Welcome to mirror list, hosted at ThFree Co, Russian Federation.

resample_curves.cc « intern « geometry « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e252e28805e277620e34b26f7f82922f557aff5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "BLI_length_parameterize.hh"
#include "BLI_task.hh"

#include "FN_field.hh"
#include "FN_multi_function_builder.hh"

#include "BKE_attribute_math.hh"
#include "BKE_curves.hh"
#include "BKE_curves_utils.hh"
#include "BKE_geometry_fields.hh"

#include "GEO_resample_curves.hh"

namespace blender::geometry {

static fn::Field<int> get_count_input_max_one(const fn::Field<int> &count_field)
{
  static fn::CustomMF_SI_SO<int, int> max_one_fn(
      "Clamp Above One",
      [](int value) { return std::max(1, value); },
      fn::CustomMF_presets::AllSpanOrSingle());
  auto clamp_op = std::make_shared<fn::FieldOperation>(
      fn::FieldOperation(max_one_fn, {count_field}));

  return fn::Field<int>(std::move(clamp_op));
}

static fn::Field<int> get_count_input_from_length(const fn::Field<float> &length_field)
{
  static fn::CustomMF_SI_SI_SO<float, float, int> get_count_fn(
      "Length Input to Count",
      [](const float curve_length, const float sample_length) {
        /* Find the number of sampled segments by dividing the total length by
         * the sample length. Then there is one more sampled point than segment. */
        const int count = int(curve_length / sample_length) + 1;
        return std::max(1, count);
      },
      fn::CustomMF_presets::AllSpanOrSingle());

  auto get_count_op = std::make_shared<fn::FieldOperation>(fn::FieldOperation(
      get_count_fn,
      {fn::Field<float>(std::make_shared<bke::CurveLengthFieldInput>()), length_field}));

  return fn::Field<int>(std::move(get_count_op));
}

/**
 * Return true if the attribute should be copied/interpolated to the result curves.
 * Don't output attributes that correspond to curve types that have no curves in the result.
 */
static bool interpolate_attribute_to_curves(const bke::AttributeIDRef &attribute_id,
                                            const std::array<int, CURVE_TYPES_NUM> &type_counts)
{
  if (!attribute_id.is_named()) {
    return true;
  }
  if (ELEM(attribute_id.name(),
           "handle_type_left",
           "handle_type_right",
           "handle_left",
           "handle_right")) {
    return type_counts[CURVE_TYPE_BEZIER] != 0;
  }
  if (ELEM(attribute_id.name(), "nurbs_weight")) {
    return type_counts[CURVE_TYPE_NURBS] != 0;
  }
  return true;
}

/**
 * Return true if the attribute should be copied to poly curves.
 */
static bool interpolate_attribute_to_poly_curve(const bke::AttributeIDRef &attribute_id)
{
  static const Set<StringRef> no_interpolation{{
      "handle_type_left",
      "handle_type_right",
      "handle_right",
      "handle_left",
      "nurbs_weight",
  }};
  return !(attribute_id.is_named() && no_interpolation.contains(attribute_id.name()));
}

/**
 * Retrieve spans from source and result attributes.
 */
static void retrieve_attribute_spans(const Span<bke::AttributeIDRef> ids,
                                     const CurveComponent &src_component,
                                     CurveComponent &dst_component,
                                     Vector<GSpan> &src,
                                     Vector<GMutableSpan> &dst,
                                     Vector<bke::GSpanAttributeWriter> &dst_attributes)
{
  for (const int i : ids.index_range()) {
    GVArray src_attribute = src_component.attributes()->lookup(ids[i], ATTR_DOMAIN_POINT);
    BLI_assert(src_attribute);
    src.append(src_attribute.get_internal_span());

    const eCustomDataType data_type = bke::cpp_type_to_custom_data_type(src_attribute.type());
    bke::GSpanAttributeWriter dst_attribute =
        dst_component.attributes_for_write()->lookup_or_add_for_write_only_span(
            ids[i], ATTR_DOMAIN_POINT, data_type);
    dst.append(dst_attribute.span);
    dst_attributes.append(std::move(dst_attribute));
  }
}

struct AttributesForInterpolation : NonCopyable, NonMovable {
  Vector<GSpan> src;
  Vector<GMutableSpan> dst;

  Vector<bke::GSpanAttributeWriter> dst_attributes;

  Vector<GSpan> src_no_interpolation;
  Vector<GMutableSpan> dst_no_interpolation;
};

/**
 * Gather a set of all generic attribute IDs to copy to the result curves.
 */
static void gather_point_attributes_to_interpolate(const CurveComponent &src_component,
                                                   CurveComponent &dst_component,
                                                   AttributesForInterpolation &result)
{
  bke::CurvesGeometry &dst_curves = bke::CurvesGeometry::wrap(
      dst_component.get_for_write()->geometry);

