Welcome to mirror list, hosted at ThFree Co, Russian Federation.

multi_function_network_optimization.cc « intern « functions « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 4fe0b506df8014b3b7cdc701c18cdedb5044d458 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/** \file
 * \ingroup fn
 */

/* Used to check if two multi-functions have the exact same type. */
#include <typeinfo>

#include "FN_multi_function_builder.hh"
#include "FN_multi_function_network_evaluation.hh"
#include "FN_multi_function_network_optimization.hh"

#include "BLI_disjoint_set.hh"
#include "BLI_ghash.h"
#include "BLI_map.hh"
#include "BLI_rand.h"
#include "BLI_stack.hh"

namespace blender::fn::mf_network_optimization {

/* -------------------------------------------------------------------- */
/** \name Utility functions to find nodes in a network.
 *
 * \{ */

static bool set_tag_and_check_if_modified(bool &tag, bool new_value)
{
  if (tag != new_value) {
    tag = new_value;
    return true;
  }
  else {
    return false;
  }
}

static Array<bool> mask_nodes_to_the_left(MFNetwork &network, Span<MFNode *> nodes)
{
  Array<bool> is_to_the_left(network.node_id_amount(), false);
  Stack<MFNode *> nodes_to_check;

  for (MFNode *node : nodes) {
    is_to_the_left[node->id()] = true;
    nodes_to_check.push(node);
  }

  while (!nodes_to_check.is_empty()) {
    MFNode &node = *nodes_to_check.pop();

    for (MFInputSocket *input_socket : node.inputs()) {
      MFOutputSocket *origin = input_socket->origin();
      if (origin != nullptr) {
        MFNode &origin_node = origin->node();
        if (set_tag_and_check_if_modified(is_to_the_left[origin_node.id()], true)) {
          nodes_to_check.push(&origin_node);
        }
      }
    }
  }

  return is_to_the_left;
}

static Array<bool> mask_nodes_to_the_right(MFNetwork &network, Span<MFNode *> nodes)
{
  Array<bool> is_to_the_right(network.node_id_amount(), false);
  Stack<MFNode *> nodes_to_check;

  for (MFNode *node : nodes) {
    is_to_the_right[node->id()] = true;
    nodes_to_check.push(node);
  }

  while (!nodes_to_check.is_empty()) {
    MFNode &node = *nodes_to_check.pop();

    for (MFOutputSocket *output_socket : node.outputs()) {
      for (MFInputSocket *target_socket : output_socket->targets()) {
        MFNode &target_node = target_socket->node();
        if (set_tag_and_check_if_modified(is_to_the_right[target_node.id()], true)) {
          nodes_to_check.push(&target_node);
        }
      }
    }
  }

  return is_to_the_right;
}

static Vector<MFNode *> find_nodes_based_on_mask(MFNetwork &network,
                                                 Span<bool> id_mask,
                                                 bool mask_value)
{
  Vector<MFNode *> nodes;
  for (uint id : id_mask.index_range()) {
    if (id_mask[id] == mask_value) {
      MFNode *node = network.node_or_null_by_id(id);
      if (node != nullptr) {
        nodes.append(node);
      }
    }
  }
  return nodes;
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Dead Node Removal
 *
 * \{ */

/**
 * Unused nodes are all those nodes that no dummy node depends upon.
 */
void dead_node_removal(MFNetwork &network)
{
  Array<bool> node_is_used_mask = mask_nodes_to_the_left(network, network.dummy_nodes());
  Vector<MFNode *> nodes_to_remove = find_nodes_based_on_mask(network, node_is_used_mask, false);
  network.remove(nodes_to_remove);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Constant Folding
 *
 * \{ */

static Vector<MFNode *> find_non_constant_nodes(MFNetwork &network)
{
  Vector<MFNode *> non_constant_nodes;
  non_constant_nodes.extend(network.dummy_nodes());

  for (MFFunctionNode *node : network.function_nodes()) {
    if (!node->all_inputs_have_origin()) {
      non_constant_nodes.append(node);
    }
  }
  return non_constant_nodes;
}

