Welcome to mirror list, hosted at ThFree Co, Russian Federation.

trim_curves.cc « intern « geometry « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f2adc3b58d3e384bbf9f43eb533568a7ea92337a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
/* SPDX-License-Identifier: GPL-2.0-or-later */

/** \file
 * \ingroup bke
 */

#include "BLI_array_utils.hh"
#include "BLI_length_parameterize.hh"

#include "BKE_attribute.hh"
#include "BKE_attribute_math.hh"
#include "BKE_curves.hh"
#include "BKE_curves_utils.hh"
#include "BKE_geometry_set.hh"

#include "GEO_trim_curves.hh"

namespace blender::geometry {

/* -------------------------------------------------------------------- */
/** \name Curve Enums
 * \{ */

#define CURVE_TYPE_AS_MASK(curve_type) ((CurveTypeMask)(1 << int(curve_type)))

enum CurveTypeMask {
  CURVE_TYPE_MASK_CATMULL_ROM = (1 << 0),
  CURVE_TYPE_MASK_POLY = (1 << 1),
  CURVE_TYPE_MASK_BEZIER = (1 << 2),
  CURVE_TYPE_MASK_NURBS = (1 << 3),
  CURVE_TYPE_MASK_ALL = (1 << 4) - 1
};

/** \} */

/* -------------------------------------------------------------------- */
/** \name #IndexRangeCyclic Utilities
 * \{ */

/**
 * Create a cyclical iterator for all control points within the interval [start_point, end_point]
 * including any control point at the start or end point.
 *
 * \param start_point: Point on the curve that define the starting point of the interval.
 * \param end_point: Point on the curve that define the end point of the interval (included).
 * \param points: #IndexRange for the curve points.
 */
static bke::curves::IndexRangeCyclic get_range_between_endpoints(
    const bke::curves::CurvePoint start_point,
    const bke::curves::CurvePoint end_point,
    const IndexRange points)
{
  const int64_t start_index = start_point.parameter == 0.0 ? start_point.index :
                                                             start_point.next_index;
  int64_t end_index = end_point.parameter == 0.0 ? end_point.index : end_point.next_index;
  int64_t cycles;

  if (end_point.is_controlpoint()) {
    ++end_index;
    if (end_index > points.last()) {
      end_index = points.one_after_last();
    }
    /* end_point < start_point but parameter is irrelevant (end_point is controlpoint), and loop
     * when equal due to increment. */
    cycles = end_index <= start_index;
  }
  else {
    cycles = end_point < start_point || end_index < start_index;
  }
  return bke::curves::IndexRangeCyclic(start_index, end_index, points, cycles);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Lookup Curve Points
 * \{ */

/**
 * Find the point on the curve defined by the distance along the curve. Assumes curve resolution is
 * constant for all curve segments and evaluated curve points are uniformly spaced between the
 * segment endpoints in relation to the curve parameter.
 *
 * \param lengths: Accumulated length for the evaluated curve.
 * \param sample_length: Distance along the curve to determine the #CurvePoint for.
 * \param cyclic: If curve is cyclic.
 * \param resolution: Curve resolution (number of evaluated points per segment).
 * \param num_curve_points: Total number of control points in the curve.
 * \return: Point on the piecewise segment matching the given distance.
 */
static bke::curves::CurvePoint lookup_curve_point(const Span<float> lengths,
                                                  const float sample_length,
                                                  const bool cyclic,
                                                  const int resolution,
                                                  const int num_curve_points)
{
  BLI_assert(!cyclic || lengths.size() / resolution >= 2);
  const int last_index = num_curve_points - 1;
  if (sample_length <= 0.0f) {
    return {{0, 1}, 0.0f};
  }
  if (sample_length >= lengths.last()) {
    return cyclic ? bke::curves::CurvePoint{{last_index, 0}, 1.0} :
                    bke::curves::CurvePoint{{last_index - 1, last_index}, 1.0};
  }
  int eval_index;
  float eval_factor;
  length_parameterize::sample_at_length(lengths, sample_length, eval_index, eval_factor);

  const int index = eval_index / resolution;
  const int next_index = (index == last_index) ? 0 : index + 1;
  const float parameter = (eval_factor + eval_index) / resolution - index;

  return bke::curves::CurvePoint{{index, next_index}, parameter};
}

/**
 * Find the point on the 'evaluated' polygonal curve.
 */
static bke::curves::CurvePoint lookup_evaluated_point(const Span<float> lengths,
                                                      const float sample_length,
                                                      const bool cyclic,
                                                      const int evaluated_size)
{
  const int last_index = evaluated_size - 1;
  if (sample_length <= 0.0f) {
    return {{0, 1}, 0.0f};
  }
  if (sample_length >= lengths.last()) {
    return cyclic ? bke::curves::CurvePoint{{last_index, 0}, 1.0} :
                    bke::curves::CurvePoint{{last_index - 1, last_index}, 1.0};
  }

  int eval_index;
  float eval_factor;
  length_parameterize::sample_at_length(lengths, sample_length, eval_index, eval_factor);

  const int next_eval_index = (eval_index == last_index) ? 0 : eval_index + 1;
  return bke::curves::CurvePoint{{eval_index, next_eval_index}, eval_factor};
}

/**
 * Find the point on a Bezier curve using the 'bezier_offsets' cache.
 */
static bke::curves::CurvePoint lookup_bezier_point(const Span<int> bezier_offsets,
                                                   const Span<float> lengths,
                                                   const float sample_length,
                                                   const bool cyclic,
                                                   const int num_curve_points)
{
  const int last_index = num_curve_points - 1;
  if (sample_length <= 0.0f) {
    return {{0, 1}, 0.0f};
  }
  if (sample_length >= lengths.last()) {
    return cyclic ? bke::curves::CurvePoint{{last_index, 0}, 1.0} :
                    bke::curves::CurvePoint{{last_index - 1, last_index}, 1.0};
  }
  int eval_index;
  float eval_factor;
  length_parameterize::sample_at_length(lengths, sample_length, eval_index, eval_factor);

