Welcome to mirror list, hosted at ThFree Co, Russian Federation.

add_curves_on_mesh.cc « intern « geometry « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a03c9b994a913a7803f2d4a7a833ec78b27f7a2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "BLI_length_parameterize.hh"
#include "BLI_task.hh"

#include "BKE_attribute_math.hh"
#include "BKE_mesh.h"
#include "BKE_mesh_sample.hh"

#include "GEO_add_curves_on_mesh.hh"
#include "GEO_reverse_uv_sampler.hh"

/**
 * The code below uses a suffix naming convention to indicate the coordinate space:
 * cu: Local space of the curves object that is being edited.
 * su: Local space of the surface object.
 */

namespace blender::geometry {

using bke::CurvesGeometry;

struct NeighborCurve {
  /* Curve index of the neighbor. */
  int index;
  /* The weights of all neighbors of a new curve add up to 1. */
  float weight;
};

static constexpr int max_neighbors = 5;
using NeighborCurves = Vector<NeighborCurve, max_neighbors>;

float3 compute_surface_point_normal(const MLoopTri &looptri,
                                    const float3 &bary_coord,
                                    const Span<float3> corner_normals)
{
  const int l0 = looptri.tri[0];
  const int l1 = looptri.tri[1];
  const int l2 = looptri.tri[2];

  const float3 &l0_normal = corner_normals[l0];
  const float3 &l1_normal = corner_normals[l1];
  const float3 &l2_normal = corner_normals[l2];

  const float3 normal = math::normalize(
      attribute_math::mix3(bary_coord, l0_normal, l1_normal, l2_normal));
  return normal;
}

static void initialize_straight_curve_positions(const float3 &p1,
                                                const float3 &p2,
                                                MutableSpan<float3> r_positions)
{
  const float step = 1.0f / float(r_positions.size() - 1);
  for (const int i : r_positions.index_range()) {
    r_positions[i] = math::interpolate(p1, p2, i * step);
  }
}

static Array<NeighborCurves> find_curve_neighbors(const Span<float3> root_positions,
                                                  const KDTree_3d &old_roots_kdtree)
{
  const int tot_added_curves = root_positions.size();
  Array<NeighborCurves> neighbors_per_curve(tot_added_curves);
  threading::parallel_for(IndexRange(tot_added_curves), 128, [&](const IndexRange range) {
    for (const int i : range) {
      const float3 root = root_positions[i];
      std::array<KDTreeNearest_3d, max_neighbors> nearest_n;
      const int found_neighbors = BLI_kdtree_3d_find_nearest_n(
          &old_roots_kdtree, root, nearest_n.data(), max_neighbors);
      float tot_weight = 0.0f;
      for (const int neighbor_i : IndexRange(found_neighbors)) {
        KDTreeNearest_3d &nearest = nearest_n[neighbor_i];
        const float weight = 1.0f / std::max(nearest.dist, 0.00001f);
        tot_weight += weight;
        neighbors_per_curve[i].append({nearest.index, weight});
      }
      /* Normalize weights. */
      for (NeighborCurve &neighbor : neighbors_per_curve[i]) {
        neighbor.weight /= tot_weight;
      }
    }
  });
  return neighbors_per_curve;
}

template<typename T, typename GetValueF>
void interpolate_from_neighbors(const Span<NeighborCurves> neighbors_per_curve,
                                const T &fallback,
                                const GetValueF &get_value_from_neighbor,
                                MutableSpan<T> r_interpolated_values)
{
  attribute_math::DefaultMixer<T> mixer{r_interpolated_values};
  threading::parallel_for(r_interpolated_values.index_range(), 512, [&](const IndexRange range) {
    for (const int i : range) {
      const NeighborCurves &neighbors = neighbors_per_curve[i];
      if (neighbors.is_empty()) {
        mixer.mix_in(i, fallback, 1.0f);
      }
      else {
        for (const NeighborCurve &neighbor : neighbors) {
          const T neighbor_value = get_value_from_neighbor(neighbor.index);
          mixer.mix_in(i, neighbor_value, neighbor.weight);
        }
      }
    }
    mixer.finalize(range);
  });
}

