Welcome to mirror list, hosted at ThFree Co, Russian Federation.

realize_instances.cc « intern « geometry « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c98bd9d6b74caf82061d253f433d8fdddf05bf78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "GEO_realize_instances.hh"

#include "DNA_collection_types.h"
#include "DNA_layer_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_pointcloud_types.h"

#include "BLI_noise.hh"
#include "BLI_task.hh"

#include "BKE_collection.h"
#include "BKE_geometry_set_instances.hh"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_pointcloud.h"
#include "BKE_spline.hh"
#include "BKE_type_conversions.hh"

namespace blender::geometry {

using blender::bke::AttributeIDRef;
using blender::bke::custom_data_type_to_cpp_type;
using blender::bke::CustomDataAttributes;
using blender::bke::object_get_evaluated_geometry_set;
using blender::bke::OutputAttribute;
using blender::bke::OutputAttribute_Typed;
using blender::bke::ReadAttributeLookup;
using blender::fn::CPPType;
using blender::fn::GArray;
using blender::fn::GMutableSpan;
using blender::fn::GSpan;
using blender::fn::GVArray;
using blender::fn::GVArray_GSpan;

/**
 * An ordered set of attribute ids. Attributes are ordered to avoid name lookups in many places.
 * Once the attributes are ordered, they can just be referred to by index.
 */
struct OrderedAttributes {
  VectorSet<AttributeIDRef> ids;
  Vector<AttributeKind> kinds;

  int size() const
  {
    return this->kinds.size();
  }

  IndexRange index_range() const
  {
    return this->kinds.index_range();
  }
};

struct AttributeFallbacksArray {
  /**
   * Instance attribute values used as fallback when the geometry does not have the
   * corresponding attributes itself. The pointers point to attributes stored in the instances
   * component or in #r_temporary_arrays. The order depends on the corresponding #OrderedAttributes
   * instance.
   */
  Array<const void *> array;

  AttributeFallbacksArray(int size) : array(size, nullptr)
  {
  }
};

struct PointCloudRealizeInfo {
  const PointCloud *pointcloud = nullptr;
  /** Matches the order stored in #AllPointCloudsInfo.attributes. */
  Array<std::optional<GVArray_GSpan>> attributes;
  /** Id attribute on the point cloud. If there are no ids, this #Span is empty. */
  Span<int> stored_ids;
};

struct RealizePointCloudTask {
  /** Starting index in the final realized point cloud. */
  int start_index;
  /** Preprocessed information about the point cloud. */
  const PointCloudRealizeInfo *pointcloud_info;
  /** Transformation that is applied to all positions. */
  float4x4 transform;
  AttributeFallbacksArray attribute_fallbacks;
  /** Only used when the output contains an output attribute. */
  uint32_t id = 0;
};

/** Start indices in the final output mesh. */
struct MeshElementStartIndices {
  int vertex = 0;
  int edge = 0;
  int poly = 0;
  int loop = 0;
};

struct MeshRealizeInfo {
  const Mesh *mesh = nullptr;
  /** Maps old material indices to new material indices. */
  Array<int> material_index_map;
  /** Matches the order in #AllMeshesInfo.attributes. */
  Array<std::optional<GVArray_GSpan>> attributes;
  /** Vertex ids stored on the mesh. If there are no ids, this #Span is empty. */
  Span<int> stored_vertex_ids;
};

struct RealizeMeshTask {
  MeshElementStartIndices start_indices;
  const MeshRealizeInfo *mesh_info;
  /** Transformation that is applied to all positions. */
  float4x4 transform;
  AttributeFallbacksArray attribute_fallbacks;
  /** Only used when the output contains an output attribute. */
  uint32_t id = 0;
};

struct RealizeCurveInfo {
  const CurveEval *curve = nullptr;
  /**
   * Matches the order in #AllCurvesInfo.attributes. For point attributes, the `std::optional`
   * will be empty.
   */
  Array<std::optional<GVArray_GSpan>> spline_attributes;
};

struct RealizeCurveTask {
  /* Start index in the final curve. */
  int start_spline_index = 0;
  const RealizeCurveInfo *curve_info;
  /* Transformation applied to the position of control points and handles. */
  float4x4 transform;
  AttributeFallbacksArray attribute_fallbacks;
  /** Only used when the output contains an output attribute. */
  uint32_t id = 0;
};

struct AllPointCloudsInfo {
  /** Ordering of all attributes that are propagated to the output point cloud generically. */
  OrderedAttributes attributes;
  /** Ordering of the original point clouds that are joined. */
  VectorSet<const PointCloud *> order;
  /** Preprocessed data about every original point cloud. This is ordered by #order. */
  Array<PointCloudRealizeInfo> realize_info;
  bool create_id_attribute = false;
};

struct AllMeshesInfo {
  /** Ordering of all attributes that are propagated to the output mesh generically. */
  OrderedAttributes attributes;
  /** Ordering of the original meshes that are joined. */
  VectorSet<const Mesh *> order;
  /** Preprocessed data about every original mesh. This is ordered by #order. */
  Array<MeshRealizeInfo> realize_info;
  /** Ordered materials on the output mesh. */
  VectorSet<Material *> materials;
  bool create_id_attribute = false;
};

struct AllCurvesInfo {
  /** Ordering of all attributes that are propagated to the output curve generically. */
  OrderedAttributes attributes;
  /** Ordering of the original curves that are joined. */
  VectorSet<const CurveEval *> order;
  /** Preprocessed data about every original curve. This is ordered by #order. */
  Array<RealizeCurveInfo> realize_info;
  bool create_id_attribute = false;
};

/** Collects all tasks that need to be executed to realize all instances. */
struct GatherTasks {
  Vector<RealizePointCloudTask> pointcloud_tasks;
  Vector<RealizeMeshTask> mesh_tasks;
  Vector<RealizeCurveTask> curve_tasks;

  /* Volumes only have very simple support currently. Only the first found volume is put into the
   * output. */
  UserCounter<VolumeComponent> first_volume;
};

/** Current offsets while during the gather operation. */
struct GatherOffsets {
  int pointcloud_offset = 0;
  MeshElementStartIndices mesh_offsets;
  int spline_offset = 0;
};

struct GatherTasksInfo {
  /** Static information about all geometries that are joined. */
  const AllPointCloudsInfo &pointclouds;
  const AllMeshesInfo &meshes;
  const AllCurvesInfo &curves;
  bool create_id_attribute_on_any_component = false;

  /**
   * Under some circumstances, temporary arrays need to be allocated during the gather operation.
   * For example, when an instance attribute has to be realized as a different data type. This
   * array owns all the temporary arrays so that they can live until all processing is done.
   * Use #std::unique_ptr to avoid depending on whether #GArray has an inline buffer or not.
   */
  Vector<std::unique_ptr<GArray<>>> &r_temporary_arrays;