  /* Find the segment index from the offset mapping. */
  const int *offset = std::upper_bound(bezier_offsets.begin(), bezier_offsets.end(), eval_index);
  const int left = offset - bezier_offsets.begin();
  const int right = left == last_index ? 0 : left + 1;

  const int prev_offset = left == 0 ? 0 : bezier_offsets[int64_t(left) - 1];
  const float offset_in_segment = eval_factor + eval_index - prev_offset;
  const int segment_resolution = bezier_offsets[left] - prev_offset;
  const float parameter = std::clamp(offset_in_segment / segment_resolution, 0.0f, 1.0f);

  return {{left, right}, parameter};
}

Array<bke::curves::CurvePoint, 12> lookup_curve_points(const bke::CurvesGeometry &curves,
                                                       const Span<float> lengths,
                                                       const Span<int64_t> curve_indices,
                                                       const bool normalized_factors)
{
  BLI_assert(lengths.size() == curve_indices.size());
  BLI_assert(*std::max_element(curve_indices.begin(), curve_indices.end()) < curves.curves_num());

  const VArray<bool> cyclic = curves.cyclic();
  const VArray<int> resolution = curves.resolution();
  const VArray<int8_t> curve_types = curves.curve_types();

  /* Compute curve lengths! */
  curves.ensure_evaluated_lengths();
  curves.ensure_evaluated_offsets();

  /* Find the curve points referenced by the input! */
  Array<bke::curves::CurvePoint, 12> lookups(curve_indices.size());
  threading::parallel_for(curve_indices.index_range(), 128, [&](const IndexRange range) {
    for (const int64_t lookup_index : range) {
      const int64_t curve_i = curve_indices[lookup_index];

      const int point_count = curves.points_num_for_curve(curve_i);
      if (curve_i < 0 || point_count == 1) {
        lookups[lookup_index] = {{0, 0}, 0.0f};
        continue;
      }

      const Span<float> accumulated_lengths = curves.evaluated_lengths_for_curve(curve_i,
                                                                                 cyclic[curve_i]);
      BLI_assert(accumulated_lengths.size() > 0);

      const float sample_length = normalized_factors ?
                                      lengths[lookup_index] * accumulated_lengths.last() :
                                      lengths[lookup_index];

      const CurveType curve_type = (CurveType)curve_types[curve_i];

      switch (curve_type) {
        case CURVE_TYPE_BEZIER: {
          if (bke::curves::bezier::has_vector_handles(
                  point_count,
                  curves.evaluated_points_for_curve(curve_i).size(),
                  cyclic[curve_i],
                  resolution[curve_i])) {
            const Span<int> bezier_offsets = curves.bezier_evaluated_offsets_for_curve(curve_i);
            lookups[lookup_index] = lookup_bezier_point(
                bezier_offsets, accumulated_lengths, sample_length, cyclic[curve_i], point_count);
          }
          else {
            lookups[lookup_index] = lookup_curve_point(accumulated_lengths,
                                                       sample_length,
                                                       cyclic[curve_i],
                                                       resolution[curve_i],
                                                       point_count);
          }
          break;
        }
        case CURVE_TYPE_CATMULL_ROM: {
          lookups[lookup_index] = lookup_curve_point(accumulated_lengths,
                                                     sample_length,
                                                     cyclic[curve_i],
                                                     resolution[curve_i],
                                                     point_count);
          break;
        }
        case CURVE_TYPE_NURBS:
        case CURVE_TYPE_POLY:
        default: {
          /* Handle general case as an "evaluated" or polygonal curve. */
          BLI_assert(resolution[curve_i] > 0);
          lookups[lookup_index] = lookup_evaluated_point(
              accumulated_lengths,
              sample_length,
              cyclic[curve_i],
              curves.evaluated_points_for_curve(curve_i).size());
          break;
        }
      }
    }
  });
  return lookups;
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Transfer Curve Domain
 * \{ */

/**
 * Determine curve type(s) for the copied curves given the supported set of types and knot modes.
 * If a curve type is not supported the default type is set.
 */
static void determine_copyable_curve_types(
    const bke::CurvesGeometry &src_curves,
    bke::CurvesGeometry &dst_curves,
    const IndexMask selection,
    const IndexMask selection_inverse,
    const CurveTypeMask supported_curve_type_mask,
    const int8_t default_curve_type = int8_t(CURVE_TYPE_POLY))
{
  const VArray<int8_t> src_curve_types = src_curves.curve_types();
  const VArray<int8_t> src_knot_modes = src_curves.nurbs_knots_modes();
  MutableSpan<int8_t> dst_curve_types = dst_curves.curve_types_for_write();

  threading::parallel_for(selection.index_range(), 4096, [&](const IndexRange selection_range) {
    for (const int64_t curve_i : selection.slice(selection_range)) {
      if (supported_curve_type_mask & CURVE_TYPE_AS_MASK(src_curve_types[curve_i])) {
        dst_curve_types[curve_i] = src_curve_types[curve_i];
      }
      else {
        dst_curve_types[curve_i] = default_curve_type;
      }
    }
  });

  array_utils::copy(src_curve_types, selection_inverse, dst_curve_types);
}

/**
 * Determine if a curve is treated as an evaluated curve. Curves which inherently do not support
 * trimming are discretized (e.g. NURBS).
 */
static bool copy_as_evaluated_curve(const int8_t src_type, const int8_t dst_type)
{
  return src_type != CURVE_TYPE_POLY && dst_type == CURVE_TYPE_POLY;
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Specialized Curve Constructors
 * \{ */

static void compute_trim_result_offsets(const bke::CurvesGeometry &src_curves,
                                        const IndexMask selection,
                                        const IndexMask inverse_selection,
                                        const Span<bke::curves::CurvePoint> start_points,
                                        const Span<bke::curves::CurvePoint> end_points,
                                        const VArray<int8_t> dst_curve_types,
                                        MutableSpan<int> dst_curve_offsets,
                                        Vector<int64_t> &r_curve_indices,
                                        Vector<int64_t> &r_point_curve_indices)
{
  BLI_assert(r_curve_indices.size() == 0);
  BLI_assert(r_point_curve_indices.size() == 0);
  const VArray<bool> cyclic = src_curves.cyclic();
  const VArray<int8_t> curve_types = src_curves.curve_types();
  r_curve_indices.reserve(selection.size());

  for (const int64_t curve_i : selection) {

    int64_t src_point_count;

    if (copy_as_evaluated_curve(curve_types[curve_i], dst_curve_types[curve_i])) {
      src_point_count = src_curves.evaluated_points_for_curve(curve_i).size();
    }
    else {
      src_point_count = int64_t(src_curves.points_num_for_curve(curve_i));
    }
    BLI_assert(src_point_count > 0);

