Welcome to mirror list, hosted at ThFree Co, Russian Federation.

AppGLWidget_quaternion.h « app_blender « intern « freestyle « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e6242e908b1fc28c4386c6af20ad91377c8e053a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/****************************************************************************

 Copyright (C) 2002-2007 Gilles Debunne (Gilles.Debunne@imag.fr)

 This file is part of the QGLViewer library.
 Version 2.2.6-3, released on August 28, 2007.

 http://artis.imag.fr/Members/Gilles.Debunne/QGLViewer

 libQGLViewer is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 libQGLViewer is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with libQGLViewer; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

*****************************************************************************/

#ifndef QGLVIEWER_QUATERNION_H
#define QGLVIEWER_QUATERNION_H

#include "AppGLWidget_config.h"
#include "AppGLWidget_vec.h"

  /*! \brief The Quaternion class represents 3D rotations and orientations.
  \class Quaternion quaternion.h QGLViewer/quaternion.h

  The Quaternion is an appropriate (although not very intuitive) representation for 3D rotations and
  orientations. Many tools are provided to ease the definition of a Quaternion: see constructors,
  setAxisAngle(), setFromRotationMatrix(), setFromRotatedBasis().

  You can apply the rotation represented by the Quaternion to 3D points using rotate() and
  inverseRotate(). See also the Frame class that represents a coordinate system and provides other
  conversion functions like Frame::coordinatesOf() and Frame::transformOf().

  You can apply the Quaternion \c q rotation to the OpenGL matrices using:
  \code
  glMultMatrixd(q.matrix());
  // equvalent to glRotate(q.angle()*180.0/M_PI, q.axis().x, q.axis().y, q.axis().z);
  \endcode

  Quaternion is part of the \c qglviewer namespace, specify \c qglviewer::Quaternion or use the qglviewer
  namespace: \code using namespace qglviewer; \endcode

  <h3>Internal representation</h3>

  The internal representation of a Quaternion corresponding to a rotation around axis \c axis, with an angle
  \c alpha is made of four doubles q[i]:
  \code
  {q[0],q[1],q[2]} = sin(alpha/2) * {axis[0],axis[1],axis[2]}
  q[3] = cos(alpha/2)
  \endcode

  Note that certain implementations place the cosine term in first position (instead of last here).

  The Quaternion is always normalized, so that its inverse() is actually its conjugate.

  See also the Vec and Frame classes' documentations.
  \nosubgrouping */
class Quaternion
{
public:
  /*! @name Defining a Quaternion */
  //@{
  /*! Default constructor, builds an identity rotation. */
  Quaternion()
  { q[0]=q[1]=q[2]=0.0;  q[3]=1.0; }

  /*! Constructor from rotation axis (non null) and angle (in radians). See also setAxisAngle(). */
  Quaternion(const Vec& axis, double angle)
  {
    setAxisAngle(axis, angle);
  }

  Quaternion(const Vec& from, const Vec& to);

  /*! Constructor from the four values of a Quaternion. First three values are axis*sin(angle/2) and
    last one is cos(angle/2).

  \attention The identity Quaternion is Quaternion(0,0,0,1) and \e not Quaternion(0,0,0,0) (which is
  not unitary). The default Quaternion() creates such identity Quaternion. */
  Quaternion(double q0, double q1, double q2, double q3)
  { q[0]=q0;    q[1]=q1;    q[2]=q2;    q[3]=q3; }

  /*! Copy constructor. */
  Quaternion(const Quaternion& Q)
  { for (int i=0; i<4; ++i) q[i] = Q.q[i]; }

  /*! Equal operator. */
  Quaternion& operator=(const Quaternion& Q)
  {
    for (int i=0; i<4; ++i)
      q[i] = Q.q[i];
    return (*this);
  }

  /*! Sets the Quaternion as a rotation of axis \p axis and angle \p angle (in radians).

  \p axis does not need to be normalized. A null \p axis will result in an identity Quaternion. */
  void setAxisAngle(const Vec& axis, double angle)
  {
    const double norm = axis.norm();
    if (norm < 1E-8)
      {
	// Null rotation
	q[0] = 0.0;      q[1] = 0.0;      q[2] = 0.0;      q[3] = 1.0;
      }
    else
      {
	const double sin_half_angle = sin(angle / 2.0);
	q[0] = sin_half_angle*axis[0]/norm;
	q[1] = sin_half_angle*axis[1]/norm;
	q[2] = sin_half_angle*axis[2]/norm;
	q[3] = cos(angle / 2.0);
      }
  }

  /*! Sets the Quaternion value. See the Quaternion(double, double, double, double) constructor documentation. */
  void setValue(double q0, double q1, double q2, double q3)
  { q[0]=q0;    q[1]=q1;    q[2]=q2;    q[3]=q3; }

#ifndef DOXYGEN
  void setFromRotationMatrix(const float m[3][3]);
  void setFromRotatedBase(const Vec& X, const Vec& Y, const Vec& Z);
#endif
  void setFromRotationMatrix(const double m[3][3]);
  void setFromRotatedBasis(const Vec& X, const Vec& Y, const Vec& Z);
  //@}


  /*! @name Accessing values */
  //@{
  Vec axis() const;
  float angle() const;
  void getAxisAngle(Vec& axis, float& angle) const;

  /*! Bracket operator, with a constant return value. \p i must range in [0..3]. See the Quaternion(double, double, double, double) documentation. */
  double operator[](int i) const { return q[i]; }

  /*! Bracket operator returning an l-value. \p i must range in [0..3]. See the Quaternion(double, double, double, double) documentation. */
  double& operator[](int i) { return q[i]; }
  //@}


  /*! @name Rotation computations */
  //@{
  /*! Returns the composition of the \p a and \p b rotations.