  /** All gathered tasks. */
  GatherTasks r_tasks;
  /** Current offsets while gathering tasks. */
  GatherOffsets r_offsets;
};

/**
 * Information about the parent instances in the current context.
 */
struct InstanceContext {
  /** Ordered by #AllPointCloudsInfo.attributes. */
  AttributeFallbacksArray pointclouds;
  /** Ordered by #AllMeshesInfo.attributes. */
  AttributeFallbacksArray meshes;
  /** Ordered by #AllCurvesInfo.attributes. */
  AttributeFallbacksArray curves;
  /** Id mixed from all parent instances. */
  uint32_t id = 0;

  InstanceContext(const GatherTasksInfo &gather_info)
      : pointclouds(gather_info.pointclouds.attributes.size()),
        meshes(gather_info.meshes.attributes.size()),
        curves(gather_info.curves.attributes.size())
  {
  }
};

/* -------------------------------------------------------------------- */
/** \name Gather Realize Tasks
 * \{ */

/* Forward declaration. */
static void gather_realize_tasks_recursive(GatherTasksInfo &gather_info,
                                           const GeometrySet &geometry_set,
                                           const float4x4 &base_transform,
                                           const InstanceContext &base_instance_context);

/**
 * Checks which of the #ordered_attributes exist on the #instances_component. For each attribute
 * that exists on the instances, a pair is returned that contains the attribute index and the
 * corresponding attribute data.
 */
static Vector<std::pair<int, GSpan>> prepare_attribute_fallbacks(
    GatherTasksInfo &gather_info,
    const InstancesComponent &instances_component,
    const OrderedAttributes &ordered_attributes)
{
  Vector<std::pair<int, GSpan>> attributes_to_override;
  const CustomDataAttributes &attributes = instances_component.attributes();
  attributes.foreach_attribute(
      [&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
        const int attribute_index = ordered_attributes.ids.index_of_try(attribute_id);
        if (attribute_index == -1) {
          /* The attribute is not propagated to the final geometry. */
          return true;
        }
        GSpan span = *attributes.get_for_read(attribute_id);
        const CustomDataType expected_type = ordered_attributes.kinds[attribute_index].data_type;
        if (meta_data.data_type != expected_type) {
          const CPPType &from_type = span.type();
          const CPPType &to_type = *custom_data_type_to_cpp_type(expected_type);
          const bke::DataTypeConversions &conversions = bke::get_implicit_type_conversions();
          if (!conversions.is_convertible(from_type, to_type)) {
            /* Ignore the attribute because it can not be converted to the desired type. */
            return true;
          }
          /* Convert the attribute on the instances component to the expected attribute type. */
          std::unique_ptr<GArray<>> temporary_array = std::make_unique<GArray<>>(
              to_type, instances_component.instances_amount());
          conversions.convert_to_initialized_n(span, temporary_array->as_mutable_span());
          span = temporary_array->as_span();
          gather_info.r_temporary_arrays.append(std::move(temporary_array));
        }
        attributes_to_override.append({attribute_index, span});
        return true;
      },
      ATTR_DOMAIN_INSTANCE);
  return attributes_to_override;
}

/**
 * Calls #fn for every geometry in the given #InstanceReference. Also passes on the transformation
 * that is applied to every instance.
 */
static void foreach_geometry_in_reference(
    const InstanceReference &reference,
    const float4x4 &base_transform,
    const uint32_t id,
    FunctionRef<void(const GeometrySet &geometry_set, const float4x4 &transform, uint32_t id)> fn)
{
  switch (reference.type()) {
    case InstanceReference::Type::Object: {
      const Object &object = reference.object();
      const GeometrySet object_geometry_set = object_get_evaluated_geometry_set(object);
      fn(object_geometry_set, base_transform, id);
      break;
    }
    case InstanceReference::Type::Collection: {
      Collection &collection = reference.collection();
      float4x4 offset_matrix = float4x4::identity();
      sub_v3_v3(offset_matrix.values[3], collection.instance_offset);
      int index = 0;
      FOREACH_COLLECTION_OBJECT_RECURSIVE_BEGIN (&collection, object) {
        const GeometrySet object_geometry_set = object_get_evaluated_geometry_set(*object);
        const float4x4 matrix = base_transform * offset_matrix * object->obmat;
        const int sub_id = noise::hash(id, index);
        fn(object_geometry_set, matrix, sub_id);
        index++;
      }
      FOREACH_COLLECTION_OBJECT_RECURSIVE_END;
      break;
    }
    case InstanceReference::Type::GeometrySet: {
      const GeometrySet &instance_geometry_set = reference.geometry_set();
      fn(instance_geometry_set, base_transform, id);
      break;
    }
    case InstanceReference::Type::None: {
      break;
    }
  }
}

static void gather_realize_tasks_for_instances(GatherTasksInfo &gather_info,
                                               const InstancesComponent &instances_component,
                                               const float4x4 &base_transform,
                                               const InstanceContext &base_instance_context)
{
  const Span<InstanceReference> references = instances_component.references();
  const Span<int> handles = instances_component.instance_reference_handles();
  const Span<float4x4> transforms = instances_component.instance_transforms();

  Span<int> stored_instance_ids;
  if (gather_info.create_id_attribute_on_any_component) {
    std::optional<GSpan> ids = instances_component.attributes().get_for_read("id");
    if (ids.has_value()) {
      stored_instance_ids = ids->typed<int>();
    }
  }

  /* Prepare attribute fallbacks. */
  InstanceContext instance_context = base_instance_context;
  Vector<std::pair<int, GSpan>> pointcloud_attributes_to_override = prepare_attribute_fallbacks(
      gather_info, instances_component, gather_info.pointclouds.attributes);
  Vector<std::pair<int, GSpan>> mesh_attributes_to_override = prepare_attribute_fallbacks(
      gather_info, instances_component, gather_info.meshes.attributes);
  Vector<std::pair<int, GSpan>> curve_attributes_to_override = prepare_attribute_fallbacks(
      gather_info, instances_component, gather_info.curves.attributes);

  for (const int i : transforms.index_range()) {
    const int handle = handles[i];
    const float4x4 &transform = transforms[i];
    const InstanceReference &reference = references[handle];
    const float4x4 new_base_transform = base_transform * transform;

    /* Update attribute fallbacks for the current instance. */
    for (const std::pair<int, GSpan> &pair : pointcloud_attributes_to_override) {
      instance_context.pointclouds.array[pair.first] = pair.second[i];
    }
    for (const std::pair<int, GSpan> &pair : mesh_attributes_to_override) {
      instance_context.meshes.array[pair.first] = pair.second[i];
    }
    for (const std::pair<int, GSpan> &pair : curve_attributes_to_override) {
      instance_context.curves.array[pair.first] = pair.second[i];
    }

    uint32_t local_instance_id = 0;
    if (gather_info.create_id_attribute_on_any_component) {
      if (stored_instance_ids.is_empty()) {
        local_instance_id = (uint32_t)i;
      }
      else {
        local_instance_id = (uint32_t)stored_instance_ids[i];
      }
    }
    const uint32_t instance_id = noise::hash(base_instance_context.id, local_instance_id);