static void interpolate_position_without_interpolation(
    CurvesGeometry &curves,
    const int old_curves_num,
    const Span<float3> root_positions_cu,
    const Span<float> new_lengths_cu,
    const Span<float3> new_normals_su,
    const float4x4 &surface_to_curves_normal_mat)
{
  const int added_curves_num = root_positions_cu.size();
  MutableSpan<float3> positions_cu = curves.positions_for_write();
  threading::parallel_for(IndexRange(added_curves_num), 256, [&](const IndexRange range) {
    for (const int i : range) {
      const int curve_i = old_curves_num + i;
      const IndexRange points = curves.points_for_curve(curve_i);
      const float3 &root_cu = root_positions_cu[i];
      const float length = new_lengths_cu[i];
      const float3 &normal_su = new_normals_su[i];
      const float3 normal_cu = math::normalize(surface_to_curves_normal_mat * normal_su);
      const float3 tip_cu = root_cu + length * normal_cu;

      initialize_straight_curve_positions(root_cu, tip_cu, positions_cu.slice(points));
    }
  });
}

static void interpolate_position_with_interpolation(CurvesGeometry &curves,
                                                    const Span<float3> root_positions_cu,
                                                    const Span<NeighborCurves> neighbors_per_curve,
                                                    const int old_curves_num,
                                                    const Span<float> new_lengths_cu,
                                                    const Span<float3> new_normals_su,
                                                    const bke::CurvesSurfaceTransforms &transforms,
                                                    const ReverseUVSampler &reverse_uv_sampler,
                                                    const Span<float3> corner_normals_su)
{
  MutableSpan<float3> positions_cu = curves.positions_for_write();
  const int added_curves_num = root_positions_cu.size();

  const Span<float2> uv_coords = curves.surface_uv_coords();

  threading::parallel_for(IndexRange(added_curves_num), 256, [&](const IndexRange range) {
    for (const int added_curve_i : range) {
      const NeighborCurves &neighbors = neighbors_per_curve[added_curve_i];
      const int curve_i = old_curves_num + added_curve_i;
      const IndexRange points = curves.points_for_curve(curve_i);

      const float length_cu = new_lengths_cu[added_curve_i];
      const float3 &normal_su = new_normals_su[added_curve_i];
      const float3 normal_cu = math::normalize(transforms.surface_to_curves_normal * normal_su);

      const float3 &root_cu = root_positions_cu[added_curve_i];

      if (neighbors.is_empty()) {
        /* If there are no neighbors, just make a straight line. */
        const float3 tip_cu = root_cu + length_cu * normal_cu;
        initialize_straight_curve_positions(root_cu, tip_cu, positions_cu.slice(points));
        continue;
      }

      positions_cu.slice(points).fill(root_cu);

      for (const NeighborCurve &neighbor : neighbors) {
        const int neighbor_curve_i = neighbor.index;
        const float2 neighbor_uv = uv_coords[neighbor_curve_i];
        const ReverseUVSampler::Result result = reverse_uv_sampler.sample(neighbor_uv);
        if (result.type != ReverseUVSampler::ResultType::Ok) {
          continue;
        }

        const float3 neighbor_normal_su = compute_surface_point_normal(
            *result.looptri, result.bary_weights, corner_normals_su);
        const float3 neighbor_normal_cu = math::normalize(transforms.surface_to_curves_normal *
                                                          neighbor_normal_su);

        /* The rotation matrix used to transform relative coordinates of the neighbor curve
         * to the new curve. */
        float normal_rotation_cu[3][3];
        rotation_between_vecs_to_mat3(normal_rotation_cu, neighbor_normal_cu, normal_cu);

        const IndexRange neighbor_points = curves.points_for_curve(neighbor_curve_i);
        const float3 &neighbor_root_cu = positions_cu[neighbor_points[0]];

        /* Sample the positions on neighbors and mix them into the final positions of the curve.
         * Resampling is necessary if the length of the new curve does not match the length of the
         * neighbors or the number of handle points is different.
         *
         * TODO: The lengths can be cached so they aren't recomputed if a curve is a neighbor for
         * multiple new curves. Also, allocations could be avoided by reusing some arrays. */

        const Span<float3> neighbor_positions_cu = positions_cu.slice(neighbor_points);
        if (neighbor_positions_cu.size() == 1) {
          /* Skip interpolating positions from neighbors with only one point. */
          continue;
        }
        Array<float, 32> lengths(length_parameterize::segments_num(neighbor_points.size(), false));
        length_parameterize::accumulate_lengths<float3>(neighbor_positions_cu, false, lengths);
        const float neighbor_length_cu = lengths.last();

