Welcome to mirror list, hosted at ThFree Co, Russian Federation.

AppGLWidget_frame.cpp « app_blender « intern « freestyle « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8fb17a7c1c647266249eaa1addcca487f3833e39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
/****************************************************************************

 Copyright (C) 2002-2007 Gilles Debunne (Gilles.Debunne@imag.fr)

 This file is part of the QGLViewer library.
 Version 2.2.6-3, released on August 28, 2007.

 http://artis.imag.fr/Members/Gilles.Debunne/QGLViewer

 libQGLViewer is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 libQGLViewer is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with libQGLViewer; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

*****************************************************************************/

#include "AppGLWidget_frame.h"
#include <math.h>

//using namespace qglviewer;
using namespace std;


/*! Creates a default Frame.

  Its position() is (0,0,0) and it has an identity orientation() Quaternion. The referenceFrame()
  and the constraint() are \c NULL. */
Frame::Frame()
  : constraint_(NULL), referenceFrame_(NULL)
{}

/*! Creates a Frame with a position() and an orientation().

 See the Vec and Quaternion documentations for convenient constructors and methods.

 The Frame is defined in the world coordinate system (its referenceFrame() is \c NULL). It
 has a \c NULL associated constraint(). */
Frame::Frame(const Vec& position, const Quaternion& orientation)
  : t_(position), q_(orientation), constraint_(NULL), referenceFrame_(NULL)
{}

/*! Equal operator.

  The referenceFrame() and constraint() pointers are copied.

  \attention Signal and slot connections are not copied. */
Frame& Frame::operator=(const Frame& frame)
{
  // Automatic compiler generated version would not emit the modified signals as is done in
  // setTranslationAndRotation.
  setTranslationAndRotation(frame.translation(), frame.rotation());
  setConstraint(frame.constraint());
  setReferenceFrame(frame.referenceFrame());
  return *this;
}

/*! Copy constructor.

  The translation() and rotation() as well as constraint() and referenceFrame() pointers are
  copied. */
Frame::Frame(const Frame& frame)
{
  (*this) = frame;
}

/////////////////////////////// MATRICES //////////////////////////////////////

/*! Returns the 4x4 OpenGL transformation matrix represented by the Frame.

  This method should be used in conjunction with \c glMultMatrixd() to modify the OpenGL modelview
  matrix from a Frame hierarchy. With this Frame hierarchy:
  \code
  Frame* body     = new Frame();
  Frame* leftArm  = new Frame();
  Frame* rightArm = new Frame();
  leftArm->setReferenceFrame(body);
  rightArm->setReferenceFrame(body);
  \endcode

  The associated OpenGL drawing code should look like:
  \code
  void Viewer::draw()
  {
    glPushMatrix();
    glMultMatrixd(body->matrix());
    drawBody();

    glPushMatrix();
    glMultMatrixd(leftArm->matrix());
    drawArm();
    glPopMatrix();

    glPushMatrix();
    glMultMatrixd(rightArm->matrix());
    drawArm();
    glPopMatrix();

    glPopMatrix();
  }
  \endcode
  Note the use of nested \c glPushMatrix() and \c glPopMatrix() blocks to represent the frame hierarchy: \c
  leftArm and \c rightArm are both correctly drawn with respect to the \c body coordinate system.

  This matrix only represents the local Frame transformation (i.e. with respect to the
  referenceFrame()). Use worldMatrix() to get the full Frame transformation matrix (i.e. from the
  world to the Frame coordinate system). These two match when the referenceFrame() is \c NULL.

  The result is only valid until the next call to matrix(), getMatrix(), worldMatrix() or
  getWorldMatrix(). Use it immediately (as above) or use getMatrix() instead.

  \attention The OpenGL format of the result is the transpose of the actual mathematical European
  representation (translation is on the last \e line instead of the last \e column).

  \note The scaling factor of the 4x4 matrix is 1.0. */
const GLdouble* Frame::matrix() const
{
  static GLdouble m[4][4];
  getMatrix(m);
  return (const GLdouble*)(m);
}

/*! \c GLdouble[4][4] version of matrix(). See also getWorldMatrix() and matrix(). */
void Frame::getMatrix(GLdouble m[4][4]) const
{
  q_.getMatrix(m);

  m[3][0] = t_[0];
  m[3][1] = t_[1];
  m[3][2] = t_[2];
}

/*! \c GLdouble[16] version of matrix(). See also getWorldMatrix() and matrix(). */
void Frame::getMatrix(GLdouble m[16]) const
{
  q_.getMatrix(m);

  m[12] = t_[0];
  m[13] = t_[1];
  m[14] = t_[2];
}

/*! Returns a Frame representing the inverse of the Frame space transformation.