  VectorSet<bke::AttributeIDRef> ids;
  VectorSet<bke::AttributeIDRef> ids_no_interpolation;
  src_component.attributes()->for_all(
      [&](const bke::AttributeIDRef &id, const bke::AttributeMetaData meta_data) {
        if (meta_data.domain != ATTR_DOMAIN_POINT) {
          return true;
        }
        if (!interpolate_attribute_to_curves(id, dst_curves.curve_type_counts())) {
          return true;
        }
        if (interpolate_attribute_to_poly_curve(id)) {
          ids.add_new(id);
        }
        else {
          ids_no_interpolation.add_new(id);
        }
        return true;
      });

  /* Position is handled differently since it has non-generic interpolation for Bezier
   * curves and because the evaluated positions are cached for each evaluated point. */
  ids.remove_contained("position");

  retrieve_attribute_spans(
      ids, src_component, dst_component, result.src, result.dst, result.dst_attributes);

  /* Attributes that aren't interpolated like Bezier handles still have to be copied
   * to the result when there are any unselected curves of the corresponding type. */
  retrieve_attribute_spans(ids_no_interpolation,
                           src_component,
                           dst_component,
                           result.src_no_interpolation,
                           result.dst_no_interpolation,
                           result.dst_attributes);
}

static Curves *resample_to_uniform(const CurveComponent &src_component,
                                   const fn::Field<bool> &selection_field,
                                   const fn::Field<int> &count_field)
{
  const bke::CurvesGeometry &src_curves = bke::CurvesGeometry::wrap(
      src_component.get_for_read()->geometry);

  /* Create the new curves without any points and evaluate the final count directly
   * into the offsets array, in order to be accumulated into offsets later. */
  Curves *dst_curves_id = bke::curves_new_nomain(0, src_curves.curves_num());
  bke::CurvesGeometry &dst_curves = bke::CurvesGeometry::wrap(dst_curves_id->geometry);

  /* Directly copy curve attributes, since they stay the same (except for curve types). */
  CustomData_copy(&src_curves.curve_data,
                  &dst_curves.curve_data,
                  CD_MASK_ALL,
                  CD_DUPLICATE,
                  src_curves.curves_num());
  MutableSpan<int> dst_offsets = dst_curves.offsets_for_write();

  bke::GeometryComponentFieldContext field_context{src_component, ATTR_DOMAIN_CURVE};
  fn::FieldEvaluator evaluator{field_context, src_curves.curves_num()};
  evaluator.set_selection(selection_field);
  evaluator.add_with_destination(count_field, dst_offsets);
  evaluator.evaluate();
  const IndexMask selection = evaluator.get_evaluated_selection_as_mask();
  const Vector<IndexRange> unselected_ranges = selection.extract_ranges_invert(
      src_curves.curves_range(), nullptr);

  /* Fill the counts for the curves that aren't selected and accumulate the counts into offsets. */
  bke::curves::fill_curve_counts(src_curves, unselected_ranges, dst_offsets);
  bke::curves::accumulate_counts_to_offsets(dst_offsets);
  dst_curves.resize(dst_offsets.last(), dst_curves.curves_num());

  /* All resampled curves are poly curves. */
  dst_curves.fill_curve_types(selection, CURVE_TYPE_POLY);

  VArray<bool> curves_cyclic = src_curves.cyclic();
  VArray<int8_t> curve_types = src_curves.curve_types();
  Span<float3> evaluated_positions = src_curves.evaluated_positions();
  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();

  AttributesForInterpolation attributes;
  CurveComponent dst_component;
  dst_component.replace(dst_curves_id, GeometryOwnershipType::Editable);
  gather_point_attributes_to_interpolate(src_component, dst_component, attributes);

  src_curves.ensure_evaluated_lengths();

  /* Sampling arbitrary attributes works by first interpolating them to the curve's standard
   * "evaluated points" and then interpolating that result with the uniform samples. This is
   * potentially wasteful when down-sampling a curve to many fewer points. There are two possible
   * solutions: only sample the necessary points for interpolation, or first sample curve
   * parameter/segment indices and evaluate the curve directly. */
  Array<int> sample_indices(dst_curves.points_num());
  Array<float> sample_factors(dst_curves.points_num());

  /* Use a "for each group of curves: for each attribute: for each curve" pattern to work on
   * smaller sections of data that ideally fit into CPU cache better than simply one attribute at a
   * time or one curve at a time. */
  threading::parallel_for(selection.index_range(), 512, [&](IndexRange selection_range) {
    const IndexMask sliced_selection = selection.slice(selection_range);