        Array<float, 32> sample_lengths(points.size());
        const float length_factor = std::min(1.0f, length_cu / neighbor_length_cu);
        const float resample_factor = (1.0f / (points.size() - 1.0f)) * length_factor;
        for (const int i : sample_lengths.index_range()) {
          sample_lengths[i] = i * resample_factor * neighbor_length_cu;
        }

        Array<int, 32> indices(points.size());
        Array<float, 32> factors(points.size());
        length_parameterize::sample_at_lengths(lengths, sample_lengths, indices, factors);

        for (const int i : IndexRange(points.size())) {
          const float3 sample_cu = math::interpolate(neighbor_positions_cu[indices[i]],
                                                     neighbor_positions_cu[indices[i] + 1],
                                                     factors[i]);
          const float3 relative_to_root_cu = sample_cu - neighbor_root_cu;
          float3 rotated_relative_coord = relative_to_root_cu;
          mul_m3_v3(normal_rotation_cu, rotated_relative_coord);
          positions_cu[points[i]] += neighbor.weight * rotated_relative_coord;
        }
      }
    }
  });
}

AddCurvesOnMeshOutputs add_curves_on_mesh(CurvesGeometry &curves,
                                          const AddCurvesOnMeshInputs &inputs)
{
  AddCurvesOnMeshOutputs outputs;

  const bool use_interpolation = inputs.interpolate_length || inputs.interpolate_point_count ||
                                 inputs.interpolate_shape;

  Vector<float3> root_positions_cu;
  Vector<float3> bary_coords;
  Vector<const MLoopTri *> looptris;
  Vector<float2> used_uvs;

  /* Find faces that the passed in uvs belong to. */
  const Span<MVert> surface_verts = inputs.surface->verts();
  const Span<MLoop> surface_loops = inputs.surface->loops();
  for (const int i : inputs.uvs.index_range()) {
    const float2 &uv = inputs.uvs[i];
    const ReverseUVSampler::Result result = inputs.reverse_uv_sampler->sample(uv);
    if (result.type != ReverseUVSampler::ResultType::Ok) {
      outputs.uv_error = true;
      continue;
    }
    const MLoopTri &looptri = *result.looptri;
    bary_coords.append(result.bary_weights);
    looptris.append(&looptri);
    const float3 root_position_su = attribute_math::mix3<float3>(
        result.bary_weights,
        surface_verts[surface_loops[looptri.tri[0]].v].co,
        surface_verts[surface_loops[looptri.tri[1]].v].co,
        surface_verts[surface_loops[looptri.tri[2]].v].co);
    root_positions_cu.append(inputs.transforms->surface_to_curves * root_position_su);
    used_uvs.append(uv);
  }

  Array<NeighborCurves> neighbors_per_curve;
  if (use_interpolation) {
    BLI_assert(inputs.old_roots_kdtree != nullptr);
    neighbors_per_curve = find_curve_neighbors(root_positions_cu, *inputs.old_roots_kdtree);
  }

  const int added_curves_num = root_positions_cu.size();
  const int old_points_num = curves.points_num();
  const int old_curves_num = curves.curves_num();
  const int new_curves_num = old_curves_num + added_curves_num;

  /* Grow number of curves first, so that the offsets array can be filled. */
  curves.resize(old_points_num, new_curves_num);
  const IndexRange new_curves_range = curves.curves_range().drop_front(old_curves_num);