  The rotation() of the new Frame is the Quaternion::inverse() of the original rotation.
  Its translation() is the negated inverse rotated image of the original translation.

  If a Frame is considered as a space rigid transformation (translation and rotation), the inverse()
  Frame performs the inverse transformation.

  Only the local Frame transformation (i.e. defined with respect to the referenceFrame()) is inverted.
  Use worldInverse() for a global inverse.

  The resulting Frame has the same referenceFrame() as the Frame and a \c NULL constraint().

  \note The scaling factor of the 4x4 matrix is 1.0. */
Frame Frame::inverse() const
{
  Frame fr(-(q_.inverseRotate(t_)), q_.inverse());
  fr.setReferenceFrame(referenceFrame());
  return fr;
}

/*! Returns the 4x4 OpenGL transformation matrix represented by the Frame.

  This method should be used in conjunction with \c glMultMatrixd() to modify
  the OpenGL modelview matrix from a Frame:
  \code
  // The modelview here corresponds to the world coordinate system.
  Frame fr(pos, Quaternion(from, to));
  glPushMatrix();
  glMultMatrixd(fr.worldMatrix());
  // draw object in the fr coordinate system.
  glPopMatrix();
  \endcode

  This matrix represents the global Frame transformation: the entire referenceFrame() hierarchy is
  taken into account to define the Frame transformation from the world coordinate system. Use
  matrix() to get the local Frame transformation matrix (i.e. defined with respect to the
  referenceFrame()). These two match when the referenceFrame() is \c NULL.

  The OpenGL format of the result is the transpose of the actual mathematical European
  representation (translation is on the last \e line instead of the last \e column).

  \attention The result is only valid until the next call to matrix(), getMatrix(), worldMatrix() or
  getWorldMatrix(). Use it immediately (as above) or use getWorldMatrix() instead.

  \note The scaling factor of the 4x4 matrix is 1.0. */
const GLdouble* Frame::worldMatrix() const
{
  // This test is done for efficiency reasons (creates lots of temp objects otherwise).
  if (referenceFrame())
  {
    static Frame fr;
    fr.setTranslation(position());
    fr.setRotation(orientation());
    return fr.matrix();
  }
  else
    return matrix();
}

/*! float[4][4] parameter version of worldMatrix(). See also getMatrix() and matrix(). */
void Frame::getWorldMatrix(GLdouble m[4][4]) const
{
  const GLdouble* mat = worldMatrix();
  for (int i=0; i<4; ++i)
    for (int j=0; j<4; ++j)
      m[i][j] = mat[i*4+j];
}

/*! float[16] parameter version of worldMatrix(). See also getMatrix() and matrix(). */
void Frame::getWorldMatrix(GLdouble m[16]) const
{
  const GLdouble* mat = worldMatrix();
  for (int i=0; i<16; ++i)
      m[i] = mat[i];
}

/*! This is an overloaded method provided for convenience. Same as setFromMatrix(). */
void Frame::setFromMatrix(const GLdouble m[4][4])
{
  if (fabs(m[3][3]) < 1E-8)
    {
      cout << "Frame::setFromMatrix: Null homogeneous coefficient" << endl;
      return;
    }

  double rot[3][3];
  for (int i=0; i<3; ++i)
    {
      t_[i] = m[3][i] / m[3][3];
      for (int j=0; j<3; ++j)
	// Beware of the transposition (OpenGL to European math)
	rot[i][j] = m[j][i] / m[3][3];
    }
  q_.setFromRotationMatrix(rot);
}

/*! Sets the Frame from an OpenGL matrix representation (rotation in the upper left 3x3 matrix and
 translation on the last line).

 Hence, if a code fragment looks like:
 \code
 GLdouble m[16]={...};
 glMultMatrixd(m);
 \endcode
 It is equivalent to write:
 \code
 Frame fr;
 fr.setFromMatrix(m);
 glMultMatrixd(fr.matrix());
 \endcode

 Using this conversion, you can benefit from the powerful Frame transformation methods to translate
 points and vectors to and from the Frame coordinate system to any other Frame coordinate system
 (including the world coordinate system). See coordinatesOf() and transformOf().

