Welcome to mirror list, hosted at ThFree Co, Russian Federation.

field.cc « intern « functions « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 39688ef3daf3bbd4834335d94873638e3ddc61c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "BLI_map.hh"
#include "BLI_multi_value_map.hh"
#include "BLI_set.hh"
#include "BLI_stack.hh"
#include "BLI_vector_set.hh"

#include "FN_field.hh"
#include "FN_multi_function_parallel.hh"

namespace blender::fn {

/* --------------------------------------------------------------------
 * Field Evaluation.
 */

struct FieldTreeInfo {
  /**
   * When fields are built, they only have references to the fields that they depend on. This map
   * allows traversal of fields in the opposite direction. So for every field it stores the other
   * fields that depend on it directly.
   */
  MultiValueMap<GFieldRef, GFieldRef> field_users;
  /**
   * The same field input may exist in the field tree as as separate nodes due to the way
   * the tree is constructed. This set contains every different input only once.
   */
  VectorSet<std::reference_wrapper<const FieldInput>> deduplicated_field_inputs;
};

/**
 * Collects some information from the field tree that is required by later steps.
 */
static FieldTreeInfo preprocess_field_tree(Span<GFieldRef> entry_fields)
{
  FieldTreeInfo field_tree_info;

  Stack<GFieldRef> fields_to_check;
  Set<GFieldRef> handled_fields;

  for (GFieldRef field : entry_fields) {
    if (handled_fields.add(field)) {
      fields_to_check.push(field);
    }
  }

  while (!fields_to_check.is_empty()) {
    GFieldRef field = fields_to_check.pop();
    if (field.node().is_input()) {
      const FieldInput &field_input = static_cast<const FieldInput &>(field.node());
      field_tree_info.deduplicated_field_inputs.add(field_input);
      continue;
    }
    BLI_assert(field.node().is_operation());
    const FieldOperation &operation = static_cast<const FieldOperation &>(field.node());
    for (const GFieldRef operation_input : operation.inputs()) {
      field_tree_info.field_users.add(operation_input, field);
      if (handled_fields.add(operation_input)) {
        fields_to_check.push(operation_input);
      }
    }
  }
  return field_tree_info;
}

/**
 * Retrieves the data from the context that is passed as input into the field.
 */
static Vector<const GVArray *> get_field_context_inputs(
    ResourceScope &scope,
    const IndexMask mask,
    const FieldContext &context,
    const Span<std::reference_wrapper<const FieldInput>> field_inputs)
{
  Vector<const GVArray *> field_context_inputs;
  for (const FieldInput &field_input : field_inputs) {
    const GVArray *varray = context.get_varray_for_input(field_input, mask, scope);
    if (varray == nullptr) {
      const CPPType &type = field_input.cpp_type();
      varray = &scope.construct<GVArray_For_SingleValueRef>(
          type, mask.min_array_size(), type.default_value());
    }
    field_context_inputs.append(varray);
  }
  return field_context_inputs;
}

/**
 * \return A set that contains all fields from the field tree that depend on an input that varies
 * for different indices.
 */
static Set<GFieldRef> find_varying_fields(const FieldTreeInfo &field_tree_info,
                                          Span<const GVArray *> field_context_inputs)
{
  Set<GFieldRef> found_fields;
  Stack<GFieldRef> fields_to_check;

  /* The varying fields are the ones that depend on inputs that are not constant. Therefore we
   * start the tree search at the non-constant input fields and traverse through all fields that
   * depend on them. */
  for (const int i : field_context_inputs.index_range()) {
    const GVArray *varray = field_context_inputs[i];
    if (varray->is_single()) {
      continue;
    }
    const FieldInput &field_input = field_tree_info.deduplicated_field_inputs[i];
    const GFieldRef field_input_field{field_input, 0};
    const Span<GFieldRef> users = field_tree_info.field_users.lookup(field_input_field);
    for (const GFieldRef &field : users) {
      if (found_fields.add(field)) {
        fields_to_check.push(field);
      }
    }
  }
  while (!fields_to_check.is_empty()) {
    GFieldRef field = fields_to_check.pop();
    const Span<GFieldRef> users = field_tree_info.field_users.lookup(field);
    for (GFieldRef field : users) {
      if (found_fields.add(field)) {
        fields_to_check.push(field);
      }
    }
  }
  return found_fields;
}