static bool output_has_non_constant_target_node(MFOutputSocket *output_socket,
                                                Span<bool> is_not_constant_mask)
{
  for (MFInputSocket *target_socket : output_socket->targets()) {
    MFNode &target_node = target_socket->node();
    bool target_is_not_constant = is_not_constant_mask[target_node.id()];
    if (target_is_not_constant) {
      return true;
    }
  }
  return false;
}

static MFInputSocket *try_find_dummy_target_socket(MFOutputSocket *output_socket)
{
  for (MFInputSocket *target_socket : output_socket->targets()) {
    if (target_socket->node().is_dummy()) {
      return target_socket;
    }
  }
  return nullptr;
}

static Vector<MFInputSocket *> find_constant_inputs_to_fold(
    MFNetwork &network, Vector<MFDummyNode *> &r_temporary_nodes)
{
  Vector<MFNode *> non_constant_nodes = find_non_constant_nodes(network);
  Array<bool> is_not_constant_mask = mask_nodes_to_the_right(network, non_constant_nodes);
  Vector<MFNode *> constant_nodes = find_nodes_based_on_mask(network, is_not_constant_mask, false);

  Vector<MFInputSocket *> sockets_to_compute;
  for (MFNode *node : constant_nodes) {
    if (node->inputs().size() == 0) {
      continue;
    }

    for (MFOutputSocket *output_socket : node->outputs()) {
      MFDataType data_type = output_socket->data_type();
      if (output_has_non_constant_target_node(output_socket, is_not_constant_mask)) {
        MFInputSocket *dummy_target = try_find_dummy_target_socket(output_socket);
        if (dummy_target == nullptr) {
          dummy_target = &network.add_output("Dummy", data_type);
          network.add_link(*output_socket, *dummy_target);
          r_temporary_nodes.append(&dummy_target->node().as_dummy());
        }

        sockets_to_compute.append(dummy_target);
      }
    }
  }
  return sockets_to_compute;
}

static void prepare_params_for_constant_folding(const MultiFunction &network_fn,
                                                MFParamsBuilder &params,
                                                ResourceCollector &resources)
{
  for (uint param_index : network_fn.param_indices()) {
    MFParamType param_type = network_fn.param_type(param_index);
    MFDataType data_type = param_type.data_type();

    switch (data_type.category()) {
      case MFDataType::Single: {
        /* Allocates memory for a single constant folded value. */
        const CPPType &cpp_type = data_type.single_type();
        void *buffer = resources.linear_allocator().allocate(cpp_type.size(),
                                                             cpp_type.alignment());
        GMutableSpan array{cpp_type, buffer, 1};
        params.add_uninitialized_single_output(array);
        break;
      }
      case MFDataType::Vector: {
        /* Allocates memory for a constant folded vector. */
        const CPPType &cpp_type = data_type.vector_base_type();
        GVectorArray &vector_array = resources.construct<GVectorArray>(AT, cpp_type, 1);
        params.add_vector_output(vector_array);
        break;
      }
    }
  }
}

static Array<MFOutputSocket *> add_constant_folded_sockets(const MultiFunction &network_fn,
                                                           MFParamsBuilder &params,
                                                           ResourceCollector &resources,
                                                           MFNetwork &network)
{
  Array<MFOutputSocket *> folded_sockets{network_fn.param_indices().size(), nullptr};

  for (uint param_index : network_fn.param_indices()) {
    MFParamType param_type = network_fn.param_type(param_index);
    MFDataType data_type = param_type.data_type();

    const MultiFunction *constant_fn = nullptr;

    switch (data_type.category()) {
      case MFDataType::Single: {
        const CPPType &cpp_type = data_type.single_type();
        GMutableSpan array = params.computed_array(param_index);
        void *buffer = array.buffer();
        resources.add(buffer, array.type().destruct_cb(), AT);

        constant_fn = &resources.construct<CustomMF_GenericConstant>(AT, cpp_type, buffer);
        break;
      }
      case MFDataType::Vector: {
        GVectorArray &vector_array = params.computed_vector_array(param_index);
        GSpan array = vector_array[0];
        constant_fn = &resources.construct<CustomMF_GenericConstantArray>(AT, array);
        break;
      }
    }