 Emits the modified() signal. See also matrix(), getMatrix() and
 Quaternion::setFromRotationMatrix().

 \attention A Frame does not contain a scale factor. The possible scaling in \p m will not be
 converted into the Frame by this method. */
void Frame::setFromMatrix(const GLdouble m[16])
{
  GLdouble mat[4][4];
  for (int i=0; i<4; ++i)
    for (int j=0; j<4; ++j)
      mat[i][j] = m[i*4+j];
  setFromMatrix(mat);
}

//////////////////// SET AND GET LOCAL TRANSLATION AND ROTATION ///////////////////////////////


/*! Same as setTranslation(), but with \p float parameters. */
void Frame::setTranslation(float x, float y, float z)
{
  setTranslation(Vec(x, y, z));
}

/*! Fill \c x, \c y and \c z with the translation() of the Frame. */
void Frame::getTranslation(float& x, float& y, float& z) const
{
  const Vec t = translation();
  x = t[0];
  y = t[1];
  z = t[2];
}

/*! Same as setRotation() but with \c float Quaternion parameters. */
void Frame::setRotation(double q0, double q1, double q2, double q3)
{
  setRotation(Quaternion(q0, q1, q2, q3));
}

/*! The \p q are set to the rotation() of the Frame.

See Quaternion::Quaternion(double, double, double, double) for details on \c q. */
void Frame::getRotation(double& q0, double& q1, double& q2, double& q3) const
{
  const Quaternion q = rotation();
  q0 = q[0];
  q1 = q[1];
  q2 = q[2];
  q3 = q[3];
}

////////////////////////////////////////////////////////////////////////////////

/*! Translates the Frame of \p t (defined in the Frame coordinate system).

  The translation actually applied to the Frame may differ from \p t since it can be filtered by the
  constraint(). Use translate(Vec&) or setTranslationWithConstraint() to retrieve the filtered
  translation value. Use setTranslation() to directly translate the Frame without taking the
  constraint() into account.

  See also rotate(const Quaternion&). Emits the modified() signal. */
void Frame::translate(const Vec& t)
{
  Vec tbis = t;
  translate(tbis);
}

/*! Same as translate(const Vec&) but \p t may be modified to satisfy the translation constraint().
  Its new value corresponds to the translation that has actually been applied to the Frame. */
void Frame::translate(Vec& t)
{
  if (constraint())
    constraint()->constrainTranslation(t, this);
  t_ += t;
}

/*! Same as translate(const Vec&) but with \c float parameters. */
void Frame::translate(float x, float y, float z)
{
  Vec t(x,y,z);
  translate(t);
}

/*! Same as translate(Vec&) but with \c float parameters. */
void Frame::translate(float& x, float& y, float& z)
{
  Vec t(x,y,z);
  translate(t);
  x = t[0];
  y = t[1];
  z = t[2];
}

/*! Rotates the Frame by \p q (defined in the Frame coordinate system): R = R*q.

  The rotation actually applied to the Frame may differ from \p q since it can be filtered by the
  constraint(). Use rotate(Quaternion&) or setRotationWithConstraint() to retrieve the filtered
  rotation value. Use setRotation() to directly rotate the Frame without taking the constraint()
  into account.

  See also translate(const Vec&). Emits the modified() signal. */
void Frame::rotate(const Quaternion& q)
{
  Quaternion qbis = q;
  rotate(qbis);
}

/*! Same as rotate(const Quaternion&) but \p q may be modified to satisfy the rotation constraint().
  Its new value corresponds to the rotation that has actually been applied to the Frame. */
void Frame::rotate(Quaternion& q)
{
  if (constraint())
    constraint()->constrainRotation(q, this);
  q_ *= q;
  q_.normalize(); // Prevents numerical drift
}

/*! Same as rotate(Quaternion&) but with \c float Quaternion parameters. */
void Frame::rotate(double& q0, double& q1, double& q2, double& q3)
{
  Quaternion q(q0,q1,q2,q3);
  rotate(q);
  q0 = q[0];
  q1 = q[1];
  q2 = q[2];
  q3 = q[3];
}

/*! Same as rotate(const Quaternion&) but with \c float Quaternion parameters. */
void Frame::rotate(double q0, double q1, double q2, double q3)
{
  Quaternion q(q0,q1,q2,q3);
  rotate(q);
}

/*! Makes the Frame rotate() by \p rotation around \p point.

  \p point is defined in the world coordinate system, while the \p rotation axis is defined in the
  Frame coordinate system.