    if (start_points[curve_i] == end_points[curve_i]) {
      dst_curve_offsets[curve_i] = 1;
      r_point_curve_indices.append(curve_i);
    }
    else {
      const bke::curves::IndexRangeCyclic point_range = get_range_between_endpoints(
          start_points[curve_i], end_points[curve_i], {0, src_point_count});
      const int count = point_range.size() + !start_points[curve_i].is_controlpoint() +
                        !end_points[curve_i].is_controlpoint();
      dst_curve_offsets[curve_i] = count;
      r_curve_indices.append(curve_i);
    }
    BLI_assert(dst_curve_offsets[curve_i] > 0);
  }
  threading::parallel_for(
      inverse_selection.index_range(), 4096, [&](const IndexRange selection_range) {
        for (const int64_t curve_i : inverse_selection.slice(selection_range)) {
          dst_curve_offsets[curve_i] = src_curves.points_num_for_curve(curve_i);
        }
      });
  bke::curves::accumulate_counts_to_offsets(dst_curve_offsets);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Utility Functions
 * \{ */

static void fill_bezier_data(bke::CurvesGeometry &dst_curves, const IndexMask selection)
{
  if (dst_curves.has_curve_with_type(CURVE_TYPE_BEZIER)) {
    MutableSpan<float3> handle_positions_left = dst_curves.handle_positions_left_for_write();
    MutableSpan<float3> handle_positions_right = dst_curves.handle_positions_right_for_write();
    MutableSpan<int8_t> handle_types_left = dst_curves.handle_types_left_for_write();
    MutableSpan<int8_t> handle_types_right = dst_curves.handle_types_right_for_write();

    threading::parallel_for(selection.index_range(), 4096, [&](const IndexRange range) {
      for (const int64_t curve_i : selection.slice(range)) {
        const IndexRange points = dst_curves.points_for_curve(curve_i);
        handle_types_right.slice(points).fill(int8_t(BEZIER_HANDLE_FREE));
        handle_types_left.slice(points).fill(int8_t(BEZIER_HANDLE_FREE));
        handle_positions_left.slice(points).fill({0.0f, 0.0f, 0.0f});
        handle_positions_right.slice(points).fill({0.0f, 0.0f, 0.0f});
      }
    });
  }
}
static void fill_nurbs_data(bke::CurvesGeometry &dst_curves, const IndexMask selection)
{
  if (dst_curves.has_curve_with_type(CURVE_TYPE_NURBS)) {
    bke::curves::fill_points(dst_curves, selection, 0.0f, dst_curves.nurbs_weights_for_write());
  }
}

template<typename T>
static int64_t copy_point_data_between_endpoints(const Span<T> src_data,
                                                 MutableSpan<T> dst_data,
                                                 const bke::curves::IndexRangeCyclic src_range,
                                                 const int64_t src_index,
                                                 int64_t dst_index)
{
  int64_t increment;
  if (src_range.cycles()) {
    increment = src_range.size_before_loop();
    dst_data.slice(dst_index, increment).copy_from(src_data.slice(src_index, increment));
    dst_index += increment;

    increment = src_range.size_after_loop();
    dst_data.slice(dst_index, increment)
        .copy_from(src_data.slice(src_range.curve_range().first(), increment));
    dst_index += increment;
  }
  else {
    increment = src_range.one_after_last() - src_range.first();
    dst_data.slice(dst_index, increment).copy_from(src_data.slice(src_index, increment));
    dst_index += increment;
  }
  return dst_index;
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Sampling Utilities
 * \{ */

template<typename T>
static T interpolate_catmull_rom(const Span<T> src_data,
                                 const bke::curves::CurvePoint insertion_point,
                                 const bool src_cyclic)
{
  BLI_assert(insertion_point.index >= 0 && insertion_point.next_index < src_data.size());
  int i0;
  if (insertion_point.index == 0) {
    i0 = src_cyclic ? src_data.size() - 1 : insertion_point.index;
  }
  else {
    i0 = insertion_point.index - 1;
  }
  int i3 = insertion_point.next_index + 1;
  if (i3 == src_data.size()) {
    i3 = src_cyclic ? 0 : insertion_point.next_index;
  }
  return bke::curves::catmull_rom::interpolate<T>(src_data[i0],
                                                  src_data[insertion_point.index],
                                                  src_data[insertion_point.next_index],
                                                  src_data[i3],
                                                  insertion_point.parameter);
}

static bke::curves::bezier::Insertion knot_insert_bezier(
    const Span<float3> positions,
    const Span<float3> handles_left,
    const Span<float3> handles_right,
    const bke::curves::CurvePoint insertion_point)
{
  BLI_assert(
      insertion_point.index + 1 == insertion_point.next_index ||
      (insertion_point.next_index >= 0 && insertion_point.next_index < insertion_point.index));
  return bke::curves::bezier::insert(positions[insertion_point.index],
                                     handles_right[insertion_point.index],
                                     handles_left[insertion_point.next_index],
                                     positions[insertion_point.next_index],
                                     insertion_point.parameter);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Sample Single Point
 * \{ */

template<typename T>
static void sample_linear(const Span<T> src_data,
                          MutableSpan<T> dst_data,
                          const IndexRange dst_range,
                          const bke::curves::CurvePoint sample_point)
{
  BLI_assert(dst_range.size() == 1);
  if (sample_point.is_controlpoint()) {
    /* Resolves cases where the source curve consist of a single control point. */
    const int index = sample_point.parameter == 1.0 ? sample_point.next_index : sample_point.index;
    dst_data[dst_range.first()] = src_data[index];
  }
  else {
    dst_data[dst_range.first()] = attribute_math::mix2(
        sample_point.parameter, src_data[sample_point.index], src_data[sample_point.next_index]);
  }
}

template<typename T>
static void sample_catmull_rom(const Span<T> src_data,
                               MutableSpan<T> dst_data,
                               const IndexRange dst_range,
                               const bke::curves::CurvePoint sample_point,
                               const bool src_cyclic)
{
  BLI_assert(dst_range.size() == 1);
  if (sample_point.is_controlpoint()) {
    /* Resolves cases where the source curve consist of a single control point. */
    const int index = sample_point.parameter == 1.0 ? sample_point.next_index : sample_point.index;
    dst_data[dst_range.first()] = src_data[index];
  }
  else {
    dst_data[dst_range.first()] = interpolate_catmull_rom(src_data, sample_point, src_cyclic);
  }
}