    MFFunctionNode &folded_node = network.add_function(*constant_fn);
    folded_sockets[param_index] = &folded_node.output(0);
  }
  return folded_sockets;
}

static Array<MFOutputSocket *> compute_constant_sockets_and_add_folded_nodes(
    MFNetwork &network,
    Span<const MFInputSocket *> sockets_to_compute,
    ResourceCollector &resources)
{
  MFNetworkEvaluator network_fn{{}, sockets_to_compute};

  MFContextBuilder context;
  MFParamsBuilder params{network_fn, 1};
  prepare_params_for_constant_folding(network_fn, params, resources);
  network_fn.call({0}, params, context);
  return add_constant_folded_sockets(network_fn, params, resources, network);
}

/**
 * Find function nodes that always output the same value and replace those with constant nodes.
 */
void constant_folding(MFNetwork &network, ResourceCollector &resources)
{
  Vector<MFDummyNode *> temporary_nodes;
  Vector<MFInputSocket *> inputs_to_fold = find_constant_inputs_to_fold(network, temporary_nodes);
  if (inputs_to_fold.size() == 0) {
    return;
  }

  Array<MFOutputSocket *> folded_sockets = compute_constant_sockets_and_add_folded_nodes(
      network, inputs_to_fold, resources);

  for (uint i : inputs_to_fold.index_range()) {
    MFOutputSocket &original_socket = *inputs_to_fold[i]->origin();
    network.relink(original_socket, *folded_sockets[i]);
  }

  network.remove(temporary_nodes);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Common Sub-network Elimination
 *
 * \{ */

static uint32_t compute_node_hash(MFFunctionNode &node, RNG *rng, Span<uint32_t> node_hashes)
{
  uint32_t combined_inputs_hash = 394659347u;
  for (MFInputSocket *input_socket : node.inputs()) {
    MFOutputSocket *origin_socket = input_socket->origin();
    uint32_t input_hash;
    if (origin_socket == nullptr) {
      input_hash = BLI_rng_get_uint(rng);
    }
    else {
      input_hash = BLI_ghashutil_combine_hash(node_hashes[origin_socket->node().id()],
                                              origin_socket->index());
    }
    combined_inputs_hash = BLI_ghashutil_combine_hash(combined_inputs_hash, input_hash);
  }

  uint32_t function_hash = node.function().hash();
  uint32_t node_hash = BLI_ghashutil_combine_hash(combined_inputs_hash, function_hash);
  return node_hash;
}

/**
 * Produces a hash for every node. Two nodes with the same hash should have a high probability of
 * outputting the same values.
 */
static Array<uint32_t> compute_node_hashes(MFNetwork &network)
{
  RNG *rng = BLI_rng_new(0);
  Array<uint32_t> node_hashes(network.node_id_amount());
  Array<bool> node_is_hashed(network.node_id_amount(), false);

  /* No dummy nodes are not assumed to output the same values. */
  for (MFDummyNode *node : network.dummy_nodes()) {
    uint32_t node_hash = BLI_rng_get_uint(rng);
    node_hashes[node->id()] = node_hash;
    node_is_hashed[node->id()] = true;
  }

  Stack<MFFunctionNode *> nodes_to_check;
  nodes_to_check.push_multiple(network.function_nodes());

  while (!nodes_to_check.is_empty()) {
    MFFunctionNode &node = *nodes_to_check.peek();
    if (node_is_hashed[node.id()]) {
      nodes_to_check.pop();
      continue;
    }