  If the Frame has a constraint(), \p rotation is first constrained using
  Constraint::constrainRotation(). The translation which results from the filtered rotation around
  \p point is then computed and filtered using Constraint::constrainTranslation(). The new \p
  rotation value corresponds to the rotation that has actually been applied to the Frame.

  Emits the modified() signal. */
void Frame::rotateAroundPoint(Quaternion& rotation, const Vec& point)
{
  if (constraint())
    constraint()->constrainRotation(rotation, this);
  q_ *= rotation;
  q_.normalize(); // Prevents numerical drift
  Vec trans = point + Quaternion(inverseTransformOf(rotation.axis()), rotation.angle()).rotate(position()-point) - t_;
  if (constraint())
    constraint()->constrainTranslation(trans, this);
  t_ += trans;
}

/*! Same as rotateAroundPoint(), but with a \c const \p rotation Quaternion. Note that the actual
  rotation may differ since it can be filtered by the constraint(). */
void Frame::rotateAroundPoint(const Quaternion& rotation, const Vec& point)
{
  Quaternion rot = rotation;
  rotateAroundPoint(rot, point);
}

//////////////////// SET AND GET WORLD POSITION AND ORIENTATION ///////////////////////////////

/*! Sets the position() of the Frame, defined in the world coordinate system. Emits the modified()
  signal.

Use setTranslation() to define the \e local frame translation (with respect to the
referenceFrame()). The potential constraint() of the Frame is not taken into account, use
setPositionWithConstraint() instead. */
void Frame::setPosition(const Vec& position)
{
  if (referenceFrame())
    setTranslation(referenceFrame()->coordinatesOf(position));
  else
    setTranslation(position);
}

/*! Same as setPosition(), but with \c float parameters. */
void Frame::setPosition(float x, float y, float z)
{
  setPosition(Vec(x, y, z));
}

/*! Same as successive calls to setPosition() and then setOrientation().

Only one modified() signal is emitted, which is convenient if this signal is connected to a
QGLViewer::updateGL() slot. See also setTranslationAndRotation() and
setPositionAndOrientationWithConstraint(). */
void Frame::setPositionAndOrientation(const Vec& position, const Quaternion& orientation)
{
  if (referenceFrame())
    {
      t_ = referenceFrame()->coordinatesOf(position);
      q_ = referenceFrame()->orientation().inverse() * orientation;
    }
  else
    {
      t_ = position;
      q_ = orientation;
    }
}


/*! Same as successive calls to setTranslation() and then setRotation().

Only one modified() signal is emitted, which is convenient if this signal is connected to a
QGLViewer::updateGL() slot. See also setPositionAndOrientation() and
setTranslationAndRotationWithConstraint(). */
void Frame::setTranslationAndRotation(const Vec& translation, const Quaternion& rotation)
{
  t_ = translation;
  q_ = rotation;
}


/*! \p x, \p y and \p z are set to the position() of the Frame. */
void Frame::getPosition(float& x, float& y, float& z) const
{
  Vec p = position();
  x = p.x;
  y = p.y;
  z = p.z;
}

/*! Sets the orientation() of the Frame, defined in the world coordinate system. Emits the modified() signal.

Use setRotation() to define the \e local frame rotation (with respect to the referenceFrame()). The
potential constraint() of the Frame is not taken into account, use setOrientationWithConstraint()
instead. */
void Frame::setOrientation(const Quaternion& orientation)
{
  if (referenceFrame())
    setRotation(referenceFrame()->orientation().inverse() * orientation);
  else
    setRotation(orientation);
}

/*! Same as setOrientation(), but with \c float parameters. */
void Frame::setOrientation(double q0, double q1, double q2, double q3)
{
  setOrientation(Quaternion(q0, q1, q2, q3));
}

/*! Get the current orientation of the frame (same as orientation()).
  Parameters are the orientation Quaternion values.
  See also setOrientation(). */

/*! The \p q are set to the orientation() of the Frame.

See Quaternion::Quaternion(double, double, double, double) for details on \c q. */
void Frame::getOrientation(double& q0, double& q1, double& q2, double& q3) const
{
  Quaternion o = orientation();
  q0 = o[0];
  q1 = o[1];
  q2 = o[2];
  q3 = o[3];
}

/*! Returns the orientation of the Frame, defined in the world coordinate system. See also
  position(), setOrientation() and rotation(). */
Quaternion Frame::orientation() const
{
  Quaternion res = rotation();
  const Frame* fr = referenceFrame();
  while (fr != NULL)
    {
      res = fr->rotation() * res;
      fr  = fr->referenceFrame();
    }
  return res;
}


////////////////////// C o n s t r a i n t   V e r s i o n s  //////////////////////////

/*! Same as setTranslation(), but \p translation is modified so that the potential constraint() of the
  Frame is satisfied.