    Vector<std::byte> evaluated_buffer;

    /* Gather uniform samples based on the accumulated lengths of the original curve. */
    for (const int i_curve : sliced_selection) {
      const bool cyclic = curves_cyclic[i_curve];
      const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
      const Span<float> lengths = src_curves.evaluated_lengths_for_curve(i_curve, cyclic);
      if (lengths.is_empty()) {
        /* Handle curves with only one evaluated point. */
        sample_indices.as_mutable_span().slice(dst_points).fill(0);
        sample_factors.as_mutable_span().slice(dst_points).fill(0.0f);
      }
      else {
        length_parameterize::sample_uniform(lengths,
                                            !curves_cyclic[i_curve],
                                            sample_indices.as_mutable_span().slice(dst_points),
                                            sample_factors.as_mutable_span().slice(dst_points));
      }
    }

    /* For every attribute, evaluate attributes from every curve in the range in the original
     * curve's "evaluated points", then use linear interpolation to sample to the result. */
    for (const int i_attribute : attributes.dst.index_range()) {
      attribute_math::convert_to_static_type(attributes.src[i_attribute].type(), [&](auto dummy) {
        using T = decltype(dummy);
        Span<T> src = attributes.src[i_attribute].typed<T>();
        MutableSpan<T> dst = attributes.dst[i_attribute].typed<T>();

        for (const int i_curve : sliced_selection) {
          const IndexRange src_points = src_curves.points_for_curve(i_curve);
          const IndexRange dst_points = dst_curves.points_for_curve(i_curve);

          if (curve_types[i_curve] == CURVE_TYPE_POLY) {
            length_parameterize::interpolate(src.slice(src_points),
                                             sample_indices.as_span().slice(dst_points),
                                             sample_factors.as_span().slice(dst_points),
                                             dst.slice(dst_points));
          }
          else {
            const int evaluated_size = src_curves.evaluated_points_for_curve(i_curve).size();
            evaluated_buffer.clear();
            evaluated_buffer.resize(sizeof(T) * evaluated_size);
            MutableSpan<T> evaluated = evaluated_buffer.as_mutable_span().cast<T>();
            src_curves.interpolate_to_evaluated(i_curve, src.slice(src_points), evaluated);

            length_parameterize::interpolate(evaluated.as_span(),
                                             sample_indices.as_span().slice(dst_points),
                                             sample_factors.as_span().slice(dst_points),
                                             dst.slice(dst_points));
          }
        }
      });
    }

    /* Interpolate the evaluated positions to the resampled curves. */
    for (const int i_curve : sliced_selection) {
      const IndexRange src_points = src_curves.evaluated_points_for_curve(i_curve);
      const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
      length_parameterize::interpolate(evaluated_positions.slice(src_points),
                                       sample_indices.as_span().slice(dst_points),
                                       sample_factors.as_span().slice(dst_points),
                                       dst_positions.slice(dst_points));
    }

    /* Fill the default value for non-interpolating attributes that still must be copied. */
    for (GMutableSpan dst : attributes.dst_no_interpolation) {
      for (const int i_curve : sliced_selection) {
        const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
        dst.type().value_initialize_n(dst.slice(dst_points).data(), dst_points.size());
      }
    }
  });

  /* Any attribute data from unselected curve points can be directly copied. */
  for (const int i : attributes.src.index_range()) {
    bke::curves::copy_point_data(
        src_curves, dst_curves, unselected_ranges, attributes.src[i], attributes.dst[i]);
  }
  for (const int i : attributes.src_no_interpolation.index_range()) {
    bke::curves::copy_point_data(src_curves,
                                 dst_curves,
                                 unselected_ranges,
                                 attributes.src_no_interpolation[i],
                                 attributes.dst_no_interpolation[i]);
  }

  /* Copy positions for unselected curves. */
  Span<float3> src_positions = src_curves.positions();
  bke::curves::copy_point_data(
      src_curves, dst_curves, unselected_ranges, src_positions, dst_positions);

  for (bke::GSpanAttributeWriter &attribute : attributes.dst_attributes) {
    attribute.finish();
  }

  return dst_curves_id;
}

Curves *resample_to_count(const CurveComponent &src_component,
                          const fn::Field<bool> &selection_field,
                          const fn::Field<int> &count_field)
{
  return resample_to_uniform(src_component, selection_field, get_count_input_max_one(count_field));
}

Curves *resample_to_length(const CurveComponent &src_component,
                           const fn::Field<bool> &selection_field,
                           const fn::Field<float> &segment_length_field)
{
  return resample_to_uniform(
      src_component, selection_field, get_count_input_from_length(segment_length_field));
}