  /* Compute new curve offsets. */
  MutableSpan<int> curve_offsets = curves.offsets_for_write();
  MutableSpan<int> new_point_counts_per_curve = curve_offsets.take_back(added_curves_num);
  if (inputs.interpolate_point_count) {
    interpolate_from_neighbors<int>(
        neighbors_per_curve,
        inputs.fallback_point_count,
        [&](const int curve_i) { return curves.points_for_curve(curve_i).size(); },
        new_point_counts_per_curve);
  }
  else {
    new_point_counts_per_curve.fill(inputs.fallback_point_count);
  }
  for (const int i : new_curves_range) {
    curve_offsets[i + 1] += curve_offsets[i];
  }

  const int new_points_num = curves.offsets().last();
  curves.resize(new_points_num, new_curves_num);
  MutableSpan<float3> positions_cu = curves.positions_for_write();

  /* Initialize attachment information. */
  MutableSpan<float2> surface_uv_coords = curves.surface_uv_coords_for_write();
  surface_uv_coords.take_back(added_curves_num).copy_from(used_uvs);

  /* Determine length of new curves. */
  Array<float> new_lengths_cu(added_curves_num);
  if (inputs.interpolate_length) {
    interpolate_from_neighbors<float>(
        neighbors_per_curve,
        inputs.fallback_curve_length,
        [&](const int curve_i) {
          const IndexRange points = curves.points_for_curve(curve_i);
          float length = 0.0f;
          for (const int segment_i : points.drop_back(1)) {
            const float3 &p1 = positions_cu[segment_i];
            const float3 &p2 = positions_cu[segment_i + 1];
            length += math::distance(p1, p2);
          }
          return length;
        },
        new_lengths_cu);
  }
  else {
    new_lengths_cu.fill(inputs.fallback_curve_length);
  }

  /* Find surface normal at root points. */
  Array<float3> new_normals_su(added_curves_num);
  threading::parallel_for(IndexRange(added_curves_num), 256, [&](const IndexRange range) {
    for (const int i : range) {
      new_normals_su[i] = compute_surface_point_normal(
          *looptris[i], bary_coords[i], inputs.corner_normals_su);
    }
  });

  /* Update selection arrays when available. */
  const VArray<float> points_selection = curves.selection_point_float();
  if (points_selection.is_span()) {
    MutableSpan<float> points_selection_span = curves.selection_point_float_for_write();
    points_selection_span.drop_front(old_points_num).fill(1.0f);
  }
  const VArray<float> curves_selection = curves.selection_curve_float();
  if (curves_selection.is_span()) {
    MutableSpan<float> curves_selection_span = curves.selection_curve_float_for_write();
    curves_selection_span.slice(new_curves_range).fill(1.0f);
  }

  /* Initialize position attribute. */
  if (inputs.interpolate_shape) {
    interpolate_position_with_interpolation(curves,
                                            root_positions_cu,
                                            neighbors_per_curve,
                                            old_curves_num,
                                            new_lengths_cu,
                                            new_normals_su,
                                            *inputs.transforms,
                                            *inputs.reverse_uv_sampler,
                                            inputs.corner_normals_su);
  }
  else {
    interpolate_position_without_interpolation(curves,
                                               old_curves_num,
                                               root_positions_cu,
                                               new_lengths_cu,
                                               new_normals_su,
                                               inputs.transforms->surface_to_curves_normal);
  }

  curves.fill_curve_types(new_curves_range, CURVE_TYPE_CATMULL_ROM);

  /* Explicitly set all other attributes besides those processed above to default values. */
  bke::MutableAttributeAccessor attributes = curves.attributes_for_write();
  Set<std::string> attributes_to_skip{{"position",
                                       "curve_type",
                                       "surface_uv_coordinate",
                                       ".selection_point_float",
                                       ".selection_curve_float"}};
  attributes.for_all(
      [&](const bke::AttributeIDRef &id, const bke::AttributeMetaData /*meta_data*/) {
        if (id.is_named() && attributes_to_skip.contains(id.name())) {
          return true;
        }
        bke::GSpanAttributeWriter attribute = attributes.lookup_for_write_span(id);
        /* The new elements are added at the end of the array. */
        const int old_elements_num = attribute.domain == ATTR_DOMAIN_POINT ? old_points_num :
                                                                             old_curves_num;
        const CPPType &type = attribute.span.type();
        GMutableSpan new_data = attribute.span.drop_front(old_elements_num);
        type.fill_assign_n(type.default_value(), new_data.data(), new_data.size());
        attribute.finish();
        return true;
      });

  return outputs;
}

}  // namespace blender::geometry