  Emits the modified() signal. See also setRotationWithConstraint() and setPositionWithConstraint(). */
void Frame::setTranslationWithConstraint(Vec& translation)
{
  Vec deltaT = translation - this->translation();
  if (constraint())
    constraint()->constrainTranslation(deltaT, this);

  setTranslation(this->translation() + deltaT);
  translation = this->translation();
}

/*! Same as setRotation(), but \p rotation is modified so that the potential constraint() of the
  Frame is satisfied.

  Emits the modified() signal. See also setTranslationWithConstraint() and setOrientationWithConstraint(). */
void Frame::setRotationWithConstraint(Quaternion& rotation)
{
  Quaternion deltaQ = this->rotation().inverse() * rotation;
  if (constraint())
    constraint()->constrainRotation(deltaQ, this);

  // Prevent numerical drift
  deltaQ.normalize();

  setRotation(this->rotation() * deltaQ);
  q_.normalize();
  rotation = this->rotation();
}

/*! Same as setTranslationAndRotation(), but \p translation and \p orientation are modified to
  satisfy the constraint(). Emits the modified() signal. */
void Frame::setTranslationAndRotationWithConstraint(Vec& translation, Quaternion& rotation)
{
  Vec deltaT = translation - this->translation();
  Quaternion deltaQ = this->rotation().inverse() * rotation;

  if (constraint())
    {
      constraint()->constrainTranslation(deltaT, this);
      constraint()->constrainRotation(deltaQ, this);
    }

  // Prevent numerical drift
  deltaQ.normalize();

  t_ += deltaT;
  q_ *= deltaQ;
  q_.normalize();

  translation = this->translation();
  rotation = this->rotation();

}

/*! Same as setPosition(), but \p position is modified so that the potential constraint() of the
  Frame is satisfied. See also setOrientationWithConstraint() and setTranslationWithConstraint(). */
void Frame::setPositionWithConstraint(Vec& position)
{
  if (referenceFrame())
    position = referenceFrame()->coordinatesOf(position);

  setTranslationWithConstraint(position);
}

/*! Same as setOrientation(), but \p orientation is modified so that the potential constraint() of the Frame
  is satisfied. See also setPositionWithConstraint() and setRotationWithConstraint(). */
void Frame::setOrientationWithConstraint(Quaternion& orientation)
{
  if (referenceFrame())
    orientation = referenceFrame()->orientation().inverse() * orientation;

  setRotationWithConstraint(orientation);
}

/*! Same as setPositionAndOrientation() but \p position and \p orientation are modified to satisfy
the constraint. Emits the modified() signal. */
void Frame::setPositionAndOrientationWithConstraint(Vec& position, Quaternion& orientation)
{
  if (referenceFrame())
    {
      position = referenceFrame()->coordinatesOf(position);
      orientation = referenceFrame()->orientation().inverse() * orientation;
    }
  setTranslationAndRotationWithConstraint(position, orientation);
}


///////////////////////////// REFERENCE FRAMES ///////////////////////////////////////

/*! Sets the referenceFrame() of the Frame.

The Frame translation() and rotation() are then defined in the referenceFrame() coordinate system.
Use position() and orientation() to express these in the world coordinate system.

Emits the modified() signal if \p refFrame differs from the current referenceFrame().

Using this method, you can create a hierarchy of Frames. This hierarchy needs to be a tree, which
root is the world coordinate system (i.e. a \c NULL referenceFrame()). A warning is printed and no
action is performed if setting \p refFrame as the referenceFrame() would create a loop in the Frame
hierarchy (see settingAsReferenceFrameWillCreateALoop()). */
void Frame::setReferenceFrame(const Frame* const refFrame)
{
  if (settingAsReferenceFrameWillCreateALoop(refFrame))
    cout << "Frame::setReferenceFrame would create a loop in Frame hierarchy" << endl;
  else
    {
      //bool identical = (referenceFrame_ == refFrame);
      referenceFrame_ = refFrame;
    }
}

/*! Returns \c true if setting \p frame as the Frame's referenceFrame() would create a loop in the
  Frame hierarchy. */
bool Frame::settingAsReferenceFrameWillCreateALoop(const Frame* const frame)
{
  const Frame* f = frame;
  while (f != NULL)
    {
      if (f == this)
	return true;
      f = f->referenceFrame();
    }
  return false;
}

///////////////////////// FRAME TRANSFORMATIONS OF 3D POINTS //////////////////////////////

/*! Returns the Frame coordinates of a point \p src defined in the world coordinate system (converts
 from world to Frame).

 inverseCoordinatesOf() performs the inverse convertion. transformOf() converts 3D vectors instead
 of 3D coordinates.