/**
 * Builds the #procedure so that it computes the the fields.
 */
static void build_multi_function_procedure_for_fields(MFProcedure &procedure,
                                                      ResourceScope &scope,
                                                      const FieldTreeInfo &field_tree_info,
                                                      Span<GFieldRef> output_fields)
{
  MFProcedureBuilder builder{procedure};
  /* Every input, intermediate and output field corresponds to a variable in the procedure. */
  Map<GFieldRef, MFVariable *> variable_by_field;

  /* Start by adding the field inputs as parameters to the procedure. */
  for (const FieldInput &field_input : field_tree_info.deduplicated_field_inputs) {
    MFVariable &variable = builder.add_input_parameter(
        MFDataType::ForSingle(field_input.cpp_type()), field_input.debug_name());
    variable_by_field.add_new({field_input, 0}, &variable);
  }

  /* Utility struct that is used to do proper depth first search traversal of the tree below. */
  struct FieldWithIndex {
    GFieldRef field;
    int current_input_index = 0;
  };

  for (GFieldRef field : output_fields) {
    /* We start a new stack for each output field to make sure that a field pushed later to the
     * stack does never depend on a field that was pushed before. */
    Stack<FieldWithIndex> fields_to_check;
    fields_to_check.push({field, 0});
    while (!fields_to_check.is_empty()) {
      FieldWithIndex &field_with_index = fields_to_check.peek();
      const GFieldRef &field = field_with_index.field;
      if (variable_by_field.contains(field)) {
        /* The field has been handled already. */
        fields_to_check.pop();
        continue;
      }
      /* Field inputs should already be handled above. */
      BLI_assert(field.node().is_operation());

      const FieldOperation &operation = static_cast<const FieldOperation &>(field.node());
      const Span<GField> operation_inputs = operation.inputs();

      if (field_with_index.current_input_index < operation_inputs.size()) {
        /* Not all inputs are handled yet. Push the next input field to the stack and increment the
         * input index. */
        fields_to_check.push({operation_inputs[field_with_index.current_input_index]});
        field_with_index.current_input_index++;
      }
      else {
        /* All inputs variables are ready, now gather all variables that are used by the function
         * and call it. */
        const MultiFunction &multi_function = operation.multi_function();
        Vector<MFVariable *> variables(multi_function.param_amount());

        int param_input_index = 0;
        int param_output_index = 0;
        for (const int param_index : multi_function.param_indices()) {
          const MFParamType param_type = multi_function.param_type(param_index);
          const MFParamType::InterfaceType interface_type = param_type.interface_type();
          if (interface_type == MFParamType::Input) {
            const GField &input_field = operation_inputs[param_input_index];
            variables[param_index] = variable_by_field.lookup(input_field);
            param_input_index++;
          }
          else if (interface_type == MFParamType::Output) {
            const GFieldRef output_field{operation, param_output_index};
            const bool output_is_ignored =
                field_tree_info.field_users.lookup(output_field).is_empty() &&
                !output_fields.contains(output_field);
            if (output_is_ignored) {
              /* Ignored outputs don't need a variable. */
              variables[param_index] = nullptr;
            }
            else {
              /* Create a new variable for used outputs. */
              MFVariable &new_variable = procedure.new_variable(param_type.data_type());
              variables[param_index] = &new_variable;
              variable_by_field.add_new(output_field, &new_variable);
            }
            param_output_index++;
          }
          else {
            BLI_assert_unreachable();
          }
        }
        builder.add_call_with_all_variables(multi_function, variables);
      }
    }
  }

  /* Add output parameters to the procedure. */
  Set<MFVariable *> already_output_variables;
  for (const GFieldRef &field : output_fields) {
    MFVariable *variable = variable_by_field.lookup(field);
    if (!already_output_variables.add(variable)) {
      /* One variable can be output at most once. To output the same value twice, we have to make
       * a copy first. */
      const MultiFunction &copy_fn = scope.construct<CustomMF_GenericCopy>("copy",
                                                                           variable->data_type());
      variable = builder.add_call<1>(copy_fn, {variable})[0];
    }
    builder.add_output_parameter(*variable);
  }