static void sample_bezier(const Span<float3> src_positions,
                          const Span<float3> src_handles_l,
                          const Span<float3> src_handles_r,
                          const Span<int8_t> src_types_l,
                          const Span<int8_t> src_types_r,
                          MutableSpan<float3> dst_positions,
                          MutableSpan<float3> dst_handles_l,
                          MutableSpan<float3> dst_handles_r,
                          MutableSpan<int8_t> dst_types_l,
                          MutableSpan<int8_t> dst_types_r,
                          const IndexRange dst_range,
                          const bke::curves::CurvePoint sample_point)
{
  BLI_assert(dst_range.size() == 1);
  if (sample_point.is_controlpoint()) {
    /* Resolves cases where the source curve consist of a single control point. */
    const int index = sample_point.parameter == 1.0 ? sample_point.next_index : sample_point.index;
    dst_positions[dst_range.first()] = src_positions[index];
    dst_handles_l[dst_range.first()] = src_handles_l[index];
    dst_handles_r[dst_range.first()] = src_handles_r[index];
    dst_types_l[dst_range.first()] = src_types_l[index];
    dst_types_r[dst_range.first()] = src_types_r[index];
  }
  else {
    bke::curves::bezier::Insertion insertion_point = knot_insert_bezier(
        src_positions, src_handles_l, src_handles_r, sample_point);
    dst_positions[dst_range.first()] = insertion_point.position;
    dst_handles_l[dst_range.first()] = insertion_point.left_handle;
    dst_handles_r[dst_range.first()] = insertion_point.right_handle;
    dst_types_l[dst_range.first()] = BEZIER_HANDLE_FREE;
    dst_types_r[dst_range.first()] = BEZIER_HANDLE_FREE;
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Sample Curve Interval (Trim)
 * \{ */

/**
 * Sample source curve data in the interval defined by the points [start_point, end_point].
 * Uses linear interpolation to compute the endpoints.
 *
 * \tparam include_start_point If False, the 'start_point' point sample will not be copied
 * and not accounted for in the destination range.
 * \param src_data: Source to sample from.
 * \param dst_data: Destination to write samples to.
 * \param src_range: Interval within [start_point, end_point] to copy from the source point domain.
 * \param dst_range: Interval to copy point data to in the destination buffer.
 * \param start_point: Point on the source curve to start sampling from.
 * \param end_point: Last point to sample in the source curve.
 */
template<typename T, bool include_start_point = true>
static void sample_interval_linear(const Span<T> src_data,
                                   MutableSpan<T> dst_data,
                                   const bke::curves::IndexRangeCyclic src_range,
                                   const IndexRange dst_range,
                                   const bke::curves::CurvePoint start_point,
                                   const bke::curves::CurvePoint end_point)
{
  int64_t src_index = src_range.first();
  int64_t dst_index = dst_range.first();

  if (start_point.is_controlpoint()) {
    /* 'start_point' is included in the copy iteration. */
    if constexpr (!include_start_point) {
      /* Skip first. */
      ++src_index;
    }
  }
  else if constexpr (!include_start_point) {
    /* Do nothing (excluded). */
  }
  else {
    /* General case, sample 'start_point' */
    dst_data[dst_index] = attribute_math::mix2(
        start_point.parameter, src_data[start_point.index], src_data[start_point.next_index]);
    ++dst_index;
  }

  dst_index = copy_point_data_between_endpoints(
      src_data, dst_data, src_range, src_index, dst_index);

  /* Handle last case */
  if (end_point.is_controlpoint()) {
    /* 'end_point' is included in the copy iteration. */
  }
  else {
    dst_data[dst_index] = attribute_math::mix2(
        end_point.parameter, src_data[end_point.index], src_data[end_point.next_index]);
#ifdef DEBUG
    ++dst_index;
#endif
  }
  BLI_assert(dst_index == dst_range.one_after_last());
}

template<typename T, bool include_start_point = true>
static void sample_interval_catmull_rom(const Span<T> src_data,
                                        MutableSpan<T> dst_data,
                                        const bke::curves::IndexRangeCyclic src_range,
                                        const IndexRange dst_range,
                                        const bke::curves::CurvePoint start_point,
                                        const bke::curves::CurvePoint end_point,
                                        const bool src_cyclic)
{
  int64_t src_index = src_range.first();
  int64_t dst_index = dst_range.first();

  if (start_point.is_controlpoint()) {
    /* 'start_point' is included in the copy iteration. */
    if constexpr (!include_start_point) {
      /* Skip first. */
      ++src_index;
    }
  }
  else if constexpr (!include_start_point) {
    /* Do nothing (excluded). */
  }
  else {
    /* General case, sample 'start_point' */
    dst_data[dst_index] = interpolate_catmull_rom(src_data, start_point, src_cyclic);
    ++dst_index;
  }

  dst_index = copy_point_data_between_endpoints(
      src_data, dst_data, src_range, src_index, dst_index);

  /* Handle last case */
  if (end_point.is_controlpoint()) {
    /* 'end_point' is included in the copy iteration. */
  }
  else {
    dst_data[dst_index] = interpolate_catmull_rom(src_data, end_point, src_cyclic);
#ifdef DEBUG
    ++dst_index;
#endif
  }
  BLI_assert(dst_index == dst_range.one_after_last());
}

template<bool include_start_point = true>
static void sample_interval_bezier(const Span<float3> src_positions,
                                   const Span<float3> src_handles_l,
                                   const Span<float3> src_handles_r,
                                   const Span<int8_t> src_types_l,
                                   const Span<int8_t> src_types_r,
                                   MutableSpan<float3> dst_positions,
                                   MutableSpan<float3> dst_handles_l,
                                   MutableSpan<float3> dst_handles_r,
                                   MutableSpan<int8_t> dst_types_l,
                                   MutableSpan<int8_t> dst_types_r,
                                   const bke::curves::IndexRangeCyclic src_range,
                                   const IndexRange dst_range,
                                   const bke::curves::CurvePoint start_point,
                                   const bke::curves::CurvePoint end_point)
{
  bke::curves::bezier::Insertion start_point_insert;
  int64_t src_index = src_range.first();
  int64_t dst_index = dst_range.first();