 See the <a href="../examples/frameTransform.html">frameTransform example</a> for an
 illustration. */
Vec Frame::coordinatesOf(const Vec& src) const
{
  if (referenceFrame())
    return localCoordinatesOf(referenceFrame()->coordinatesOf(src));
  else
    return localCoordinatesOf(src);
}

/*! Returns the world coordinates of the point whose position in the Frame coordinate system is \p
  src (converts from Frame to world).

  coordinatesOf() performs the inverse convertion. Use inverseTransformOf() to transform 3D vectors
  instead of 3D coordinates. */
Vec Frame::inverseCoordinatesOf(const Vec& src) const
{
  const Frame* fr = this;
  Vec res = src;
  while (fr != NULL)
    {
      res = fr->localInverseCoordinatesOf(res);
      fr  = fr->referenceFrame();
    }
  return res;
}

/*! Returns the Frame coordinates of a point \p src defined in the referenceFrame() coordinate
  system (converts from referenceFrame() to Frame).

  localInverseCoordinatesOf() performs the inverse convertion. See also localTransformOf(). */
Vec Frame::localCoordinatesOf(const Vec& src) const
{
  return rotation().inverseRotate(src - translation());
}

/*! Returns the referenceFrame() coordinates of a point \p src defined in the Frame coordinate
 system (converts from Frame to referenceFrame()).

 localCoordinatesOf() performs the inverse convertion. See also localInverseTransformOf(). */
Vec Frame::localInverseCoordinatesOf(const Vec& src) const
{
  return rotation().rotate(src) + translation();
}

/*! Returns the Frame coordinates of the point whose position in the \p from coordinate system is \p
  src (converts from \p from to Frame).

  coordinatesOfIn() performs the inverse transformation. */
Vec Frame::coordinatesOfFrom(const Vec& src, const Frame* const from) const
{
  if (this == from)
    return src;
  else
    if (referenceFrame())
      return localCoordinatesOf(referenceFrame()->coordinatesOfFrom(src, from));
    else
      return localCoordinatesOf(from->inverseCoordinatesOf(src));
}

/*! Returns the \p in coordinates of the point whose position in the Frame coordinate system is \p
  src (converts from Frame to \p in).

  coordinatesOfFrom() performs the inverse transformation. */
Vec Frame::coordinatesOfIn(const Vec& src, const Frame* const in) const
{
  const Frame* fr = this;
  Vec res = src;
  while ((fr != NULL) && (fr != in))
    {
      res = fr->localInverseCoordinatesOf(res);
      fr  = fr->referenceFrame();
    }

  if (fr != in)
    // in was not found in the branch of this, res is now expressed in the world
    // coordinate system. Simply convert to in coordinate system.
    res = in->coordinatesOf(res);

  return res;
}

////// float[3] versions

/*! Same as coordinatesOf(), but with \c float parameters. */
void Frame::getCoordinatesOf(const float src[3], float res[3]) const
{
  const Vec r = coordinatesOf(Vec(src));
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/*! Same as inverseCoordinatesOf(), but with \c float parameters. */
void Frame::getInverseCoordinatesOf(const float src[3], float res[3]) const
{
  const Vec r = inverseCoordinatesOf(Vec(src));
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/*! Same as localCoordinatesOf(), but with \c float parameters. */
void Frame::getLocalCoordinatesOf(const float src[3], float res[3]) const
{
  const Vec r = localCoordinatesOf(Vec(src));
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

  /*! Same as localInverseCoordinatesOf(), but with \c float parameters. */
void Frame::getLocalInverseCoordinatesOf(const float src[3], float res[3]) const
{
  const Vec r = localInverseCoordinatesOf(Vec(src));
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/*! Same as coordinatesOfIn(), but with \c float parameters. */
void Frame::getCoordinatesOfIn(const float src[3], float res[3], const Frame* const in) const
{
  const Vec r = coordinatesOfIn(Vec(src), in);
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/*! Same as coordinatesOfFrom(), but with \c float parameters. */
void Frame::getCoordinatesOfFrom(const float src[3], float res[3], const Frame* const from) const
{
  const Vec r = coordinatesOfFrom(Vec(src), from);
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}