    /* Add realize tasks for all referenced geometry sets recursively. */
    foreach_geometry_in_reference(reference,
                                  new_base_transform,
                                  instance_id,
                                  [&](const GeometrySet &instance_geometry_set,
                                      const float4x4 &transform,
                                      const uint32_t id) {
                                    instance_context.id = id;
                                    gather_realize_tasks_recursive(gather_info,
                                                                   instance_geometry_set,
                                                                   transform,
                                                                   instance_context);
                                  });
  }
}

/**
 * Gather tasks for all geometries in the #geometry_set.
 */
static void gather_realize_tasks_recursive(GatherTasksInfo &gather_info,
                                           const GeometrySet &geometry_set,
                                           const float4x4 &base_transform,
                                           const InstanceContext &base_instance_context)
{
  for (const GeometryComponent *component : geometry_set.get_components_for_read()) {
    const GeometryComponentType type = component->type();
    switch (type) {
      case GEO_COMPONENT_TYPE_MESH: {
        const MeshComponent &mesh_component = *static_cast<const MeshComponent *>(component);
        const Mesh *mesh = mesh_component.get_for_read();
        if (mesh != nullptr && mesh->totvert > 0) {
          const int mesh_index = gather_info.meshes.order.index_of(mesh);
          const MeshRealizeInfo &mesh_info = gather_info.meshes.realize_info[mesh_index];
          gather_info.r_tasks.mesh_tasks.append({gather_info.r_offsets.mesh_offsets,
                                                 &mesh_info,
                                                 base_transform,
                                                 base_instance_context.meshes,
                                                 base_instance_context.id});
          gather_info.r_offsets.mesh_offsets.vertex += mesh->totvert;
          gather_info.r_offsets.mesh_offsets.edge += mesh->totedge;
          gather_info.r_offsets.mesh_offsets.loop += mesh->totloop;
          gather_info.r_offsets.mesh_offsets.poly += mesh->totpoly;
        }
        break;
      }
      case GEO_COMPONENT_TYPE_POINT_CLOUD: {
        const PointCloudComponent &pointcloud_component =
            *static_cast<const PointCloudComponent *>(component);
        const PointCloud *pointcloud = pointcloud_component.get_for_read();
        if (pointcloud != nullptr && pointcloud->totpoint > 0) {
          const int pointcloud_index = gather_info.pointclouds.order.index_of(pointcloud);
          const PointCloudRealizeInfo &pointcloud_info =
              gather_info.pointclouds.realize_info[pointcloud_index];
          gather_info.r_tasks.pointcloud_tasks.append({gather_info.r_offsets.pointcloud_offset,
                                                       &pointcloud_info,
                                                       base_transform,
                                                       base_instance_context.pointclouds,
                                                       base_instance_context.id});
          gather_info.r_offsets.pointcloud_offset += pointcloud->totpoint;
        }
        break;
      }
      case GEO_COMPONENT_TYPE_CURVE: {
        const CurveComponent &curve_component = *static_cast<const CurveComponent *>(component);
        const CurveEval *curve = curve_component.get_for_read();
        if (curve != nullptr && !curve->splines().is_empty()) {
          const int curve_index = gather_info.curves.order.index_of(curve);
          const RealizeCurveInfo &curve_info = gather_info.curves.realize_info[curve_index];
          gather_info.r_tasks.curve_tasks.append({gather_info.r_offsets.spline_offset,
                                                  &curve_info,
                                                  base_transform,
                                                  base_instance_context.curves,
                                                  base_instance_context.id});
          gather_info.r_offsets.spline_offset += curve->splines().size();
        }
        break;
      }
      case GEO_COMPONENT_TYPE_INSTANCES: {
        const InstancesComponent &instances_component = *static_cast<const InstancesComponent *>(
            component);
        gather_realize_tasks_for_instances(
            gather_info, instances_component, base_transform, base_instance_context);
        break;
      }
      case GEO_COMPONENT_TYPE_VOLUME: {
        const VolumeComponent *volume_component = static_cast<const VolumeComponent *>(component);
        if (!gather_info.r_tasks.first_volume) {
          volume_component->user_add();
          gather_info.r_tasks.first_volume = const_cast<VolumeComponent *>(volume_component);
        }
        break;
      }
    }
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Point Cloud
 * \{ */

static OrderedAttributes gather_generic_pointcloud_attributes_to_propagate(
    const GeometrySet &in_geometry_set, const RealizeInstancesOptions &options, bool &r_create_id)
{
  Vector<GeometryComponentType> src_component_types;
  src_component_types.append(GEO_COMPONENT_TYPE_POINT_CLOUD);
  if (options.realize_instance_attributes) {
    src_component_types.append(GEO_COMPONENT_TYPE_INSTANCES);
  }

  Map<AttributeIDRef, AttributeKind> attributes_to_propagate;
  in_geometry_set.gather_attributes_for_propagation(
      src_component_types, GEO_COMPONENT_TYPE_POINT_CLOUD, true, attributes_to_propagate);
  attributes_to_propagate.remove("position");
  r_create_id = attributes_to_propagate.pop_try("id").has_value();
  OrderedAttributes ordered_attributes;
  for (const auto item : attributes_to_propagate.items()) {
    ordered_attributes.ids.add_new(item.key);
    ordered_attributes.kinds.append(item.value);
  }
  return ordered_attributes;
}

static void gather_pointclouds_to_realize(const GeometrySet &geometry_set,
                                          VectorSet<const PointCloud *> &r_pointclouds)
{
  if (const PointCloud *pointcloud = geometry_set.get_pointcloud_for_read()) {
    if (pointcloud->totpoint > 0) {
      r_pointclouds.add(pointcloud);
    }
  }
  if (const InstancesComponent *instances =
          geometry_set.get_component_for_read<InstancesComponent>()) {
    instances->foreach_referenced_geometry([&](const GeometrySet &instance_geometry_set) {
      gather_pointclouds_to_realize(instance_geometry_set, r_pointclouds);
    });
  }
}

static AllPointCloudsInfo preprocess_pointclouds(const GeometrySet &geometry_set,
                                                 const RealizeInstancesOptions &options)
{
  AllPointCloudsInfo info;
  info.attributes = gather_generic_pointcloud_attributes_to_propagate(
      geometry_set, options, info.create_id_attribute);

  gather_pointclouds_to_realize(geometry_set, info.order);
  info.realize_info.reinitialize(info.order.size());
  for (const int pointcloud_index : info.realize_info.index_range()) {
    PointCloudRealizeInfo &pointcloud_info = info.realize_info[pointcloud_index];
    const PointCloud *pointcloud = info.order[pointcloud_index];
    pointcloud_info.pointcloud = pointcloud;