  bool start_point_trimmed = false;
  if (start_point.is_controlpoint()) {
    /* The 'start_point' control point is included in the copy iteration. */
    if constexpr (!include_start_point) {
      ++src_index; /* Skip first! */
    }
  }
  else if constexpr (!include_start_point) {
    /* Do nothing, 'start_point' is excluded. */
  }
  else {
    /* General case, sample 'start_point'. */
    start_point_insert = knot_insert_bezier(
        src_positions, src_handles_l, src_handles_r, start_point);
    dst_positions[dst_range.first()] = start_point_insert.position;
    dst_handles_l[dst_range.first()] = start_point_insert.left_handle;
    dst_handles_r[dst_range.first()] = start_point_insert.right_handle;
    dst_types_l[dst_range.first()] = src_types_l[start_point.index];
    dst_types_r[dst_range.first()] = src_types_r[start_point.index];

    start_point_trimmed = true;
    ++dst_index;
  }

  /* Copy point data between the 'start_point' and 'end_point'. */
  int64_t increment = src_range.cycles() ? src_range.size_before_loop() :
                                           src_range.one_after_last() - src_range.first();

  const IndexRange dst_range_to_end(dst_index, increment);
  const IndexRange src_range_to_end(src_index, increment);
  dst_positions.slice(dst_range_to_end).copy_from(src_positions.slice(src_range_to_end));
  dst_handles_l.slice(dst_range_to_end).copy_from(src_handles_l.slice(src_range_to_end));
  dst_handles_r.slice(dst_range_to_end).copy_from(src_handles_r.slice(src_range_to_end));
  dst_types_l.slice(dst_range_to_end).copy_from(src_types_l.slice(src_range_to_end));
  dst_types_r.slice(dst_range_to_end).copy_from(src_types_r.slice(src_range_to_end));
  dst_index += increment;

  increment = src_range.size_after_loop();
  if (src_range.cycles() && increment > 0) {
    const IndexRange dst_range_looped(dst_index, increment);
    const IndexRange src_range_looped(src_range.curve_range().first(), increment);
    dst_positions.slice(dst_range_looped).copy_from(src_positions.slice(src_range_looped));
    dst_handles_l.slice(dst_range_looped).copy_from(src_handles_l.slice(src_range_looped));
    dst_handles_r.slice(dst_range_looped).copy_from(src_handles_r.slice(src_range_looped));
    dst_types_l.slice(dst_range_looped).copy_from(src_types_l.slice(src_range_looped));
    dst_types_r.slice(dst_range_looped).copy_from(src_types_r.slice(src_range_looped));
    dst_index += increment;
  }

  if (start_point_trimmed) {
    dst_handles_l[dst_range.first() + 1] = start_point_insert.handle_next;
    /* No need to set handle type (remains the same)! */
  }

  /* Handle 'end_point' */
  bke::curves::bezier::Insertion end_point_insert;
  if (end_point.is_controlpoint()) {
    /* Do nothing, the 'end_point' control point is included in the copy iteration. */
  }
  else {
    /* Trimmed in both ends within the same (and only) segment! Ensure both end points is not a
     * loop. */
    if (start_point_trimmed && start_point.index == end_point.index &&
        start_point.parameter <= end_point.parameter) {

      /* Copy following segment control point. */
      dst_positions[dst_index] = src_positions[end_point.next_index];
      dst_handles_r[dst_index] = src_handles_r[end_point.next_index];

      /* Compute interpolation in the result curve. */
      const float parameter = (end_point.parameter - start_point.parameter) /
                              (1.0f - start_point.parameter);
      end_point_insert = knot_insert_bezier(
          dst_positions,
          dst_handles_l,
          dst_handles_r,
          {{int(dst_range.first()), int(dst_range.first() + 1)}, parameter});
    }
    else {
      /* General case, compute the insertion point.  */
      end_point_insert = knot_insert_bezier(
          src_positions, src_handles_l, src_handles_r, end_point);
    }

    dst_handles_r[dst_index - 1] = end_point_insert.handle_prev;
    dst_types_r[dst_index - 1] = src_types_l[end_point.index];

    dst_handles_l[dst_index] = end_point_insert.left_handle;
    dst_handles_r[dst_index] = end_point_insert.right_handle;
    dst_positions[dst_index] = end_point_insert.position;
    dst_types_l[dst_index] = src_types_l[end_point.next_index];
    dst_types_r[dst_index] = src_types_r[end_point.next_index];
#ifdef DEBUG
    ++dst_index;
#endif  // DEBUG
  }
  BLI_assert(dst_index == dst_range.one_after_last());
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Convert to Point Curves
 * \{ */

static void convert_point_polygonal_curves(
    const bke::CurvesGeometry &src_curves,
    bke::CurvesGeometry &dst_curves,
    const IndexMask selection,
    const Span<bke::curves::CurvePoint> sample_points,
    MutableSpan<bke::AttributeTransferData> transfer_attributes)
{
  const Span<float3> src_positions = src_curves.positions();
  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();

  threading::parallel_for(selection.index_range(), 4096, [&](const IndexRange range) {
    for (const int64_t curve_i : selection.slice(range)) {
      const IndexRange src_points = src_curves.points_for_curve(curve_i);
      const IndexRange dst_points = dst_curves.points_for_curve(curve_i);

      sample_linear<float3>(
          src_positions.slice(src_points), dst_positions, dst_points, sample_points[curve_i]);

      for (bke::AttributeTransferData &attribute : transfer_attributes) {
        attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
          using T = decltype(dummy);
          sample_linear<T>(attribute.src.template typed<T>().slice(src_points),
                           attribute.dst.span.typed<T>(),
                           dst_curves.points_for_curve(curve_i),
                           sample_points[curve_i]);
        });
      }
    }
  });

  fill_bezier_data(dst_curves, selection);
  fill_nurbs_data(dst_curves, selection);
}

static void convert_point_catmull_curves(
    const bke::CurvesGeometry &src_curves,
    bke::CurvesGeometry &dst_curves,
    const IndexMask selection,
    const Span<bke::curves::CurvePoint> sample_points,
    MutableSpan<bke::AttributeTransferData> transfer_attributes)
{
  const Span<float3> src_positions = src_curves.positions();
  const VArray<bool> src_cyclic = src_curves.cyclic();