  /* Remove the variables that should not be destructed from the map. */
  for (const GFieldRef &field : output_fields) {
    variable_by_field.remove(field);
  }
  /* Add destructor calls for the remaining variables. */
  for (MFVariable *variable : variable_by_field.values()) {
    builder.add_destruct(*variable);
  }

  builder.add_return();

  // std::cout << procedure.to_dot() << "\n";
  BLI_assert(procedure.validate());
}

/**
 * Evaluate fields in the given context. If possible, multiple fields should be evaluated together,
 * because that can be more efficient when they share common sub-fields.
 *
 * \param scope: The resource scope that owns data that makes up the output virtual arrays. Make
 *   sure the scope is not destructed when the output virtual arrays are still used.
 * \param fields_to_evaluate: The fields that should be evaluated together.
 * \param mask: Determines which indices are computed. The mask may be referenced by the returned
 *   virtual arrays. So the underlying indices (if applicable) should live longer then #scope.
 * \param context: The context that the field is evaluated in. Used to retrieve data from each
 *   #FieldInput in the field network.
 * \param dst_varrays: If provided, the computed data will be written into those virtual arrays
 *   instead of into newly created ones. That allows making the computed data live longer than
 *   #scope and is more efficient when the data will be written into those virtual arrays
 *   later anyway.
 * \return The computed virtual arrays for each provided field. If #dst_varrays is passed, the
 *   provided virtual arrays are returned.
 */
Vector<const GVArray *> evaluate_fields(ResourceScope &scope,
                                        Span<GFieldRef> fields_to_evaluate,
                                        IndexMask mask,
                                        const FieldContext &context,
                                        Span<GVMutableArray *> dst_varrays)
{
  Vector<const GVArray *> r_varrays(fields_to_evaluate.size(), nullptr);
  const int array_size = mask.min_array_size();

  /* Destination arrays are optional. Create a small utility method to access them. */
  auto get_dst_varray_if_available = [&](int index) -> GVMutableArray * {
    if (dst_varrays.is_empty()) {
      return nullptr;
    }
    BLI_assert(dst_varrays[index] == nullptr || dst_varrays[index]->size() >= array_size);
    return dst_varrays[index];
  };

  /* Traverse the field tree and prepare some data that is used in later steps. */
  FieldTreeInfo field_tree_info = preprocess_field_tree(fields_to_evaluate);

  /* Get inputs that will be passed into the field when evaluated. */
  Vector<const GVArray *> field_context_inputs = get_field_context_inputs(
      scope, mask, context, field_tree_info.deduplicated_field_inputs);

  /* Finish fields that output an input varray directly. For those we don't have to do any further
   * processing. */
  for (const int out_index : fields_to_evaluate.index_range()) {
    const GFieldRef &field = fields_to_evaluate[out_index];
    if (!field.node().is_input()) {
      continue;
    }
    const FieldInput &field_input = static_cast<const FieldInput &>(field.node());
    const int field_input_index = field_tree_info.deduplicated_field_inputs.index_of(field_input);
    const GVArray *varray = field_context_inputs[field_input_index];
    r_varrays[out_index] = varray;
  }

  Set<GFieldRef> varying_fields = find_varying_fields(field_tree_info, field_context_inputs);

  /* Separate fields into two categories. Those that are constant and need to be evaluated only
   * once, and those that need to be evaluated for every index. */
  Vector<GFieldRef> varying_fields_to_evaluate;
  Vector<int> varying_field_indices;
  Vector<GFieldRef> constant_fields_to_evaluate;
  Vector<int> constant_field_indices;
  for (const int i : fields_to_evaluate.index_range()) {
    if (r_varrays[i] != nullptr) {
      /* Already done. */
      continue;
    }
    GFieldRef field = fields_to_evaluate[i];
    if (varying_fields.contains(field)) {
      varying_fields_to_evaluate.append(field);
      varying_field_indices.append(i);
    }
    else {
      constant_fields_to_evaluate.append(field);
      constant_field_indices.append(i);
    }
  }