    /* Access attributes. */
    PointCloudComponent component;
    component.replace(const_cast<PointCloud *>(pointcloud), GeometryOwnershipType::ReadOnly);
    pointcloud_info.attributes.reinitialize(info.attributes.size());
    for (const int attribute_index : info.attributes.index_range()) {
      const AttributeIDRef &attribute_id = info.attributes.ids[attribute_index];
      const CustomDataType data_type = info.attributes.kinds[attribute_index].data_type;
      const AttributeDomain domain = info.attributes.kinds[attribute_index].domain;
      if (component.attribute_exists(attribute_id)) {
        GVArray attribute = component.attribute_get_for_read(attribute_id, domain, data_type);
        pointcloud_info.attributes[attribute_index].emplace(std::move(attribute));
      }
    }
    if (info.create_id_attribute) {
      ReadAttributeLookup ids_lookup = component.attribute_try_get_for_read("id");
      if (ids_lookup) {
        pointcloud_info.stored_ids = ids_lookup.varray.get_internal_span().typed<int>();
      }
    }
  }
  return info;
}

static void execute_realize_pointcloud_task(const RealizeInstancesOptions &options,
                                            const RealizePointCloudTask &task,
                                            PointCloud &dst_pointcloud,
                                            MutableSpan<GMutableSpan> dst_attribute_spans,
                                            MutableSpan<int> all_dst_ids)
{
  const PointCloudRealizeInfo &pointcloud_info = *task.pointcloud_info;
  const PointCloud &pointcloud = *pointcloud_info.pointcloud;
  const Span<float3> src_positions{(float3 *)pointcloud.co, pointcloud.totpoint};
  const IndexRange point_slice{task.start_index, pointcloud.totpoint};
  MutableSpan<float3> dst_positions{(float3 *)dst_pointcloud.co + task.start_index,
                                    pointcloud.totpoint};
  MutableSpan<int> dst_ids = all_dst_ids.slice(task.start_index, pointcloud.totpoint);

  /* Copy transformed positions. */
  threading::parallel_for(IndexRange(pointcloud.totpoint), 1024, [&](const IndexRange range) {
    for (const int i : range) {
      dst_positions[i] = task.transform * src_positions[i];
    }
  });
  /* Create point ids. */
  if (!all_dst_ids.is_empty()) {
    if (options.keep_original_ids) {
      if (pointcloud_info.stored_ids.is_empty()) {
        dst_ids.fill(0);
      }
      else {
        dst_ids.copy_from(pointcloud_info.stored_ids);
      }
    }
    else {
      threading::parallel_for(IndexRange(pointcloud.totpoint), 1024, [&](const IndexRange range) {
        if (pointcloud_info.stored_ids.is_empty()) {
          for (const int i : range) {
            dst_ids[i] = noise::hash(task.id, i);
          }
        }
        else {
          for (const int i : range) {
            dst_ids[i] = noise::hash(task.id, pointcloud_info.stored_ids[i]);
          }
        }
      });
    }
  }
  /* Copy generic attributes. */
  threading::parallel_for(
      dst_attribute_spans.index_range(), 10, [&](const IndexRange attribute_range) {
        for (const int attribute_index : attribute_range) {
          GMutableSpan dst_span = dst_attribute_spans[attribute_index].slice(point_slice);
          const CPPType &cpp_type = dst_span.type();
          const void *attribute_fallback = task.attribute_fallbacks.array[attribute_index];
          if (pointcloud_info.attributes[attribute_index].has_value()) {
            /* Copy attribute from the original point cloud. */
            const GSpan src_span = *pointcloud_info.attributes[attribute_index];
            threading::parallel_for(
                IndexRange(pointcloud.totpoint), 1024, [&](const IndexRange range) {
                  cpp_type.copy_assign_n(
                      src_span.slice(range).data(), dst_span.slice(range).data(), range.size());
                });
          }
          else {
            if (attribute_fallback == nullptr) {
              attribute_fallback = cpp_type.default_value();
            }
            /* As the fallback value for the attribute. */
            threading::parallel_for(
                IndexRange(pointcloud.totpoint), 1024, [&](const IndexRange range) {
                  cpp_type.fill_assign_n(
                      attribute_fallback, dst_span.slice(range).data(), range.size());
                });
          }
        }
      });
}

static void execute_realize_pointcloud_tasks(const RealizeInstancesOptions &options,
                                             const AllPointCloudsInfo &all_pointclouds_info,
                                             const Span<RealizePointCloudTask> tasks,
                                             const OrderedAttributes &ordered_attributes,
                                             GeometrySet &r_realized_geometry)
{
  if (tasks.is_empty()) {
    return;
  }

  const RealizePointCloudTask &last_task = tasks.last();
  const PointCloud &last_pointcloud = *last_task.pointcloud_info->pointcloud;
  const int tot_points = last_task.start_index + last_pointcloud.totpoint;

  /* Allocate new point cloud. */
  PointCloud *dst_pointcloud = BKE_pointcloud_new_nomain(tot_points);
  PointCloudComponent &dst_component =
      r_realized_geometry.get_component_for_write<PointCloudComponent>();
  dst_component.replace(dst_pointcloud);

  /* Prepare id attribute. */
  OutputAttribute_Typed<int> point_ids;
  MutableSpan<int> point_ids_span;
  if (all_pointclouds_info.create_id_attribute) {
    point_ids = dst_component.attribute_try_get_for_output_only<int>("id", ATTR_DOMAIN_POINT);
    point_ids_span = point_ids.as_span();
  }

  /* Prepare generic output attributes. */
  Vector<OutputAttribute> dst_attributes;
  Vector<GMutableSpan> dst_attribute_spans;
  for (const int attribute_index : ordered_attributes.index_range()) {
    const AttributeIDRef &attribute_id = ordered_attributes.ids[attribute_index];
    const CustomDataType data_type = ordered_attributes.kinds[attribute_index].data_type;
    OutputAttribute dst_attribute = dst_component.attribute_try_get_for_output_only(
        attribute_id, ATTR_DOMAIN_POINT, data_type);
    dst_attribute_spans.append(dst_attribute.as_span());
    dst_attributes.append(std::move(dst_attribute));
  }

  /* Actually execute all tasks. */
  threading::parallel_for(tasks.index_range(), 100, [&](const IndexRange task_range) {
    for (const int task_index : task_range) {
      const RealizePointCloudTask &task = tasks[task_index];
      execute_realize_pointcloud_task(
          options, task, *dst_pointcloud, dst_attribute_spans, point_ids_span);
    }
  });

