Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gpu_codegen.cc « intern « gpu « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0102b8db5b24ee4cf6b3bedfa4b4f0f7a2b6cf26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2005 Blender Foundation. */

/** \file
 * \ingroup gpu
 *
 * Convert material node-trees to GLSL.
 */

#include "MEM_guardedalloc.h"

#include "DNA_customdata_types.h"
#include "DNA_image_types.h"

#include "BLI_ghash.h"
#include "BLI_hash_mm2a.h"
#include "BLI_link_utils.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"

#include "PIL_time.h"

#include "BKE_material.h"

#include "GPU_capabilities.h"
#include "GPU_material.h"
#include "GPU_shader.h"
#include "GPU_uniform_buffer.h"
#include "GPU_vertex_format.h"

#include "BLI_sys_types.h" /* for intptr_t support */
#include "BLI_vector.hh"

#include "gpu_codegen.h"
#include "gpu_node_graph.h"
#include "gpu_shader_create_info.hh"
#include "gpu_shader_dependency_private.h"

#include <cstdarg>
#include <cstring>

#include <sstream>
#include <string>

using namespace blender::gpu::shader;

/**
 * IMPORTANT: Never add external reference. The GPUMaterial used to create the GPUPass (and its
 * GPUCodegenCreateInfo) can be free before actually compiling. This happens if there is an update
 * before deferred compilation happens and the GPUPass gets picked up by another GPUMaterial
 * (because of GPUPass reuse).
 */
struct GPUCodegenCreateInfo : ShaderCreateInfo {
  struct NameBuffer {
    using NameEntry = std::array<char, 32>;

    /** Duplicate attribute names to avoid reference the GPUNodeGraph directly. */
    char attr_names[16][GPU_MAX_SAFE_ATTR_NAME + 1];
    char var_names[16][8];
    blender::Vector<std::unique_ptr<NameEntry>, 16> sampler_names;

    /* Returns the appended name memory location */
    const char *append_sampler_name(const char name[32])
    {
      auto index = sampler_names.size();
      sampler_names.append(std::make_unique<NameEntry>());
      char *name_buffer = sampler_names[index]->data();
      memcpy(name_buffer, name, 32);
      return name_buffer;
    }
  };

  /** Optional generated interface. */
  StageInterfaceInfo *interface_generated = nullptr;
  /** Optional name buffer containing names referenced by StringRefNull. */
  NameBuffer name_buffer;

  GPUCodegenCreateInfo(const char *name) : ShaderCreateInfo(name){};
  ~GPUCodegenCreateInfo()
  {
    delete interface_generated;
  };
};

struct GPUPass {
  struct GPUPass *next;

  GPUShader *shader;
  GPUCodegenCreateInfo *create_info = nullptr;
  /** Orphaned GPUPasses gets freed by the garbage collector. */
  uint refcount;
  /** Identity hash generated from all GLSL code. */
  uint32_t hash;
  /** Did we already tried to compile the attached GPUShader. */
  bool compiled;
};

/* -------------------------------------------------------------------- */
/** \name GPUPass Cache
 *
 * Internal shader cache: This prevent the shader recompilation / stall when
 * using undo/redo AND also allows for GPUPass reuse if the Shader code is the
 * same for 2 different Materials. Unused GPUPasses are free by Garbage collection.
 * \{ */

/* Only use one linklist that contains the GPUPasses grouped by hash. */
static GPUPass *pass_cache = nullptr;
static SpinLock pass_cache_spin;

/* Search by hash only. Return first pass with the same hash.
 * There is hash collision if (pass->next && pass->next->hash == hash) */
static GPUPass *gpu_pass_cache_lookup(uint32_t hash)
{
  BLI_spin_lock(&pass_cache_spin);
  /* Could be optimized with a Lookup table. */
  for (GPUPass *pass = pass_cache; pass; pass = pass->next) {
    if (pass->hash == hash) {
      BLI_spin_unlock(&pass_cache_spin);
      return pass;
    }
  }
  BLI_spin_unlock(&pass_cache_spin);
  return nullptr;
}

static void gpu_pass_cache_insert_after(GPUPass *node, GPUPass *pass)
{
  BLI_spin_lock(&pass_cache_spin);
  if (node != nullptr) {
    /* Add after the first pass having the same hash. */
    pass->next = node->next;
    node->next = pass;
  }
  else {
    /* No other pass have same hash, just prepend to the list. */
    BLI_LINKS_PREPEND(pass_cache, pass);
  }
  BLI_spin_unlock(&pass_cache_spin);
}

