Welcome to mirror list, hosted at ThFree Co, Russian Federation.

transform_mode_rotate.c « transform « editors « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4b86adc4f46dfcd862eb9250afe6405fe2d03015 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2001-2002 NaN Holding BV. All rights reserved. */

/** \file
 * \ingroup edtransform
 */

#include <stdlib.h>

#include "BLI_math.h"
#include "BLI_task.h"

#include "BKE_context.h"
#include "BKE_unit.h"

#include "ED_screen.h"

#include "UI_interface.h"

#include "transform.h"
#include "transform_convert.h"
#include "transform_snap.h"

#include "transform_mode.h"

/* -------------------------------------------------------------------- */
/** \name Transform (Rotation) Matrix Cache
 * \{ */

struct RotateMatrixCache {
  /**
   * Counter for needed updates (when we need to update to non-default matrix,
   * we also need another update on next iteration to go back to default matrix,
   * hence the '2' value used here, instead of a mere boolean).
   */
  short do_update_matrix;
  float mat[3][3];
};

static void rmat_cache_init(struct RotateMatrixCache *rmc, const float angle, const float axis[3])
{
  axis_angle_normalized_to_mat3(rmc->mat, axis, angle);
  rmc->do_update_matrix = 0;
}

static void rmat_cache_reset(struct RotateMatrixCache *rmc)
{
  rmc->do_update_matrix = 2;
}

static void rmat_cache_update(struct RotateMatrixCache *rmc,
                              const float axis[3],
                              const float angle)
{
  if (rmc->do_update_matrix > 0) {
    axis_angle_normalized_to_mat3(rmc->mat, axis, angle);
    rmc->do_update_matrix--;
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Transform (Rotation) Element
 * \{ */

/**
 * \note Small arrays / data-structures should be stored copied for faster memory access.
 */
struct TransDataArgs_Rotate {
  const TransInfo *t;
  const TransDataContainer *tc;
  const float axis[3];
  float angle;
  float angle_step;
  bool is_large_rotation;
};

struct TransDataArgs_RotateTLS {
  struct RotateMatrixCache rmc;
};

static void transdata_elem_rotate(const TransInfo *t,
                                  const TransDataContainer *tc,
                                  TransData *td,
                                  const float axis[3],
                                  const float angle,
                                  const float angle_step,
                                  const bool is_large_rotation,
                                  struct RotateMatrixCache *rmc)
{
  float axis_buffer[3];
  const float *axis_final = axis;

  float angle_final = angle;
  if (t->con.applyRot) {
    copy_v3_v3(axis_buffer, axis);
    axis_final = axis_buffer;
    t->con.applyRot(t, tc, td, axis_buffer, NULL);
    angle_final = angle * td->factor;
    /* Even though final angle might be identical to orig value,
     * we have to update the rotation matrix in that case... */
    rmat_cache_reset(rmc);
  }
  else if (t->flag & T_PROP_EDIT) {
    angle_final = angle * td->factor;
  }

  /* Rotation is very likely to be above 180°, we need to do rotation by steps.
   * Note that this is only needed when doing 'absolute' rotation
   * (i.e. from initial rotation again, typically when using numinput).
   * regular incremental rotation (from mouse/widget/...) will be called often enough,
   * hence steps are small enough to be properly handled without that complicated trick.
   * Note that we can only do that kind of stepped rotation if we have initial rotation values
   * (and access to some actual rotation value storage).
   * Otherwise, just assume it's useless (e.g. in case of mesh/UV/etc. editing).
   * Also need to be in Euler rotation mode, the others never allow more than one turn anyway.
   */
  if (is_large_rotation && td->ext != NULL && td->ext->rotOrder == ROT_MODE_EUL) {
    copy_v3_v3(td->ext->rot, td->ext->irot);
    for (float angle_progress = angle_step; fabsf(angle_progress) < fabsf(angle_final);
         angle_progress += angle_step) {
      axis_angle_normalized_to_mat3(rmc->mat, axis_final, angle_progress);
      ElementRotation(t, tc, td, rmc->mat, t->around);
    }
    rmat_cache_reset(rmc);
  }
  else if (angle_final != angle) {
    rmat_cache_reset(rmc);
  }

  rmat_cache_update(rmc, axis_final, angle_final);

  ElementRotation(t, tc, td, rmc->mat, t->around);
}

static void transdata_elem_rotate_fn(void *__restrict iter_data_v,
                                     const int iter,
                                     const TaskParallelTLS *__restrict tls)
{
  struct TransDataArgs_Rotate *data = iter_data_v;
  struct TransDataArgs_RotateTLS *tls_data = tls->userdata_chunk;

  TransData *td = &data->tc->data[iter];
  if (td->flag & TD_SKIP) {
    return;
  }
  transdata_elem_rotate(data->t,
                        data->tc,
                        td,
                        data->axis,
                        data->angle,
                        data->angle_step,
                        data->is_large_rotation,
                        &tls_data->rmc);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Transform (Rotation)
 * \{ */

static float RotationBetween(TransInfo *t, const float p1[3], const float p2[3])
{
  float angle, start[3], end[3];

  sub_v3_v3v3(start, p1, t->center_global);
  sub_v3_v3v3(end, p2, t->center_global);