    /* Make sure that origin nodes are hashed first. */
    bool all_dependencies_ready = true;
    for (MFInputSocket *input_socket : node.inputs()) {
      MFOutputSocket *origin_socket = input_socket->origin();
      if (origin_socket != nullptr) {
        MFNode &origin_node = origin_socket->node();
        if (!node_is_hashed[origin_node.id()]) {
          all_dependencies_ready = false;
          nodes_to_check.push(&origin_node.as_function());
        }
      }
    }
    if (!all_dependencies_ready) {
      continue;
    }

    uint32_t node_hash = compute_node_hash(node, rng, node_hashes);
    node_hashes[node.id()] = node_hash;
    node_is_hashed[node.id()] = true;
    nodes_to_check.pop();
  }

  BLI_rng_free(rng);
  return node_hashes;
}

static Map<uint32_t, Vector<MFNode *, 1>> group_nodes_by_hash(MFNetwork &network,
                                                              Span<uint32_t> node_hashes)
{
  Map<uint32_t, Vector<MFNode *, 1>> nodes_by_hash;
  for (uint id : IndexRange(network.node_id_amount())) {
    MFNode *node = network.node_or_null_by_id(id);
    if (node != nullptr) {
      uint32_t node_hash = node_hashes[id];
      nodes_by_hash.lookup_or_add_default(node_hash).append(node);
    }
  }
  return nodes_by_hash;
}

static bool functions_are_equal(const MultiFunction &a, const MultiFunction &b)
{
  if (&a == &b) {
    return true;
  }
  if (typeid(a) == typeid(b)) {
    return a.equals(b);
  }
  return false;
}

static bool nodes_output_same_values(DisjointSet &cache, const MFNode &a, const MFNode &b)
{
  if (cache.in_same_set(a.id(), b.id())) {
    return true;
  }

  if (a.is_dummy() || b.is_dummy()) {
    return false;
  }
  if (!functions_are_equal(a.as_function().function(), b.as_function().function())) {
    return false;
  }
  for (uint i : a.inputs().index_range()) {
    const MFOutputSocket *origin_a = a.input(i).origin();
    const MFOutputSocket *origin_b = b.input(i).origin();
    if (origin_a == nullptr || origin_b == nullptr) {
      return false;
    }
    if (!nodes_output_same_values(cache, origin_a->node(), origin_b->node())) {
      return false;
    }
  }

  cache.join(a.id(), b.id());
  return true;
}

static void relink_duplicate_nodes(MFNetwork &network,
                                   Map<uint32_t, Vector<MFNode *, 1>> &nodes_by_hash)
{
  DisjointSet same_node_cache{network.node_id_amount()};

  for (Span<MFNode *> nodes_with_same_hash : nodes_by_hash.values()) {
    if (nodes_with_same_hash.size() <= 1) {
      continue;
    }

    Vector<MFNode *, 16> nodes_to_check = nodes_with_same_hash;
    Vector<MFNode *, 16> remaining_nodes;
    while (nodes_to_check.size() >= 2) {
      MFNode &deduplicated_node = *nodes_to_check[0];
      for (MFNode *node : nodes_to_check.as_span().drop_front(1)) {
        /* This is true with fairly high probability, but hash collisions can happen. So we have to
         * check if the node actually output the same values. */
        if (nodes_output_same_values(same_node_cache, deduplicated_node, *node)) {
          for (uint i : deduplicated_node.outputs().index_range()) {
            network.relink(node->output(i), deduplicated_node.output(i));
          }
        }
        else {
          remaining_nodes.append(node);
        }
      }
      nodes_to_check = std::move(remaining_nodes);
    }
  }
}

/**
 * Tries to detect duplicate sub-networks and eliminates them. This can help quite a lot when node
 * groups were used to create the network.
 */
void common_subnetwork_elimination(MFNetwork &network)
{
  Array<uint32_t> node_hashes = compute_node_hashes(network);
  Map<uint32_t, Vector<MFNode *, 1>> nodes_by_hash = group_nodes_by_hash(network, node_hashes);
  relink_duplicate_nodes(network, nodes_by_hash);
}

/** \} */

}  // namespace blender::fn::mf_network_optimization