///////////////////////// FRAME TRANSFORMATIONS OF VECTORS //////////////////////////////

/*! Returns the Frame transform of a vector \p src defined in the world coordinate system (converts
 vectors from world to Frame).

 inverseTransformOf() performs the inverse transformation. coordinatesOf() converts 3D coordinates
 instead of 3D vectors (here only the rotational part of the transformation is taken into account).

 See the <a href="../examples/frameTransform.html">frameTransform example</a> for an
 illustration. */
Vec Frame::transformOf(const Vec& src) const
{
  if (referenceFrame())
    return localTransformOf(referenceFrame()->transformOf(src));
  else
    return localTransformOf(src);
}

/*! Returns the world transform of the vector whose coordinates in the Frame coordinate
  system is \p src (converts vectors from Frame to world).

  transformOf() performs the inverse transformation. Use inverseCoordinatesOf() to transform 3D
  coordinates instead of 3D vectors. */
Vec Frame::inverseTransformOf(const Vec& src) const
{
  const Frame* fr = this;
  Vec res = src;
  while (fr != NULL)
    {
      res = fr->localInverseTransformOf(res);
      fr  = fr->referenceFrame();
    }
  return res;
}

/*! Returns the Frame transform of a vector \p src defined in the referenceFrame() coordinate system
  (converts vectors from referenceFrame() to Frame).

  localInverseTransformOf() performs the inverse transformation. See also localCoordinatesOf(). */
Vec Frame::localTransformOf(const Vec& src) const
{
  return rotation().inverseRotate(src);
}

/*! Returns the referenceFrame() transform of a vector \p src defined in the Frame coordinate
 system (converts vectors from Frame to referenceFrame()).

 localTransformOf() performs the inverse transformation. See also localInverseCoordinatesOf(). */
Vec Frame::localInverseTransformOf(const Vec& src) const
{
  return rotation().rotate(src);
}

/*! Returns the Frame transform of the vector whose coordinates in the \p from coordinate system is \p
  src (converts vectors from \p from to Frame).

  transformOfIn() performs the inverse transformation. */
Vec Frame::transformOfFrom(const Vec& src, const Frame* const from) const
{
  if (this == from)
    return src;
  else
    if (referenceFrame())
      return localTransformOf(referenceFrame()->transformOfFrom(src, from));
    else
      return localTransformOf(from->inverseTransformOf(src));
}

/*! Returns the \p in transform of the vector whose coordinates in the Frame coordinate system is \p
  src (converts vectors from Frame to \p in).

  transformOfFrom() performs the inverse transformation. */
Vec Frame::transformOfIn(const Vec& src, const Frame* const in) const
{
  const Frame* fr = this;
  Vec    res = src;
  while ((fr != NULL) && (fr != in))
    {
      res = fr->localInverseTransformOf(res);
      fr  = fr->referenceFrame();
    }

  if (fr != in)
    // in was not found in the branch of this, res is now expressed in the world
    // coordinate system. Simply convert to in coordinate system.
    res = in->transformOf(res);

  return res;
}

/////////////////  float[3] versions  //////////////////////

/*! Same as transformOf(), but with \c float parameters. */
void Frame::getTransformOf(const float src[3], float res[3]) const
{
  Vec r = transformOf(Vec(src));
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/*! Same as inverseTransformOf(), but with \c float parameters. */
void Frame::getInverseTransformOf(const float src[3], float res[3]) const
{
  Vec r = inverseTransformOf(Vec(src));
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/*! Same as localTransformOf(), but with \c float parameters. */
void Frame::getLocalTransformOf(const float src[3], float res[3]) const
{
  Vec r = localTransformOf(Vec(src));
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/*! Same as localInverseTransformOf(), but with \c float parameters. */
void Frame::getLocalInverseTransformOf(const float src[3], float res[3]) const
{
  Vec r = localInverseTransformOf(Vec(src));
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/*! Same as transformOfIn(), but with \c float parameters. */
void Frame::getTransformOfIn(const float src[3], float res[3], const Frame* const in) const
{
  Vec r = transformOfIn(Vec(src), in);
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/*! Same as transformOfFrom(), but with \c float parameters. */
void Frame::getTransformOfFrom(const float src[3], float res[3], const Frame* const from) const
{
  Vec r = transformOfFrom(Vec(src), from);
  for (int i=0; i<3 ; ++i)
    res[i] = r[i];
}

/////////////////////////////////   ALIGN   /////////////////////////////////

/*! Aligns the Frame with \p frame, so that two of their axis are parallel.