  /* Angle around a constraint axis (error prone, will need debug). */
  if (t->con.applyRot != NULL && (t->con.mode & CON_APPLY)) {
    float axis[3], tmp[3];

    t->con.applyRot(t, NULL, NULL, axis, NULL);

    project_v3_v3v3(tmp, end, axis);
    sub_v3_v3v3(end, end, tmp);

    project_v3_v3v3(tmp, start, axis);
    sub_v3_v3v3(start, start, tmp);

    normalize_v3(end);
    normalize_v3(start);

    cross_v3_v3v3(tmp, start, end);

    if (dot_v3v3(tmp, axis) < 0.0f) {
      angle = -acosf(dot_v3v3(start, end));
    }
    else {
      angle = acosf(dot_v3v3(start, end));
    }
  }
  else {
    float mtx[3][3];

    copy_m3_m4(mtx, t->viewmat);

    mul_m3_v3(mtx, end);
    mul_m3_v3(mtx, start);

    angle = atan2f(start[1], start[0]) - atan2f(end[1], end[0]);
  }

  if (angle > (float)M_PI) {
    angle = angle - 2 * (float)M_PI;
  }
  else if (angle < -((float)M_PI)) {
    angle = 2.0f * (float)M_PI + angle;
  }

  return angle;
}

static void ApplySnapRotation(TransInfo *t, float *value)
{
  float point[3];
  getSnapPoint(t, point);

  float dist = RotationBetween(t, t->tsnap.snapTarget, point);
  *value = dist;
}

static float large_rotation_limit(float angle)
{
  /* Limit rotation to 1001 turns max
   * (otherwise iterative handling of 'large' rotations would become too slow). */
  const float angle_max = (float)(M_PI * 2000.0);
  if (fabsf(angle) > angle_max) {
    const float angle_sign = angle < 0.0f ? -1.0f : 1.0f;
    angle = angle_sign * (fmodf(fabsf(angle), (float)(M_PI * 2.0)) + angle_max);
  }
  return angle;
}

static void applyRotationValue(TransInfo *t,
                               float angle,
                               const float axis[3],
                               const bool is_large_rotation)
{
  const float angle_sign = angle < 0.0f ? -1.0f : 1.0f;
  /* We cannot use something too close to 180°, or 'continuous' rotation may fail
   * due to computing error... */
  const float angle_step = angle_sign * (float)(0.9 * M_PI);

  if (is_large_rotation) {
    /* Just in case, calling code should have already done that in practice
     * (for UI feedback reasons). */
    angle = large_rotation_limit(angle);
  }

  struct RotateMatrixCache rmc = {0};
  rmat_cache_init(&rmc, angle, axis);

  FOREACH_TRANS_DATA_CONTAINER (t, tc) {
    if (tc->data_len < TRANSDATA_THREAD_LIMIT) {
      TransData *td = tc->data;
      for (int i = 0; i < tc->data_len; i++, td++) {
        if (td->flag & TD_SKIP) {
          continue;
        }
        transdata_elem_rotate(t, tc, td, axis, angle, angle_step, is_large_rotation, &rmc);
      }
    }
    else {
      struct TransDataArgs_Rotate data = {
          .t = t,
          .tc = tc,
          .axis = {UNPACK3(axis)},
          .angle = angle,
          .angle_step = angle_step,
          .is_large_rotation = is_large_rotation,
      };
      struct TransDataArgs_RotateTLS tls_data = {
          .rmc = rmc,
      };

      TaskParallelSettings settings;
      BLI_parallel_range_settings_defaults(&settings);
      settings.userdata_chunk = &tls_data;
      settings.userdata_chunk_size = sizeof(tls_data);
      BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_rotate_fn, &settings);
    }
  }
}

static void applyRotation(TransInfo *t, const int UNUSED(mval[2]))
{
  char str[UI_MAX_DRAW_STR];
  float axis_final[3];
  float final = t->values[0] + t->values_modal_offset[0];

  if ((t->con.mode & CON_APPLY) && t->con.applyRot) {
    t->con.applyRot(t, NULL, NULL, axis_final, &final);
  }
  else {
    negate_v3_v3(axis_final, t->spacemtx[t->orient_axis]);
  }

  if (applyNumInput(&t->num, &final)) {
    /* We have to limit the amount of turns to a reasonable number here,
     * to avoid things getting *very* slow, see how applyRotationValue() handles those... */
    final = large_rotation_limit(final);
  }
  else {
    applySnapping(t, &final);
    if (!(activeSnap(t) && validSnap(t))) {
      transform_snap_increment(t, &final);
    }
  }

  t->values_final[0] = final;

  headerRotation(t, str, sizeof(str), final);

  const bool is_large_rotation = hasNumInput(&t->num);
  applyRotationValue(t, final, axis_final, is_large_rotation);

  recalcData(t);

  ED_area_status_text(t->area, str);
}

void initRotation(TransInfo *t)
{
  t->mode = TFM_ROTATION;
  t->transform = applyRotation;
  t->tsnap.applySnap = ApplySnapRotation;
  t->tsnap.distance = RotationBetween;

  initMouseInputMode(t, &t->mouse, INPUT_ANGLE);

  t->idx_max = 0;
  t->num.idx_max = 0;
  t->snap[0] = DEG2RAD(5.0);
  t->snap[1] = DEG2RAD(1.0);

  copy_v3_fl(t->num.val_inc, t->snap[1]);
  t->num.unit_sys = t->scene->unit.system;
  t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS);
  t->num.unit_type[0] = B_UNIT_ROTATION;

  if (t->flag & T_2D_EDIT) {
    t->flag |= T_NO_CONSTRAINT;
  }

  transform_mode_default_modal_orientation_set(t, V3D_ORIENT_VIEW);
}

/** \} */