  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();

  threading::parallel_for(selection.index_range(), 4096, [&](const IndexRange range) {
    for (const int64_t curve_i : selection.slice(range)) {
      const IndexRange src_points = src_curves.points_for_curve(curve_i);
      const IndexRange dst_points = dst_curves.points_for_curve(curve_i);

      sample_catmull_rom<float3>(src_positions.slice(src_points),
                                 dst_positions,
                                 dst_points,
                                 sample_points[curve_i],
                                 src_cyclic[curve_i]);
      for (bke::AttributeTransferData &attribute : transfer_attributes) {
        attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
          using T = decltype(dummy);
          sample_catmull_rom<T>(attribute.src.template typed<T>().slice(src_points),
                                attribute.dst.span.typed<T>(),
                                dst_points,
                                sample_points[curve_i],
                                src_cyclic[curve_i]);
        });
      }
    }
  });
  fill_bezier_data(dst_curves, selection);
  fill_nurbs_data(dst_curves, selection);
}

static void convert_point_bezier_curves(
    const bke::CurvesGeometry &src_curves,
    bke::CurvesGeometry &dst_curves,
    const IndexMask selection,
    const Span<bke::curves::CurvePoint> sample_points,
    MutableSpan<bke::AttributeTransferData> transfer_attributes)
{
  const Span<float3> src_positions = src_curves.positions();
  const VArraySpan<int8_t> src_types_l{src_curves.handle_types_left()};
  const VArraySpan<int8_t> src_types_r{src_curves.handle_types_right()};
  const Span<float3> src_handles_l = src_curves.handle_positions_left();
  const Span<float3> src_handles_r = src_curves.handle_positions_right();

  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();
  MutableSpan<int8_t> dst_types_l = dst_curves.handle_types_left_for_write();
  MutableSpan<int8_t> dst_types_r = dst_curves.handle_types_right_for_write();
  MutableSpan<float3> dst_handles_l = dst_curves.handle_positions_left_for_write();
  MutableSpan<float3> dst_handles_r = dst_curves.handle_positions_right_for_write();

  threading::parallel_for(selection.index_range(), 4096, [&](const IndexRange range) {
    for (const int64_t curve_i : selection.slice(range)) {
      const IndexRange src_points = src_curves.points_for_curve(curve_i);
      const IndexRange dst_points = dst_curves.points_for_curve(curve_i);

      sample_bezier(src_positions.slice(src_points),
                    src_handles_l.slice(src_points),
                    src_handles_r.slice(src_points),
                    src_types_l.slice(src_points),
                    src_types_r.slice(src_points),
                    dst_positions,
                    dst_handles_l,
                    dst_handles_r,
                    dst_types_l,
                    dst_types_r,
                    dst_points,
                    sample_points[curve_i]);

      for (bke::AttributeTransferData &attribute : transfer_attributes) {
        attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
          using T = decltype(dummy);
          sample_linear<T>(attribute.src.template typed<T>().slice(src_points),
                           attribute.dst.span.typed<T>(),
                           dst_points,
                           sample_points[curve_i]);
        });
      }
    }
  });
  fill_nurbs_data(dst_curves, selection);
}

static void convert_point_evaluated_curves(
    const bke::CurvesGeometry &src_curves,
    bke::CurvesGeometry &dst_curves,
    const IndexMask selection,
    const Span<bke::curves::CurvePoint> evaluated_sample_points,
    MutableSpan<bke::AttributeTransferData> transfer_attributes)
{
  const Span<float3> src_eval_positions = src_curves.evaluated_positions();
  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();

  threading::parallel_for(selection.index_range(), 4096, [&](const IndexRange range) {
    for (const int64_t curve_i : selection.slice(range)) {
      const IndexRange dst_points = dst_curves.points_for_curve(curve_i);
      const IndexRange src_evaluated_points = src_curves.evaluated_points_for_curve(curve_i);

      sample_linear<float3>(src_eval_positions.slice(src_evaluated_points),
                            dst_positions,
                            dst_points,
                            evaluated_sample_points[curve_i]);

      for (bke::AttributeTransferData &attribute : transfer_attributes) {
        attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
          using T = decltype(dummy);
          GArray evaluated_data(CPPType::get<T>(), src_evaluated_points.size());
          GMutableSpan evaluated_span = evaluated_data.as_mutable_span();
          src_curves.interpolate_to_evaluated(
              curve_i, attribute.src.slice(src_curves.points_for_curve(curve_i)), evaluated_span);
          sample_linear<T>(evaluated_span.typed<T>(),
                           attribute.dst.span.typed<T>(),
                           dst_points,
                           evaluated_sample_points[curve_i]);
        });
      }
    }
  });
  fill_bezier_data(dst_curves, selection);
  fill_nurbs_data(dst_curves, selection);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Trim Curves
 * \{ */

static void trim_attribute_linear(const bke::CurvesGeometry &src_curves,
                                  bke::CurvesGeometry &dst_curves,
                                  const IndexMask selection,
                                  const Span<bke::curves::CurvePoint> start_points,
                                  const Span<bke::curves::CurvePoint> end_points,
                                  MutableSpan<bke::AttributeTransferData> transfer_attributes)
{
  for (bke::AttributeTransferData &attribute : transfer_attributes) {
    attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
      using T = decltype(dummy);

      threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
        for (const int64_t curve_i : selection.slice(range)) {
          const IndexRange src_points = src_curves.points_for_curve(curve_i);

          bke::curves::IndexRangeCyclic src_sample_range = get_range_between_endpoints(
              start_points[curve_i], end_points[curve_i], {0, src_points.size()});
          sample_interval_linear<T>(attribute.src.template typed<T>().slice(src_points),
                                    attribute.dst.span.typed<T>(),
                                    src_sample_range,
                                    dst_curves.points_for_curve(curve_i),
                                    start_points[curve_i],
                                    end_points[curve_i]);
        }
      });
    });
  }
}

static void trim_polygonal_curves(const bke::CurvesGeometry &src_curves,
                                  bke::CurvesGeometry &dst_curves,
                                  const IndexMask selection,
                                  const Span<bke::curves::CurvePoint> start_points,
                                  const Span<bke::curves::CurvePoint> end_points,
                                  MutableSpan<bke::AttributeTransferData> transfer_attributes)
{
  const Span<float3> src_positions = src_curves.positions();
  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();

  threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
    for (const int64_t curve_i : selection.slice(range)) {
      const IndexRange src_points = src_curves.points_for_curve(curve_i);
      const IndexRange dst_points = dst_curves.points_for_curve(curve_i);