  /* Save modified attributes. */
  for (OutputAttribute &dst_attribute : dst_attributes) {
    dst_attribute.save();
  }
  if (point_ids) {
    point_ids.save();
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Mesh
 * \{ */

static OrderedAttributes gather_generic_mesh_attributes_to_propagate(
    const GeometrySet &in_geometry_set, const RealizeInstancesOptions &options, bool &r_create_id)
{
  Vector<GeometryComponentType> src_component_types;
  src_component_types.append(GEO_COMPONENT_TYPE_MESH);
  if (options.realize_instance_attributes) {
    src_component_types.append(GEO_COMPONENT_TYPE_INSTANCES);
  }

  Map<AttributeIDRef, AttributeKind> attributes_to_propagate;
  in_geometry_set.gather_attributes_for_propagation(
      src_component_types, GEO_COMPONENT_TYPE_MESH, true, attributes_to_propagate);
  attributes_to_propagate.remove("position");
  attributes_to_propagate.remove("normal");
  attributes_to_propagate.remove("material_index");
  attributes_to_propagate.remove("shade_smooth");
  attributes_to_propagate.remove("crease");
  r_create_id = attributes_to_propagate.pop_try("id").has_value();
  OrderedAttributes ordered_attributes;
  for (const auto item : attributes_to_propagate.items()) {
    ordered_attributes.ids.add_new(item.key);
    ordered_attributes.kinds.append(item.value);
  }
  return ordered_attributes;
}

static void gather_meshes_to_realize(const GeometrySet &geometry_set,
                                     VectorSet<const Mesh *> &r_meshes)
{
  if (const Mesh *mesh = geometry_set.get_mesh_for_read()) {
    if (mesh->totvert > 0) {
      r_meshes.add(mesh);
    }
  }
  if (const InstancesComponent *instances =
          geometry_set.get_component_for_read<InstancesComponent>()) {
    instances->foreach_referenced_geometry([&](const GeometrySet &instance_geometry_set) {
      gather_meshes_to_realize(instance_geometry_set, r_meshes);
    });
  }
}

static AllMeshesInfo preprocess_meshes(const GeometrySet &geometry_set,
                                       const RealizeInstancesOptions &options)
{
  AllMeshesInfo info;
  info.attributes = gather_generic_mesh_attributes_to_propagate(
      geometry_set, options, info.create_id_attribute);

  gather_meshes_to_realize(geometry_set, info.order);
  for (const Mesh *mesh : info.order) {
    for (const int slot_index : IndexRange(mesh->totcol)) {
      Material *material = mesh->mat[slot_index];
      info.materials.add(material);
    }
  }
  info.realize_info.reinitialize(info.order.size());
  for (const int mesh_index : info.realize_info.index_range()) {
    MeshRealizeInfo &mesh_info = info.realize_info[mesh_index];
    const Mesh *mesh = info.order[mesh_index];
    mesh_info.mesh = mesh;

    /* Create material index mapping. */
    mesh_info.material_index_map.reinitialize(mesh->totcol);
    for (const int old_slot_index : IndexRange(mesh->totcol)) {
      Material *material = mesh->mat[old_slot_index];
      const int new_slot_index = info.materials.index_of(material);
      mesh_info.material_index_map[old_slot_index] = new_slot_index;
    }

    /* Access attributes. */
    MeshComponent component;
    component.replace(const_cast<Mesh *>(mesh), GeometryOwnershipType::ReadOnly);
    mesh_info.attributes.reinitialize(info.attributes.size());
    for (const int attribute_index : info.attributes.index_range()) {
      const AttributeIDRef &attribute_id = info.attributes.ids[attribute_index];
      const CustomDataType data_type = info.attributes.kinds[attribute_index].data_type;
      const AttributeDomain domain = info.attributes.kinds[attribute_index].domain;
      if (component.attribute_exists(attribute_id)) {
        GVArray attribute = component.attribute_get_for_read(attribute_id, domain, data_type);
        mesh_info.attributes[attribute_index].emplace(std::move(attribute));
      }
    }
    if (info.create_id_attribute) {
      ReadAttributeLookup ids_lookup = component.attribute_try_get_for_read("id");
      if (ids_lookup) {
        mesh_info.stored_vertex_ids = ids_lookup.varray.get_internal_span().typed<int>();
      }
    }
  }
  return info;
}

static void execute_realize_mesh_task(const RealizeInstancesOptions &options,
                                      const RealizeMeshTask &task,
                                      const OrderedAttributes &ordered_attributes,
                                      Mesh &dst_mesh,
                                      MutableSpan<GMutableSpan> dst_attribute_spans,
                                      MutableSpan<int> all_dst_vertex_ids)
{
  const MeshRealizeInfo &mesh_info = *task.mesh_info;
  const Mesh &mesh = *mesh_info.mesh;

  const Span<MVert> src_verts{mesh.mvert, mesh.totvert};
  const Span<MEdge> src_edges{mesh.medge, mesh.totedge};
  const Span<MLoop> src_loops{mesh.mloop, mesh.totloop};
  const Span<MPoly> src_polys{mesh.mpoly, mesh.totpoly};

  MutableSpan<MVert> dst_verts{dst_mesh.mvert + task.start_indices.vertex, mesh.totvert};
  MutableSpan<MEdge> dst_edges{dst_mesh.medge + task.start_indices.edge, mesh.totedge};
  MutableSpan<MLoop> dst_loops{dst_mesh.mloop + task.start_indices.loop, mesh.totloop};
  MutableSpan<MPoly> dst_polys{dst_mesh.mpoly + task.start_indices.poly, mesh.totpoly};

  MutableSpan<int> dst_vertex_ids = all_dst_vertex_ids.slice(task.start_indices.vertex,
                                                             mesh.totvert);

  const Span<int> material_index_map = mesh_info.material_index_map;

