURVE)) {
      BKE_curvemapping_init(brush->automasking_cavity_curve);
      BKE_curvemapping_init(sd->automasking_cavity_curve);
    }

    SCULPT_stroke_id_ensure(ob);
    automasking->cavity_stroke_id = ss->stroke_id;

    if (!ss->attrs.cavity) {
      SculptAttributeParams params = {0};
      ss->attrs.cavity = BKE_sculpt_attribute_ensure(
          ob, ATTR_DOMAIN_POINT, CD_PROP_FLOAT, SCULPT_ATTRIBUTE_NAME(cavity), &params);
    }
    /* Can we reuse the previous stroke's cavity mask? */
    else if (brush && SCULPT_tool_can_reuse_cavity_mask(brush->sculpt_tool)) {
      int hash = SCULPT_automasking_settings_hash(ob, automasking);

      if (hash == ss->last_automasking_settings_hash) {
        automasking->cavity_stroke_id = ss->last_automasking_settings_hash;
        automasking->can_reuse_cavity = true;
      }
    }

    if (!automasking->can_reuse_cavity) {
      ss->last_cavity_stroke_id = ss->stroke_id;
    }
  }

  if (!SCULPT_automasking_needs_factors_cache(sd, brush)) {
    return automasking;
  }

  SculptAttributeParams params = {0};
  params.stroke_only = true;

  ss->attrs.automasking_factor = BKE_sculpt_attribute_ensure(
      ob, ATTR_DOMAIN_POINT, CD_PROP_FLOAT, SCULPT_ATTRIBUTE_NAME(automasking_factor), &params);

  for (int i : IndexRange(totvert)) {
    PBVHVertRef vertex = BKE_pbvh_index_to_vertex(ss->pbvh, i);

    (*(float *)SCULPT_vertex_attr_get(vertex, ss->attrs.automasking_factor)) = 0.0f;
  }

  const int boundary_propagation_steps = brush ?
                                             brush->automasking_boundary_edges_propagation_steps :
                                             1;

  if (SCULPT_is_automasking_mode_enabled(sd, brush, BRUSH_AUTOMASKING_TOPOLOGY)) {
    SCULPT_vertex_random_access_ensure(ss);
    SCULPT_topology_automasking_init(sd, ob);
  }
  if (SCULPT_is_automasking_mode_enabled(sd, brush, BRUSH_AUTOMASKING_FACE_SETS)) {
    SCULPT_vertex_random_access_ensure(ss);
    sculpt_face_sets_automasking_init(sd, ob);
  }

  if (SCULPT_is_automasking_mode_enabled(sd, brush, BRUSH_AUTOMASKING_BOUNDARY_EDGES)) {
    SCULPT_vertex_random_access_ensure(ss);
    SCULPT_boundary_automasking_init(ob, AUTOMASK_INIT_BOUNDARY_EDGES, boundary_propagation_steps);
  }
  if (SCULPT_is_automasking_mode_enabled(sd, brush, BRUSH_AUTOMASKING_BOUNDARY_FACE_SETS)) {
    SCULPT_vertex_random_access_ensure(ss);
    SCULPT_boundary_automasking_init(
        ob, AUTOMASK_INIT_BOUNDARY_FACE_SETS, boundary_propagation_steps);
  }

  return automasking;
}

bool SCULPT_automasking_needs_original(const Sculpt *sd, const Brush *brush)
{
  return sculpt_automasking_mode_effective_bits(sd, brush) & BRUSH_AUTOMASKING_CAVITY_ALL;
}