      bke::curves::IndexRangeCyclic src_sample_range = get_range_between_endpoints(
          start_points[curve_i], end_points[curve_i], {0, src_points.size()});
      sample_interval_linear<float3>(src_positions.slice(src_points),
                                     dst_positions,
                                     src_sample_range,
                                     dst_points,
                                     start_points[curve_i],
                                     end_points[curve_i]);
    }
  });
  fill_bezier_data(dst_curves, selection);
  fill_nurbs_data(dst_curves, selection);
  trim_attribute_linear(
      src_curves, dst_curves, selection, start_points, end_points, transfer_attributes);
}

static void trim_catmull_rom_curves(const bke::CurvesGeometry &src_curves,
                                    bke::CurvesGeometry &dst_curves,
                                    const IndexMask selection,
                                    const Span<bke::curves::CurvePoint> start_points,
                                    const Span<bke::curves::CurvePoint> end_points,
                                    MutableSpan<bke::AttributeTransferData> transfer_attributes)
{
  const Span<float3> src_positions = src_curves.positions();
  const VArray<bool> src_cyclic = src_curves.cyclic();
  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();

  threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
    for (const int64_t curve_i : selection.slice(range)) {
      const IndexRange src_points = src_curves.points_for_curve(curve_i);
      const IndexRange dst_points = dst_curves.points_for_curve(curve_i);

      bke::curves::IndexRangeCyclic src_sample_range = get_range_between_endpoints(
          start_points[curve_i], end_points[curve_i], {0, src_points.size()});
      sample_interval_catmull_rom<float3>(src_positions.slice(src_points),
                                          dst_positions,
                                          src_sample_range,
                                          dst_points,
                                          start_points[curve_i],
                                          end_points[curve_i],
                                          src_cyclic[curve_i]);
    }
  });
  fill_bezier_data(dst_curves, selection);
  fill_nurbs_data(dst_curves, selection);

  for (bke::AttributeTransferData &attribute : transfer_attributes) {
    attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
      using T = decltype(dummy);

      threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
        for (const int64_t curve_i : selection.slice(range)) {
          const IndexRange src_points = src_curves.points_for_curve(curve_i);
          const IndexRange dst_points = dst_curves.points_for_curve(curve_i);

          bke::curves::IndexRangeCyclic src_sample_range = get_range_between_endpoints(
              start_points[curve_i], end_points[curve_i], {0, src_points.size()});
          sample_interval_catmull_rom<T>(attribute.src.template typed<T>().slice(src_points),
                                         attribute.dst.span.typed<T>(),
                                         src_sample_range,
                                         dst_points,
                                         start_points[curve_i],
                                         end_points[curve_i],
                                         src_cyclic[curve_i]);
        }
      });
    });
  }
}

static void trim_bezier_curves(const bke::CurvesGeometry &src_curves,
                               bke::CurvesGeometry &dst_curves,
                               const IndexMask selection,
                               const Span<bke::curves::CurvePoint> start_points,
                               const Span<bke::curves::CurvePoint> end_points,
                               MutableSpan<bke::AttributeTransferData> transfer_attributes)
{
  const Span<float3> src_positions = src_curves.positions();
  const VArraySpan<int8_t> src_types_l{src_curves.handle_types_left()};
  const VArraySpan<int8_t> src_types_r{src_curves.handle_types_right()};
  const Span<float3> src_handles_l = src_curves.handle_positions_left();
  const Span<float3> src_handles_r = src_curves.handle_positions_right();

  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();
  MutableSpan<int8_t> dst_types_l = dst_curves.handle_types_left_for_write();
  MutableSpan<int8_t> dst_types_r = dst_curves.handle_types_right_for_write();
  MutableSpan<float3> dst_handles_l = dst_curves.handle_positions_left_for_write();
  MutableSpan<float3> dst_handles_r = dst_curves.handle_positions_right_for_write();

  threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
    for (const int64_t curve_i : selection.slice(range)) {
      const IndexRange src_points = src_curves.points_for_curve(curve_i);
      const IndexRange dst_points = dst_curves.points_for_curve(curve_i);

      bke::curves::IndexRangeCyclic src_sample_range = get_range_between_endpoints(
          start_points[curve_i], end_points[curve_i], {0, src_points.size()});
      sample_interval_bezier(src_positions.slice(src_points),
                             src_handles_l.slice(src_points),
                             src_handles_r.slice(src_points),
                             src_types_l.slice(src_points),
                             src_types_r.slice(src_points),
                             dst_positions,
                             dst_handles_l,
                             dst_handles_r,
                             dst_types_l,
                             dst_types_r,
                             src_sample_range,
                             dst_points,
                             start_points[curve_i],
                             end_points[curve_i]);
    }
  });
  fill_nurbs_data(dst_curves, selection);
  trim_attribute_linear(
      src_curves, dst_curves, selection, start_points, end_points, transfer_attributes);
}

static void trim_evaluated_curves(const bke::CurvesGeometry &src_curves,
                                  bke::CurvesGeometry &dst_curves,
                                  const IndexMask selection,
                                  const Span<bke::curves::CurvePoint> start_points,
                                  const Span<bke::curves::CurvePoint> end_points,
                                  MutableSpan<bke::AttributeTransferData> transfer_attributes)
{
  const Span<float3> src_eval_positions = src_curves.evaluated_positions();
  MutableSpan<float3> dst_positions = dst_curves.positions_for_write();

  threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
    for (const int64_t curve_i : selection.slice(range)) {
      const IndexRange dst_points = dst_curves.points_for_curve(curve_i);
      const IndexRange src_evaluated_points = src_curves.evaluated_points_for_curve(curve_i);

      bke::curves::IndexRangeCyclic src_sample_range = get_range_between_endpoints(
          start_points[curve_i], end_points[curve_i], {0, src_evaluated_points.size()});
      sample_interval_linear<float3>(src_eval_positions.slice(src_evaluated_points),
                                     dst_positions,
                                     src_sample_range,
                                     dst_points,
                                     start_points[curve_i],
                                     end_points[curve_i]);
    }
  });
  fill_bezier_data(dst_curves, selection);
  fill_nurbs_data(dst_curves, selection);

  for (bke::AttributeTransferData &attribute : transfer_attributes) {
    attribute_math::convert_to_static_type(attribute.meta_data.data_type, [&](auto dummy) {
      using T = decltype(dummy);