  /* Evaluate varying fields if necessary. */
  if (!varying_fields_to_evaluate.is_empty()) {
    /* Build the procedure for those fields. */
    MFProcedure procedure;
    build_multi_function_procedure_for_fields(
        procedure, scope, field_tree_info, varying_fields_to_evaluate);
    MFProcedureExecutor procedure_executor{"Procedure", procedure};
    /* Add multi threading capabilities to the field evaluation. */
    const int grain_size = 10000;
    fn::ParallelMultiFunction parallel_procedure_executor{procedure_executor, grain_size};
    /* Utility variable to make easy to switch the executor. */
    const MultiFunction &executor_fn = parallel_procedure_executor;

    MFParamsBuilder mf_params{executor_fn, &mask};
    MFContextBuilder mf_context;

    /* Provide inputs to the procedure executor. */
    for (const GVArray *varray : field_context_inputs) {
      mf_params.add_readonly_single_input(*varray);
    }

    for (const int i : varying_fields_to_evaluate.index_range()) {
      const GFieldRef &field = varying_fields_to_evaluate[i];
      const CPPType &type = field.cpp_type();
      const int out_index = varying_field_indices[i];

      /* Try to get an existing virtual array that the result should be written into. */
      GVMutableArray *output_varray = get_dst_varray_if_available(out_index);
      void *buffer;
      if (output_varray == nullptr || !output_varray->is_span()) {
        /* Allocate a new buffer for the computed result. */
        buffer = scope.linear_allocator().allocate(type.size() * array_size, type.alignment());

        if (!type.is_trivially_destructible()) {
          /* Destruct values in the end. */
          scope.add_destruct_call(
              [buffer, mask, &type]() { type.destruct_indices(buffer, mask); });
        }

        r_varrays[out_index] = &scope.construct<GVArray_For_GSpan>(
            GSpan{type, buffer, array_size});
      }
      else {
        /* Write the result into the existing span. */
        buffer = output_varray->get_internal_span().data();

        r_varrays[out_index] = output_varray;
      }

      /* Pass output buffer to the procedure executor. */
      const GMutableSpan span{type, buffer, array_size};
      mf_params.add_uninitialized_single_output(span);
    }

    executor_fn.call(mask, mf_params, mf_context);
  }

  /* Evaluate constant fields if necessary. */
  if (!constant_fields_to_evaluate.is_empty()) {
    /* Build the procedure for those fields. */
    MFProcedure procedure;
    build_multi_function_procedure_for_fields(
        procedure, scope, field_tree_info, constant_fields_to_evaluate);
    MFProcedureExecutor procedure_executor{"Procedure", procedure};
    /* Run the code below even when the mask is empty, so that outputs are properly prepared.
     * Higher level code can detect this as well and just skip evaluating the field. */
    const int mask_size = mask.is_empty() ? 0 : 1;
    MFParamsBuilder mf_params{procedure_executor, mask_size};
    MFContextBuilder mf_context;

    /* Provide inputs to the procedure executor. */
    for (const GVArray *varray : field_context_inputs) {
      mf_params.add_readonly_single_input(*varray);
    }

    for (const int i : constant_fields_to_evaluate.index_range()) {
      const GFieldRef &field = constant_fields_to_evaluate[i];
      const CPPType &type = field.cpp_type();
      /* Allocate memory where the computed value will be stored in. */
      void *buffer = scope.linear_allocator().allocate(type.size(), type.alignment());

      if (!type.is_trivially_destructible() && mask_size > 0) {
        BLI_assert(mask_size == 1);
        /* Destruct value in the end. */
        scope.add_destruct_call([buffer, &type]() { type.destruct(buffer); });
      }

      /* Pass output buffer to the procedure executor. */
      mf_params.add_uninitialized_single_output({type, buffer, mask_size});