If one of the X, Y and Z axis of the Frame is almost parallel to any of the X, Y, or Z axis of \p
frame, the Frame is rotated so that these two axis actually become parallel.

If, after this first rotation, two other axis are also almost parallel, a second alignment is
performed. The two frames then have identical orientations, up to 90 degrees rotations.

\p threshold measures how close two axis must be to be considered parallel. It is compared with the
absolute values of the dot product of the normalized axis.

When \p move is set to \c true, the Frame position() is also affected by the alignment. The new
Frame position() is such that the \p frame position (computed with coordinatesOf(), in the Frame
coordinates system) does not change.

\p frame may be \c NULL and then represents the world coordinate system (same convention than for
the referenceFrame()).

The rotation (and translation when \p move is \c true) applied to the Frame are filtered by the
possible constraint(). */
void Frame::alignWithFrame(const Frame* const frame, bool move, float threshold)
{
  Vec directions[2][3];
  for (int d=0; d<3; ++d)
    {
      Vec dir((d==0)? 1.0 : 0.0, (d==1)? 1.0 : 0.0, (d==2)? 1.0 : 0.0);
      if (frame)
	directions[0][d] = frame->inverseTransformOf(dir);
      else
	directions[0][d] = dir;
      directions[1][d] = inverseTransformOf(dir);
    }

  float maxProj = 0.0f;
  float proj;
  unsigned short index[2];
  index[0] = index[1] = 0;
  for (int i=0; i<3; ++i)
    for (int j=0; j<3; ++j)
      if ( (proj=fabs(directions[0][i]*directions[1][j])) >= maxProj )
	{
	  index[0] = i;
	  index[1] = j;
	  maxProj  = proj;
	}

  Frame old;
  old=*this;

  float coef = directions[0][index[0]] * directions[1][index[1]];
  if (fabs(coef) >= threshold)
    {
      const Vec axis = cross(directions[0][index[0]], directions[1][index[1]]);
      float angle = asin(axis.norm());
      if (coef >= 0.0)
	angle = -angle;
      // setOrientation(Quaternion(axis, angle) * orientation());
      rotate(rotation().inverse() * Quaternion(axis, angle) * orientation());

      // Try to align an other axis direction
      unsigned short d = (index[1]+1) % 3;
      Vec dir((d==0)? 1.0 : 0.0, (d==1)? 1.0 : 0.0, (d==2)? 1.0 : 0.0);
      dir = inverseTransformOf(dir);

      float max = 0.0f;
      for (int i=0; i<3; ++i)
	{
	  float proj = fabs(directions[0][i]*dir);
	  if (proj > max)
	    {
	      index[0] = i;
	      max = proj;
	    }
	}

      if (max >= threshold)
	{
	  const Vec axis = cross(directions[0][index[0]], dir);
	  float angle = asin(axis.norm());
	  if (directions[0][index[0]] * dir >= 0.0)
	    angle = -angle;
	  // setOrientation(Quaternion(axis, angle) * orientation());
	  rotate(rotation().inverse() * Quaternion(axis, angle) * orientation());
	}
    }

  if (move)
    {
      Vec center;
      if (frame)
	center = frame->position();

      // setPosition(center - orientation().rotate(old.coordinatesOf(center)));
      translate(center - orientation().rotate(old.coordinatesOf(center)) - translation());
    }
}

/*! Translates the Frame so that its position() lies on the line defined by \p origin and \p
  direction (defined in the world coordinate system).

Simply uses an orthogonal projection. \p direction does not need to be normalized. */
void Frame::projectOnLine(const Vec& origin, const Vec& direction)
{
  // If you are trying to find a bug here, because of memory problems, you waste your time.
  // This is a bug in the gcc 3.3 compiler. Compile the library in debug mode and test.
  // Uncommenting this line also seems to solve the problem. Horrible.
  // cout << "position = " << position() << endl;
  // If you found a problem or are using a different compiler, please let me know.
  const Vec shift = origin - position();
  Vec proj = shift;
  proj.projectOnAxis(direction);
  translate(shift-proj);
}