  The order is important. When applied to a Vec \c v (see operator*(const Quaternion&, const Vec&)
  and rotate()) the resulting Quaternion acts as if \p b was applied first and then \p a was
  applied. This is obvious since the image \c v' of \p v by the composited rotation satisfies: \code
  v'= (a*b) * v = a * (b*v) \endcode

  Note that a*b usually differs from b*a.

  \attention For efficiency reasons, the resulting Quaternion is not normalized. Use normalize() in
  case of numerical drift with small rotation composition. */
  friend Quaternion operator*(const Quaternion& a, const Quaternion& b)
  {
    return Quaternion(a.q[3]*b.q[0] + b.q[3]*a.q[0] + a.q[1]*b.q[2] - a.q[2]*b.q[1],
		      a.q[3]*b.q[1] + b.q[3]*a.q[1] + a.q[2]*b.q[0] - a.q[0]*b.q[2],
		      a.q[3]*b.q[2] + b.q[3]*a.q[2] + a.q[0]*b.q[1] - a.q[1]*b.q[0],
		      a.q[3]*b.q[3] - b.q[0]*a.q[0] - a.q[1]*b.q[1] - a.q[2]*b.q[2]);
  }

  /*! Quaternion rotation is composed with \p q.

  See operator*(), since this is equivalent to \c this = \c this * \p q.

  \note For efficiency reasons, the resulting Quaternion is not normalized.
  You may normalize() it after each application in case of numerical drift. */
  Quaternion& operator*=(const Quaternion &q)
  {
    *this = (*this)*q;
    return *this;
  }

  /*! Returns the image of \p v by the rotation \p q.

  Same as q.rotate(v). See rotate() and inverseRotate(). */
  friend Vec operator*(const Quaternion& q, const Vec& v)
  {
    return q.rotate(v);
  }

  Vec rotate(const Vec& v) const;
  Vec inverseRotate(const Vec& v) const;
  //@}


  /*! @name Inversion */
  //@{
  /*! Returns the inverse Quaternion (inverse rotation).

  Result has a negated axis() direction and the same angle(). A composition (see operator*()) of a
  Quaternion and its inverse() results in an identity function.

  Use invert() to actually modify the Quaternion. */
  Quaternion inverse() const { return Quaternion(-q[0], -q[1], -q[2], q[3]); }

  /*! Inverses the Quaternion (same rotation angle(), but negated axis()).

  See also inverse(). */
  void invert() { q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; }

  /*! Negates all the coefficients of the Quaternion.

  This results in an other representation of the \e same rotation (opposite rotation angle, but with
  a negated axis direction: the two cancel out). However, note that the results of axis() and
  angle() are unchanged after a call to this method since angle() always returns a value in [0,pi].

  This method is mainly useful for Quaternion interpolation, so that the spherical
  interpolation takes the shortest path on the unit sphere. See slerp() for details. */
  void negate() { invert(); q[3] = -q[3]; }

  /*! Normalizes the Quaternion coefficients.

  This method should not need to be called since we only deal with unit Quaternions. This is however
  useful to prevent numerical drifts, especially with small rotational increments. See also
  normalized(). */
  double normalize()
  {
    const double norm = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
    for (int i=0; i<4; ++i)
      q[i] /= norm;
    return norm;
  }

  /*! Returns a normalized version of the Quaternion.

  See also normalize(). */
  Quaternion normalized() const
  {
    double Q[4];
    const double norm = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
    for (int i=0; i<4; ++i)
      Q[i] = q[i] / norm;
    return Quaternion(Q[0], Q[1], Q[2], Q[3]);
  }
//@}


  /*! @name Associated matrix */
  //@{
  const GLdouble* matrix() const;
  void getMatrix(GLdouble m[4][4]) const;
  void getMatrix(GLdouble m[16]) const;

  void getRotationMatrix(float m[3][3]) const;

  const GLdouble* inverseMatrix() const;
  void getInverseMatrix(GLdouble m[4][4]) const;
  void getInverseMatrix(GLdouble m[16]) const;

  void getInverseRotationMatrix(float m[3][3]) const;
  //@}


  /*! @name Slerp interpolation */
  //@{
  static Quaternion slerp(const Quaternion& a, const Quaternion& b, float t, bool allowFlip=true);
  static Quaternion squad(const Quaternion& a, const Quaternion& tgA, const Quaternion& tgB, const Quaternion& b, float t);
  /*! Returns the "dot" product of \p a and \p b: a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3]. */
  static double dot(const Quaternion& a, const Quaternion& b) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + a[3]*b[3]; }

  Quaternion log();
  Quaternion exp();
  static Quaternion lnDif(const Quaternion& a, const Quaternion& b);
  static Quaternion squadTangent(const Quaternion& before, const Quaternion& center, const Quaternion& after);
  //@}

  /*! @name Random Quaternion */
  //@{
  static Quaternion randomQuaternion();
  //@}

#ifdef DOXYGEN
  /*! @name Output stream */
  //@{
  /*! Output stream operator. Enables debugging code like:
  \code
  Quaternion rot(...);
  cout << "Rotation=" << rot << endl;
  \endcode */
  std::ostream& operator<<(std::ostream& o, const Vec&);
  //@}
#endif

private:
  /*! The internal data representation is private, use operator[] to access values. */
  double q[4];
};


std::ostream& operator<<(std::ostream& o, const Quaternion&);

#endif // QGLVIEWER_QUATERNION_H