      /* Create virtual array that can be used after the procedure has been executed below. */
      const int out_index = constant_field_indices[i];
      r_varrays[out_index] = &scope.construct<GVArray_For_SingleValueRef>(
          type, array_size, buffer);
    }

    procedure_executor.call(IndexRange(mask_size), mf_params, mf_context);
  }

  /* Copy data to supplied destination arrays if necessary. In some cases the evaluation above has
   * written the computed data in the right place already. */
  if (!dst_varrays.is_empty()) {
    for (const int out_index : fields_to_evaluate.index_range()) {
      GVMutableArray *output_varray = get_dst_varray_if_available(out_index);
      if (output_varray == nullptr) {
        /* Caller did not provide a destination for this output. */
        continue;
      }
      const GVArray *computed_varray = r_varrays[out_index];
      BLI_assert(computed_varray->type() == output_varray->type());
      if (output_varray == computed_varray) {
        /* The result has been written into the destination provided by the caller already. */
        continue;
      }
      /* Still have to copy over the data in the destination provided by the caller. */
      if (output_varray->is_span()) {
        /* Materialize into a span. */
        computed_varray->materialize_to_uninitialized(mask,
                                                      output_varray->get_internal_span().data());
      }
      else {
        /* Slower materialize into a different structure. */
        const CPPType &type = computed_varray->type();
        BUFFER_FOR_CPP_TYPE_VALUE(type, buffer);
        for (const int i : mask) {
          computed_varray->get_to_uninitialized(i, buffer);
          output_varray->set_by_relocate(i, buffer);
        }
      }
      r_varrays[out_index] = output_varray;
    }
  }
  return r_varrays;
}

void evaluate_constant_field(const GField &field, void *r_value)
{
  ResourceScope scope;
  FieldContext context;
  Vector<const GVArray *> varrays = evaluate_fields(scope, {field}, IndexRange(1), context);
  varrays[0]->get_to_uninitialized(0, r_value);
}

/**
 * If the field depends on some input, the same field is returned.
 * Otherwise the field is evaluated and a new field is created that just computes this constant.
 *
 * Making the field constant has two benefits:
 * - The field-tree becomes a single node, which is more efficient when the field is evaluated many
 *   times.
 * - Memory of the input fields may be freed.
 */
GField make_field_constant_if_possible(GField field)
{
  if (field.node().depends_on_input()) {
    return field;
  }
  const CPPType &type = field.cpp_type();
  BUFFER_FOR_CPP_TYPE_VALUE(type, buffer);
  evaluate_constant_field(field, buffer);
  auto constant_fn = std::make_unique<CustomMF_GenericConstant>(type, buffer, true);
  type.destruct(buffer);
  auto operation = std::make_shared<FieldOperation>(std::move(constant_fn));
  return GField{operation, 0};
}

const GVArray *FieldContext::get_varray_for_input(const FieldInput &field_input,
                                                  IndexMask mask,
                                                  ResourceScope &scope) const
{
  /* By default ask the field input to create the varray. Another field context might overwrite
   * the context here. */
  return field_input.get_varray_for_context(*this, mask, scope);
}

IndexFieldInput::IndexFieldInput() : FieldInput(CPPType::get<int>(), "Index")
{
}

const GVArray *IndexFieldInput::get_varray_for_context(const fn::FieldContext &UNUSED(context),
                                                       IndexMask mask,
                                                       ResourceScope &scope) const
{
  /* TODO: Investigate a similar method to IndexRange::as_span() */
  auto index_func = [](int i) { return i; };
  return &scope.construct<
      fn::GVArray_For_EmbeddedVArray<int, VArray_For_Func<int, decltype(index_func)>>>(
      mask.min_array_size(), mask.min_array_size(), index_func);
}

/* --------------------------------------------------------------------
 * FieldOperation.
 */

FieldOperation::FieldOperation(std::unique_ptr<const MultiFunction> function,
                               Vector<GField> inputs)
    : FieldOperation(*function, std::move(inputs))
{
  owned_function_ = std::move(function);
}

static bool any_field_depends_on_input(Span<GField> fields)
{
  for (const GField &field : fields) {
    if (field.node().depends_on_input()) {
      return true;
    }
  }
  return false;
}