  threading::parallel_for(IndexRange(mesh.totvert), 1024, [&](const IndexRange vert_range) {
    for (const int i : vert_range) {
      const MVert &src_vert = src_verts[i];
      MVert &dst_vert = dst_verts[i];
      dst_vert = src_vert;
      copy_v3_v3(dst_vert.co, task.transform * float3(src_vert.co));
    }
  });
  threading::parallel_for(IndexRange(mesh.totedge), 1024, [&](const IndexRange edge_range) {
    for (const int i : edge_range) {
      const MEdge &src_edge = src_edges[i];
      MEdge &dst_edge = dst_edges[i];
      dst_edge = src_edge;
      dst_edge.v1 += task.start_indices.vertex;
      dst_edge.v2 += task.start_indices.vertex;
    }
  });
  threading::parallel_for(IndexRange(mesh.totloop), 1024, [&](const IndexRange loop_range) {
    for (const int i : loop_range) {
      const MLoop &src_loop = src_loops[i];
      MLoop &dst_loop = dst_loops[i];
      dst_loop = src_loop;
      dst_loop.v += task.start_indices.vertex;
      dst_loop.e += task.start_indices.edge;
    }
  });
  threading::parallel_for(IndexRange(mesh.totpoly), 1024, [&](const IndexRange poly_range) {
    for (const int i : poly_range) {
      const MPoly &src_poly = src_polys[i];
      MPoly &dst_poly = dst_polys[i];
      dst_poly = src_poly;
      dst_poly.loopstart += task.start_indices.loop;
      if (src_poly.mat_nr >= 0 && src_poly.mat_nr < mesh.totcol) {
        dst_poly.mat_nr = material_index_map[src_poly.mat_nr];
      }
      else {
        /* The material index was invalid before. */
        dst_poly.mat_nr = 0;
      }
    }
  });
  /* Create id attribute. */
  if (!all_dst_vertex_ids.is_empty()) {
    if (options.keep_original_ids) {
      if (mesh_info.stored_vertex_ids.is_empty()) {
        dst_vertex_ids.fill(0);
      }
      else {
        dst_vertex_ids.copy_from(mesh_info.stored_vertex_ids);
      }
    }
    else {
      threading::parallel_for(IndexRange(mesh.totvert), 1024, [&](const IndexRange vert_range) {
        if (mesh_info.stored_vertex_ids.is_empty()) {
          for (const int i : vert_range) {
            dst_vertex_ids[i] = noise::hash(task.id, i);
          }
        }
        else {
          for (const int i : vert_range) {
            const int original_id = mesh_info.stored_vertex_ids[i];
            dst_vertex_ids[i] = noise::hash(task.id, original_id);
          }
        }
      });
    }
  }
  /* Copy generic attributes. */
  threading::parallel_for(
      dst_attribute_spans.index_range(), 10, [&](const IndexRange attribute_range) {
        for (const int attribute_index : attribute_range) {
          const AttributeDomain domain = ordered_attributes.kinds[attribute_index].domain;
          IndexRange element_slice;
          switch (domain) {
            case ATTR_DOMAIN_POINT:
              element_slice = IndexRange(task.start_indices.vertex, mesh.totvert);
              break;
            case ATTR_DOMAIN_EDGE:
              element_slice = IndexRange(task.start_indices.edge, mesh.totedge);
              break;
            case ATTR_DOMAIN_CORNER:
              element_slice = IndexRange(task.start_indices.loop, mesh.totloop);
              break;
            case ATTR_DOMAIN_FACE:
              element_slice = IndexRange(task.start_indices.poly, mesh.totpoly);
              break;
            default:
              BLI_assert_unreachable();
          }
          GMutableSpan dst_span = dst_attribute_spans[attribute_index].slice(element_slice);
          const CPPType &cpp_type = dst_span.type();
          const void *attribute_fallback = task.attribute_fallbacks.array[attribute_index];
          if (mesh_info.attributes[attribute_index].has_value()) {
            const GSpan src_span = *mesh_info.attributes[attribute_index];
            threading::parallel_for(
                IndexRange(element_slice.size()), 1024, [&](const IndexRange sub_range) {
                  cpp_type.copy_assign_n(src_span.slice(sub_range).data(),
                                         dst_span.slice(sub_range).data(),
                                         sub_range.size());
                });
          }
          else {
            if (attribute_fallback == nullptr) {
              attribute_fallback = cpp_type.default_value();
            }
            threading::parallel_for(
                IndexRange(element_slice.size()), 1024, [&](const IndexRange sub_range) {
                  cpp_type.fill_assign_n(
                      attribute_fallback, dst_span.slice(sub_range).data(), sub_range.size());
                });
          }
        }
      });
}

static void execute_realize_mesh_tasks(const RealizeInstancesOptions &options,
                                       const AllMeshesInfo &all_meshes_info,
                                       const Span<RealizeMeshTask> tasks,
                                       const OrderedAttributes &ordered_attributes,
                                       const VectorSet<Material *> &ordered_materials,
                                       GeometrySet &r_realized_geometry)
{
  if (tasks.is_empty()) {
    return;
  }

  const RealizeMeshTask &last_task = tasks.last();
  const Mesh &last_mesh = *last_task.mesh_info->mesh;
  const int tot_vertices = last_task.start_indices.vertex + last_mesh.totvert;
  const int tot_edges = last_task.start_indices.edge + last_mesh.totedge;
  const int tot_loops = last_task.start_indices.loop + last_mesh.totloop;
  const int tot_poly = last_task.start_indices.poly + last_mesh.totpoly;

  Mesh *dst_mesh = BKE_mesh_new_nomain(tot_vertices, tot_edges, 0, tot_loops, tot_poly);
  MeshComponent &dst_component = r_realized_geometry.get_component_for_write<MeshComponent>();
  dst_component.replace(dst_mesh);

  /* Copy settings from the first input geometry set with a mesh. */
  const RealizeMeshTask &first_task = tasks.first();
  const Mesh &first_mesh = *first_task.mesh_info->mesh;
  BKE_mesh_copy_parameters_for_eval(dst_mesh, &first_mesh);

  /* Add materials. */
  for (const int i : IndexRange(ordered_materials.size())) {
    Material *material = ordered_materials[i];
    BKE_id_material_eval_assign(&dst_mesh->id, i + 1, material);
  }

  /* Prepare id attribute. */
  OutputAttribute_Typed<int> vertex_ids;
  MutableSpan<int> vertex_ids_span;
  if (all_meshes_info.create_id_attribute) {
    vertex_ids = dst_component.attribute_try_get_for_output_only<int>("id", ATTR_DOMAIN_POINT);
    vertex_ids_span = vertex_ids.as_span();
  }

  /* Prepare generic output attributes. */
  Vector<OutputAttribute> dst_attributes;
  Vector<GMutableSpan> dst_attribute_spans;
  for (const int attribute_index : ordered_attributes.index_range()) {
    const AttributeIDRef &attribute_id = ordered_attributes.ids[attribute_index];
    const AttributeDomain domain = ordered_attributes.kinds[attribute_index].domain;
    const CustomDataType data_type = ordered_attributes.kinds[attribute_index].data_type;
    OutputAttribute dst_attribute = dst_component.attribute_try_get_for_output_only(
        attribute_id, domain, data_type);
    dst_attribute_spans.append(dst_attribute.as_span());
    dst_attributes.append(std::move(dst_attribute));
  }

  /* Actually execute all tasks. */
  threading::parallel_for(tasks.index_range(), 100, [&](const IndexRange task_range) {
    for (const int task_index : task_range) {
      const RealizeMeshTask &task = tasks[task_index];
      execute_realize_mesh_task(
          options, task, ordered_attributes, *dst_mesh, dst_attribute_spans, vertex_ids_span);
    }
  });