Curves *resample_to_evaluated(const CurveComponent &src_component,
                              const fn::Field<bool> &selection_field)
{
  const bke::CurvesGeometry &src_curves = bke::CurvesGeometry::wrap(
      src_component.get_for_read()->geometry);
  src_curves.ensure_evaluated_offsets();

  bke::GeometryComponentFieldContext field_context{src_component, ATTR_DOMAIN_CURVE};
  fn::FieldEvaluator evaluator{field_context, src_curves.curves_num()};
  evaluator.set_selection(selection_field);
  evaluator.evaluate();
  const IndexMask selection = evaluator.get_evaluated_selection_as_mask();
  const Vector<IndexRange> unselected_ranges = selection.extract_ranges_invert(
      src_curves.curves_range(), nullptr);

  Curves *dst_curves_id = bke::curves_new_nomain(0, src_curves.curves_num());
  bke::CurvesGeometry &dst_curves = bke::CurvesGeometry::wrap(dst_curves_id->geometry);

  /* Directly copy curve attributes, since they stay the same (except for curve types). */
  CustomData_copy(&src_curves.curve_data,
                  &dst_curves.curve_data,
                  CD_MASK_ALL,
                  CD_DUPLICATE,
                  src_curves.curves_num());
  /* All resampled curves are poly curves. */
  dst_curves.fill_curve_types(selection, CURVE_TYPE_POLY);
  MutableSpan<int> dst_offsets = dst_curves.offsets_for_write();

  src_curves.ensure_evaluated_offsets();
  threading::parallel_for(selection.index_range(), 4096, [&](IndexRange range) {
    for (const int i : selection.slice(range)) {
      dst_offsets[i] = src_curves.evaluated_points_for_curve(i).size();
    }
  });
  bke::curves::fill_curve_counts(src_curves, unselected_ranges, dst_offsets);
  bke::curves::accumulate_counts_to_offsets(dst_offsets);

  dst_curves.resize(dst_offsets.last(), dst_curves.curves_num());

  /* Create the correct number of uniform-length samples for every selected curve. */
  Span<float3> evaluated_positions = src_curves.evaluated_positions();
  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();

  AttributesForInterpolation attributes;
  CurveComponent dst_component;
  dst_component.replace(dst_curves_id, GeometryOwnershipType::Editable);
  gather_point_attributes_to_interpolate(src_component, dst_component, attributes);

  threading::parallel_for(selection.index_range(), 512, [&](IndexRange selection_range) {
    const IndexMask sliced_selection = selection.slice(selection_range);

    /* Evaluate generic point attributes directly to the result attributes. */
    for (const int i_attribute : attributes.dst.index_range()) {
      attribute_math::convert_to_static_type(attributes.src[i_attribute].type(), [&](auto dummy) {
        using T = decltype(dummy);
        Span<T> src = attributes.src[i_attribute].typed<T>();
        MutableSpan<T> dst = attributes.dst[i_attribute].typed<T>();

        for (const int i_curve : sliced_selection) {
          const IndexRange src_points = src_curves.points_for_curve(i_curve);
          const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
          src_curves.interpolate_to_evaluated(
              i_curve, src.slice(src_points), dst.slice(dst_points));
        }
      });
    }

    /* Copy the evaluated positions to the selected curves. */
    for (const int i_curve : sliced_selection) {
      const IndexRange src_points = src_curves.evaluated_points_for_curve(i_curve);
      const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
      dst_positions.slice(dst_points).copy_from(evaluated_positions.slice(src_points));
    }

    /* Fill the default value for non-interpolating attributes that still must be copied. */
    for (GMutableSpan dst : attributes.dst_no_interpolation) {
      for (const int i_curve : sliced_selection) {
        const IndexRange dst_points = dst_curves.points_for_curve(i_curve);
        dst.type().value_initialize_n(dst.slice(dst_points).data(), dst_points.size());
      }
    }
  });

  /* Any attribute data from unselected curve points can be directly copied. */
  for (const int i : attributes.src.index_range()) {
    bke::curves::copy_point_data(
        src_curves, dst_curves, unselected_ranges, attributes.src[i], attributes.dst[i]);
  }
  for (const int i : attributes.src_no_interpolation.index_range()) {
    bke::curves::copy_point_data(src_curves,
                                 dst_curves,
                                 unselected_ranges,
                                 attributes.src_no_interpolation[i],
                                 attributes.dst_no_interpolation[i]);
  }

  /* Copy positions for unselected curves. */
  Span<float3> src_positions = src_curves.positions();
  bke::curves::copy_point_data(
      src_curves, dst_curves, unselected_ranges, src_positions, dst_positions);

  for (bke::GSpanAttributeWriter &attribute : attributes.dst_attributes) {
    attribute.finish();
  }

  return dst_curves_id;
}

}  // namespace blender::geometry