FieldOperation::FieldOperation(const MultiFunction &function, Vector<GField> inputs)
    : FieldNode(false, any_field_depends_on_input(inputs)),
      function_(&function),
      inputs_(std::move(inputs))
{
}

void FieldOperation::foreach_field_input(FunctionRef<void(const FieldInput &)> foreach_fn) const
{
  for (const GField &field : inputs_) {
    field.node().foreach_field_input(foreach_fn);
  }
}

/* --------------------------------------------------------------------
 * FieldInput.
 */

FieldInput::FieldInput(const CPPType &type, std::string debug_name)
    : FieldNode(true, true), type_(&type), debug_name_(std::move(debug_name))
{
}

void FieldInput::foreach_field_input(FunctionRef<void(const FieldInput &)> foreach_fn) const
{
  foreach_fn(*this);
}

/* --------------------------------------------------------------------
 * FieldEvaluator.
 */

static Vector<int64_t> indices_from_selection(const VArray<bool> &selection)
{
  /* If the selection is just a single value, it's best to avoid calling this
   * function when constructing an IndexMask and use an IndexRange instead. */
  BLI_assert(!selection.is_single());

  Vector<int64_t> indices;
  if (selection.is_span()) {
    Span<bool> span = selection.get_internal_span();
    for (const int64_t i : span.index_range()) {
      if (span[i]) {
        indices.append(i);
      }
    }
  }
  else {
    for (const int i : selection.index_range()) {
      if (selection[i]) {
        indices.append(i);
      }
    }
  }
  return indices;
}

int FieldEvaluator::add_with_destination(GField field, GVMutableArray &dst)
{
  const int field_index = fields_to_evaluate_.append_and_get_index(std::move(field));
  dst_varrays_.append(&dst);
  output_pointer_infos_.append({});
  return field_index;
}

int FieldEvaluator::add_with_destination(GField field, GMutableSpan dst)
{
  GVMutableArray &varray = scope_.construct<GVMutableArray_For_GMutableSpan>(dst);
  return this->add_with_destination(std::move(field), varray);
}

int FieldEvaluator::add(GField field, const GVArray **varray_ptr)
{
  const int field_index = fields_to_evaluate_.append_and_get_index(std::move(field));
  dst_varrays_.append(nullptr);
  output_pointer_infos_.append(OutputPointerInfo{
      varray_ptr, [](void *dst, const GVArray &varray, ResourceScope &UNUSED(scope)) {
        *(const GVArray **)dst = &varray;
      }});
  return field_index;
}

int FieldEvaluator::add(GField field)
{
  const int field_index = fields_to_evaluate_.append_and_get_index(std::move(field));
  dst_varrays_.append(nullptr);
  output_pointer_infos_.append({});
  return field_index;
}

void FieldEvaluator::evaluate()
{
  BLI_assert_msg(!is_evaluated_, "Cannot evaluate fields twice.");
  Array<GFieldRef> fields(fields_to_evaluate_.size());
  for (const int i : fields_to_evaluate_.index_range()) {
    fields[i] = fields_to_evaluate_[i];
  }
  evaluated_varrays_ = evaluate_fields(scope_, fields, mask_, context_, dst_varrays_);
  BLI_assert(fields_to_evaluate_.size() == evaluated_varrays_.size());
  for (const int i : fields_to_evaluate_.index_range()) {
    OutputPointerInfo &info = output_pointer_infos_[i];
    if (info.dst != nullptr) {
      info.set(info.dst, *evaluated_varrays_[i], scope_);
    }
  }
  is_evaluated_ = true;
}

IndexMask FieldEvaluator::get_evaluated_as_mask(const int field_index)
{
  const GVArray &varray = this->get_evaluated(field_index);
  GVArray_Typed<bool> typed_varray{varray};

  if (typed_varray->is_single()) {
    if (typed_varray->get_internal_single()) {
      return IndexRange(typed_varray.size());
    }
    return IndexRange(0);
  }

  return scope_.add_value(indices_from_selection(*typed_varray)).as_span();
}

}  // namespace blender::fn