  /* Save modified attributes. */
  for (OutputAttribute &dst_attribute : dst_attributes) {
    dst_attribute.save();
  }
  if (vertex_ids) {
    vertex_ids.save();
  }

  BKE_mesh_normals_tag_dirty(dst_mesh);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Curve
 * \{ */

static OrderedAttributes gather_generic_curve_attributes_to_propagate(
    const GeometrySet &in_geometry_set, const RealizeInstancesOptions &options, bool &r_create_id)
{
  Vector<GeometryComponentType> src_component_types;
  src_component_types.append(GEO_COMPONENT_TYPE_CURVE);
  if (options.realize_instance_attributes) {
    src_component_types.append(GEO_COMPONENT_TYPE_INSTANCES);
  }

  Map<AttributeIDRef, AttributeKind> attributes_to_propagate;
  in_geometry_set.gather_attributes_for_propagation(
      src_component_types, GEO_COMPONENT_TYPE_CURVE, true, attributes_to_propagate);
  attributes_to_propagate.remove("position");
  attributes_to_propagate.remove("cyclic");
  attributes_to_propagate.remove("resolution");
  attributes_to_propagate.remove("tilt");
  attributes_to_propagate.remove("radius");
  attributes_to_propagate.remove("handle_right");
  attributes_to_propagate.remove("handle_left");
  r_create_id = attributes_to_propagate.pop_try("id").has_value();
  OrderedAttributes ordered_attributes;
  for (const auto item : attributes_to_propagate.items()) {
    ordered_attributes.ids.add_new(item.key);
    ordered_attributes.kinds.append(item.value);
  }
  return ordered_attributes;
}

static void gather_curves_to_realize(const GeometrySet &geometry_set,
                                     VectorSet<const CurveEval *> &r_curves)
{
  if (const CurveEval *curve = geometry_set.get_curve_for_read()) {
    if (!curve->splines().is_empty()) {
      r_curves.add(curve);
    }
  }
  if (const InstancesComponent *instances =
          geometry_set.get_component_for_read<InstancesComponent>()) {
    instances->foreach_referenced_geometry([&](const GeometrySet &instance_geometry_set) {
      gather_curves_to_realize(instance_geometry_set, r_curves);
    });
  }
}

static AllCurvesInfo preprocess_curves(const GeometrySet &geometry_set,
                                       const RealizeInstancesOptions &options)
{
  AllCurvesInfo info;
  info.attributes = gather_generic_curve_attributes_to_propagate(
      geometry_set, options, info.create_id_attribute);

  gather_curves_to_realize(geometry_set, info.order);
  info.realize_info.reinitialize(info.order.size());
  for (const int curve_index : info.realize_info.index_range()) {
    RealizeCurveInfo &curve_info = info.realize_info[curve_index];
    const CurveEval *curve = info.order[curve_index];
    curve_info.curve = curve;

    /* Access attributes. */
    CurveComponent component;
    component.replace(const_cast<CurveEval *>(curve), GeometryOwnershipType::ReadOnly);
    curve_info.spline_attributes.reinitialize(info.attributes.size());
    for (const int attribute_index : info.attributes.index_range()) {
      const AttributeDomain domain = info.attributes.kinds[attribute_index].domain;
      if (domain != ATTR_DOMAIN_CURVE) {
        continue;
      }
      const AttributeIDRef &attribute_id = info.attributes.ids[attribute_index];
      const CustomDataType data_type = info.attributes.kinds[attribute_index].data_type;
      if (component.attribute_exists(attribute_id)) {
        GVArray attribute = component.attribute_get_for_read(attribute_id, domain, data_type);
        curve_info.spline_attributes[attribute_index].emplace(std::move(attribute));
      }
    }
  }
  return info;
}

static void execute_realize_curve_task(const RealizeInstancesOptions &options,
                                       const AllCurvesInfo &all_curves_info,
                                       const RealizeCurveTask &task,
                                       const OrderedAttributes &ordered_attributes,
                                       MutableSpan<SplinePtr> dst_splines,
                                       MutableSpan<GMutableSpan> dst_spline_attributes)
{
  const RealizeCurveInfo &curve_info = *task.curve_info;
  const CurveEval &curve = *curve_info.curve;

  const Span<SplinePtr> src_splines = curve.splines();

  /* Initialize point attributes. */
  threading::parallel_for(src_splines.index_range(), 100, [&](const IndexRange src_spline_range) {
    for (const int src_spline_index : src_spline_range) {
      const int dst_spline_index = src_spline_index + task.start_spline_index;
      const Spline &src_spline = *src_splines[src_spline_index];
      SplinePtr dst_spline = src_spline.copy_without_attributes();
      dst_spline->transform(task.transform);
      const int spline_size = dst_spline->size();

      const CustomDataAttributes &src_point_attributes = src_spline.attributes;
      CustomDataAttributes &dst_point_attributes = dst_spline->attributes;

      /* Create point ids. */
      if (all_curves_info.create_id_attribute) {
        dst_point_attributes.create("id", CD_PROP_INT32);
        MutableSpan<int> dst_point_ids = dst_point_attributes.get_for_write("id")->typed<int>();
        std::optional<GSpan> src_point_ids_opt = src_point_attributes.get_for_read("id");
        if (options.keep_original_ids) {
          if (src_point_ids_opt.has_value()) {
            const Span<int> src_point_ids = src_point_ids_opt->typed<int>();
            dst_point_ids.copy_from(src_point_ids);
          }
          else {
            dst_point_ids.fill(0);
          }
        }
        else {
          if (src_point_ids_opt.has_value()) {
            const Span<int> src_point_ids = src_point_ids_opt->typed<int>();
            for (const int i : IndexRange(dst_spline->size())) {
              dst_point_ids[i] = noise::hash(task.id, src_point_ids[i]);
            }
          }
          else {
            for (const int i : IndexRange(dst_spline->size())) {
              /* Mix spline index into the id, because otherwise points on different splines will
               * get the same id. */
              dst_point_ids[i] = noise::hash(task.id, src_spline_index, i);
            }
          }
        }
      }