      threading::parallel_for(selection.index_range(), 512, [&](const IndexRange range) {
        for (const int64_t curve_i : selection.slice(range)) {
          /* Interpolate onto the evaluated point domain and sample the evaluated domain. */
          const IndexRange src_evaluated_points = src_curves.evaluated_points_for_curve(curve_i);
          GArray evaluated_data(CPPType::get<T>(), src_evaluated_points.size());
          GMutableSpan evaluated_span = evaluated_data.as_mutable_span();
          src_curves.interpolate_to_evaluated(
              curve_i, attribute.src.slice(src_curves.points_for_curve(curve_i)), evaluated_span);
          bke::curves::IndexRangeCyclic src_sample_range = get_range_between_endpoints(
              start_points[curve_i], end_points[curve_i], {0, src_evaluated_points.size()});
          sample_interval_linear<T>(evaluated_span.typed<T>(),
                                    attribute.dst.span.typed<T>(),
                                    src_sample_range,
                                    dst_curves.points_for_curve(curve_i),
                                    start_points[curve_i],
                                    end_points[curve_i]);
        }
      });
    });
  }
}

bke::CurvesGeometry trim_curves(const bke::CurvesGeometry &src_curves,
                                const IndexMask selection,
                                const Span<bke::curves::CurvePoint> start_points,
                                const Span<bke::curves::CurvePoint> end_points)
{
  BLI_assert(selection.size() > 0);
  BLI_assert(selection.last() <= start_points.size());
  BLI_assert(start_points.size() == end_points.size());

  src_curves.ensure_evaluated_offsets();
  Vector<int64_t> inverse_selection_indices;
  const IndexMask inverse_selection = selection.invert(src_curves.curves_range(),
                                                       inverse_selection_indices);

  /* Create trim curves. */
  bke::CurvesGeometry dst_curves(0, src_curves.curves_num());
  determine_copyable_curve_types(src_curves,
                                 dst_curves,
                                 selection,
                                 inverse_selection,
                                 (CurveTypeMask)(CURVE_TYPE_MASK_CATMULL_ROM |
                                                 CURVE_TYPE_MASK_POLY | CURVE_TYPE_MASK_BEZIER));

  Vector<int64_t> curve_indices;
  Vector<int64_t> point_curve_indices;
  compute_trim_result_offsets(src_curves,
                              selection,
                              inverse_selection,
                              start_points,
                              end_points,
                              dst_curves.curve_types(),
                              dst_curves.offsets_for_write(),
                              curve_indices,
                              point_curve_indices);
  /* Finalize by updating the geometry container. */
  dst_curves.resize(dst_curves.offsets().last(), dst_curves.curves_num());
  dst_curves.update_curve_types();

  /* Populate curve domain. */
  const bke::AttributeAccessor src_attributes = src_curves.attributes();
  bke::MutableAttributeAccessor dst_attributes = dst_curves.attributes_for_write();
  bke::copy_attribute_domain(src_attributes,
                             dst_attributes,
                             selection,
                             ATTR_DOMAIN_CURVE,
                             {"cyclic", "curve_type", "nurbs_order", "knots_mode"});

  /* Fetch custom point domain attributes for transfer (copy). */
  Vector<bke::AttributeTransferData> transfer_attributes = bke::retrieve_attributes_for_transfer(
      src_attributes,
      dst_attributes,
      ATTR_DOMAIN_MASK_POINT,
      {"position",
       "handle_left",
       "handle_right",
       "handle_type_left",
       "handle_type_right",
       "nurbs_weight"});

  auto trim_catmull = [&](IndexMask selection) {
    trim_catmull_rom_curves(
        src_curves, dst_curves, selection, start_points, end_points, transfer_attributes);
  };
  auto trim_poly = [&](IndexMask selection) {
    trim_polygonal_curves(
        src_curves, dst_curves, selection, start_points, end_points, transfer_attributes);
  };
  auto trim_bezier = [&](IndexMask selection) {
    trim_bezier_curves(
        src_curves, dst_curves, selection, start_points, end_points, transfer_attributes);
  };
  auto trim_evaluated = [&](IndexMask selection) {
    /* Ensure evaluated positions are available. */
    src_curves.ensure_evaluated_offsets();
    src_curves.evaluated_positions();
    trim_evaluated_curves(
        src_curves, dst_curves, selection, start_points, end_points, transfer_attributes);
  };

  auto single_point_catmull = [&](IndexMask selection) {
    convert_point_catmull_curves(
        src_curves, dst_curves, selection, start_points, transfer_attributes);
  };
  auto single_point_poly = [&](IndexMask selection) {
    convert_point_polygonal_curves(
        src_curves, dst_curves, selection, start_points, transfer_attributes);
  };
  auto single_point_bezier = [&](IndexMask selection) {
    convert_point_bezier_curves(
        src_curves, dst_curves, selection, start_points, transfer_attributes);
  };
  auto single_point_evaluated = [&](IndexMask selection) {
    convert_point_evaluated_curves(
        src_curves, dst_curves, selection, start_points, transfer_attributes);
  };

  /* Populate point domain. */
  bke::curves::foreach_curve_by_type(src_curves.curve_types(),
                                     src_curves.curve_type_counts(),
                                     curve_indices.as_span(),
                                     trim_catmull,
                                     trim_poly,
                                     trim_bezier,
                                     trim_evaluated);

  if (point_curve_indices.size()) {
    bke::curves::foreach_curve_by_type(src_curves.curve_types(),
                                       src_curves.curve_type_counts(),
                                       point_curve_indices.as_span(),
                                       single_point_catmull,
                                       single_point_poly,
                                       single_point_bezier,
                                       single_point_evaluated);
  }
  /* Cleanup/close context */
  for (bke::AttributeTransferData &attribute : transfer_attributes) {
    attribute.dst.finish();
  }

  /* Copy unselected */
  if (!inverse_selection.is_empty()) {
    bke::copy_attribute_domain(
        src_attributes, dst_attributes, inverse_selection, ATTR_DOMAIN_CURVE);
    /* Trim curves are no longer cyclic. If all curves are trimmed, this will be set implicitly. */
    dst_curves.cyclic_for_write().fill_indices(selection, false);

    /* Copy point domain. */
    for (auto &attribute : bke::retrieve_attributes_for_transfer(
             src_attributes, dst_attributes, ATTR_DOMAIN_MASK_POINT)) {
      bke::curves::copy_point_data(
          src_curves, dst_curves, inverse_selection, attribute.src, attribute.dst.span);
      attribute.dst.finish();
    }
  }

  dst_curves.tag_topology_changed();
  return dst_curves;
}

/** \} */

}  // namespace blender::geometry