      /* Copy generic point attributes. */
      for (const int attribute_index : ordered_attributes.index_range()) {
        const AttributeDomain domain = ordered_attributes.kinds[attribute_index].domain;
        if (domain != ATTR_DOMAIN_POINT) {
          continue;
        }
        const CustomDataType data_type = ordered_attributes.kinds[attribute_index].data_type;
        const CPPType &cpp_type = *custom_data_type_to_cpp_type(data_type);
        const AttributeIDRef &attribute_id = ordered_attributes.ids[attribute_index];
        const void *attribute_fallback = task.attribute_fallbacks.array[attribute_index];
        const std::optional<GSpan> src_span_opt = src_point_attributes.get_for_read(attribute_id);
        void *dst_buffer = MEM_malloc_arrayN(spline_size, cpp_type.size(), "Curve Attribute");
        if (src_span_opt.has_value()) {
          const GSpan src_span = *src_span_opt;
          cpp_type.copy_construct_n(src_span.data(), dst_buffer, spline_size);
        }
        else {
          if (attribute_fallback == nullptr) {
            attribute_fallback = cpp_type.default_value();
          }
          cpp_type.fill_construct_n(attribute_fallback, dst_buffer, spline_size);
        }
        dst_point_attributes.create_by_move(attribute_id, data_type, dst_buffer);
      }

      dst_splines[dst_spline_index] = std::move(dst_spline);
    }
  });
  /* Initialize spline attributes. */
  for (const int attribute_index : ordered_attributes.index_range()) {
    const AttributeDomain domain = ordered_attributes.kinds[attribute_index].domain;
    if (domain != ATTR_DOMAIN_CURVE) {
      continue;
    }
    const CustomDataType data_type = ordered_attributes.kinds[attribute_index].data_type;
    const CPPType &cpp_type = *custom_data_type_to_cpp_type(data_type);

    GMutableSpan dst_span = dst_spline_attributes[attribute_index].slice(task.start_spline_index,
                                                                         src_splines.size());
    if (curve_info.spline_attributes[attribute_index].has_value()) {
      const GSpan src_span = *curve_info.spline_attributes[attribute_index];
      cpp_type.copy_construct_n(src_span.data(), dst_span.data(), src_splines.size());
    }
    else {
      const void *attribute_fallback = task.attribute_fallbacks.array[attribute_index];
      if (attribute_fallback == nullptr) {
        attribute_fallback = cpp_type.default_value();
      }
      cpp_type.fill_construct_n(attribute_fallback, dst_span.data(), src_splines.size());
    }
  }
}

static void execute_realize_curve_tasks(const RealizeInstancesOptions &options,
                                        const AllCurvesInfo &all_curves_info,
                                        const Span<RealizeCurveTask> tasks,
                                        const OrderedAttributes &ordered_attributes,
                                        GeometrySet &r_realized_geometry)
{
  if (tasks.is_empty()) {
    return;
  }

  const RealizeCurveTask &last_task = tasks.last();
  const CurveEval &last_curve = *last_task.curve_info->curve;
  const int tot_splines = last_task.start_spline_index + last_curve.splines().size();

  Array<SplinePtr> dst_splines(tot_splines);

  CurveEval *dst_curve = new CurveEval();
  dst_curve->attributes.reallocate(tot_splines);
  CustomDataAttributes &spline_attributes = dst_curve->attributes;

  /* Prepare spline attributes. */
  Vector<GMutableSpan> dst_spline_attributes;
  for (const int attribute_index : ordered_attributes.index_range()) {
    const AttributeIDRef &attribute_id = ordered_attributes.ids[attribute_index];
    const CustomDataType data_type = ordered_attributes.kinds[attribute_index].data_type;
    const AttributeDomain domain = ordered_attributes.kinds[attribute_index].domain;
    if (domain == ATTR_DOMAIN_CURVE) {
      spline_attributes.create(attribute_id, data_type);
      dst_spline_attributes.append(*spline_attributes.get_for_write(attribute_id));
    }
    else {
      dst_spline_attributes.append({CPPType::get<float>()});
    }
  }

  /* Actually execute all tasks. */
  threading::parallel_for(tasks.index_range(), 100, [&](const IndexRange task_range) {
    for (const int task_index : task_range) {
      const RealizeCurveTask &task = tasks[task_index];
      execute_realize_curve_task(
          options, all_curves_info, task, ordered_attributes, dst_splines, dst_spline_attributes);
    }
  });

  dst_curve->add_splines(dst_splines);

  CurveComponent &dst_component = r_realized_geometry.get_component_for_write<CurveComponent>();
  dst_component.replace(dst_curve);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Realize Instances
 * \{ */

static void remove_id_attribute_from_instances(GeometrySet &geometry_set)
{
  geometry_set.modify_geometry_sets([&](GeometrySet &sub_geometry) {
    if (sub_geometry.has<InstancesComponent>()) {
      InstancesComponent &component = sub_geometry.get_component_for_write<InstancesComponent>();
      component.attributes().remove("id");
    }
  });
}

GeometrySet realize_instances(GeometrySet geometry_set, const RealizeInstancesOptions &options)
{
  /* The algorithm works in three steps:
   * 1. Preprocess each unique geometry that is instanced (e.g. each `Mesh`).
   * 2. Gather "tasks" that need to be executed to realize the instances. Each task corresponds to
   *    instances of the previously preprocessed geometry.
   * 3. Execute all tasks in parallel.
   */

  if (!geometry_set.has_instances()) {
    return geometry_set;
  }

  if (options.keep_original_ids) {
    remove_id_attribute_from_instances(geometry_set);
  }

  AllPointCloudsInfo all_pointclouds_info = preprocess_pointclouds(geometry_set, options);
  AllMeshesInfo all_meshes_info = preprocess_meshes(geometry_set, options);
  AllCurvesInfo all_curves_info = preprocess_curves(geometry_set, options);

  Vector<std::unique_ptr<GArray<>>> temporary_arrays;
  const bool create_id_attribute = all_pointclouds_info.create_id_attribute ||
                                   all_meshes_info.create_id_attribute ||
                                   all_curves_info.create_id_attribute;
  GatherTasksInfo gather_info = {all_pointclouds_info,
                                 all_meshes_info,
                                 all_curves_info,
                                 create_id_attribute,
                                 temporary_arrays};
  const float4x4 transform = float4x4::identity();
  InstanceContext attribute_fallbacks(gather_info);
  gather_realize_tasks_recursive(gather_info, geometry_set, transform, attribute_fallbacks);

  GeometrySet new_geometry_set;
  execute_realize_pointcloud_tasks(options,
                                   all_pointclouds_info,
                                   gather_info.r_tasks.pointcloud_tasks,
                                   all_pointclouds_info.attributes,
                                   new_geometry_set);
  execute_realize_mesh_tasks(options,
                             all_meshes_info,
                             gather_info.r_tasks.mesh_tasks,
                             all_meshes_info.attributes,
                             all_meshes_info.materials,
                             new_geometry_set);
  execute_realize_curve_tasks(options,
                              all_curves_info,
                              gather_info.r_tasks.curve_tasks,
                              all_curves_info.attributes,
                              new_geometry_set);

  if (gather_info.r_tasks.first_volume) {
    new_geometry_set.add(*gather_info.r_tasks.first_volume);
  }

  return new_geometry_set;
}

GeometrySet realize_instances_legacy(GeometrySet geometry_set)
{
  RealizeInstancesOptions options;
  options.keep_original_ids = true;
  options.realize_instance_attributes = false;
  return realize_instances(std::move(geometry_set), options);
}

/** \} */

}  // namespace blender::geometry