/* Check all possible passes with the same hash. */
static GPUPass *gpu_pass_cache_resolve_collision(GPUPass *pass,
                                                 GPUShaderCreateInfo *info,
                                                 uint32_t hash)
{
  BLI_spin_lock(&pass_cache_spin);
  for (; pass && (pass->hash == hash); pass = pass->next) {
    if (*reinterpret_cast<ShaderCreateInfo *>(info) ==
        *reinterpret_cast<ShaderCreateInfo *>(pass->create_info)) {
      BLI_spin_unlock(&pass_cache_spin);
      return pass;
    }
  }
  BLI_spin_unlock(&pass_cache_spin);
  return nullptr;
}

static bool gpu_pass_is_valid(GPUPass *pass)
{
  /* Shader is not null if compilation is successful. */
  return (pass->compiled == false || pass->shader != nullptr);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Type > string conversion
 * \{ */

static std::ostream &operator<<(std::ostream &stream, const GPUInput *input)
{
  switch (input->source) {
    case GPU_SOURCE_FUNCTION_CALL:
    case GPU_SOURCE_OUTPUT:
      return stream << "tmp" << input->id;
    case GPU_SOURCE_CONSTANT:
      return stream << "cons" << input->id;
    case GPU_SOURCE_UNIFORM:
      return stream << "node_tree.u" << input->id;
    case GPU_SOURCE_ATTR:
      return stream << "var_attrs.v" << input->attr->id;
    case GPU_SOURCE_UNIFORM_ATTR:
      return stream << "unf_attrs[resource_id].attr" << input->uniform_attr->id;
    case GPU_SOURCE_STRUCT:
      return stream << "strct" << input->id;
    case GPU_SOURCE_TEX:
      return stream << input->texture->sampler_name;
    case GPU_SOURCE_TEX_TILED_MAPPING:
      return stream << input->texture->tiled_mapping_name;
    default:
      BLI_assert(0);
      return stream;
  }
}

static std::ostream &operator<<(std::ostream &stream, const GPUOutput *output)
{
  return stream << "tmp" << output->id;
}

/* Trick type to change overload and keep a somewhat nice syntax. */
struct GPUConstant : public GPUInput {
};

/* Print data constructor (i.e: vec2(1.0f, 1.0f)). */
static std::ostream &operator<<(std::ostream &stream, const GPUConstant *input)
{
  stream << input->type << "(";
  for (int i = 0; i < input->type; i++) {
    char formated_float[32];
    /* Use uint representation to allow exact same bit pattern even if NaN. This is because we can
     * pass UINTs as floats for constants. */
    const uint32_t *uint_vec = reinterpret_cast<const uint32_t *>(input->vec);
    SNPRINTF(formated_float, "uintBitsToFloat(%uu)", uint_vec[i]);
    stream << formated_float;
    if (i < input->type - 1) {
      stream << ", ";
    }
  }
  stream << ")";
  return stream;
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name GLSL code generation
 * \{ */

class GPUCodegen {
 public:
  GPUMaterial &mat;
  GPUNodeGraph &graph;
  GPUCodegenOutput output = {};
  GPUCodegenCreateInfo *create_info = nullptr;

 private:
  uint32_t hash_ = 0;
  BLI_HashMurmur2A hm2a_;
  ListBase ubo_inputs_ = {nullptr, nullptr};

 public:
  GPUCodegen(GPUMaterial *mat_, GPUNodeGraph *graph_) : mat(*mat_), graph(*graph_)
  {
    BLI_hash_mm2a_init(&hm2a_, GPU_material_uuid_get(&mat));
    BLI_hash_mm2a_add_int(&hm2a_, GPU_material_flag(&mat));
    create_info = new GPUCodegenCreateInfo("codegen");
    output.create_info = reinterpret_cast<GPUShaderCreateInfo *>(
        static_cast<ShaderCreateInfo *>(create_info));

    if (GPU_material_flag_get(mat_, GPU_MATFLAG_OBJECT_INFO)) {
      create_info->additional_info("draw_object_infos");
    }
  }

  ~GPUCodegen()
  {
    MEM_SAFE_FREE(output.attr_load);
    MEM_SAFE_FREE(output.surface);
    MEM_SAFE_FREE(output.volume);
    MEM_SAFE_FREE(output.thickness);
    MEM_SAFE_FREE(output.displacement);
    MEM_SAFE_FREE(output.composite);
    MEM_SAFE_FREE(output.material_functions);
    delete create_info;
    BLI_freelistN(&ubo_inputs_);
  };

  void generate_graphs();
  void generate_uniform_buffer();
  void generate_attribs();
  void generate_resources();
  void generate_library();

  uint32_t hash_get() const
  {
    return hash_;
  }

 private:
  void set_unique_ids();

  void node_serialize(std::stringstream &eval_ss, const GPUNode *node);
  char *graph_serialize(eGPUNodeTag tree_tag, GPUNodeLink *output_link);
  char *graph_serialize(eGPUNodeTag tree_tag);

  static char *extract_c_str(std::stringstream &stream)
  {
    auto string = stream.str();
    return BLI_strdup(string.c_str());
  }
};

void GPUCodegen::generate_attribs()
{
  if (BLI_listbase_is_empty(&graph.attributes)) {
    output.attr_load = nullptr;
    return;
  }

  GPUCodegenCreateInfo &info = *create_info;

  info.interface_generated = new StageInterfaceInfo("codegen_iface", "var_attrs");
  StageInterfaceInfo &iface = *info.interface_generated;
  info.vertex_out(iface);

  /* Input declaration, loading / assignment to interface and geometry shader passthrough. */
  std::stringstream load_ss;

  int slot = 15;
  LISTBASE_FOREACH (GPUMaterialAttribute *, attr, &graph.attributes) {
    if (slot == -1) {
      BLI_assert_msg(0, "Too many attributes");
      break;
    }
    STRNCPY(info.name_buffer.attr_names[slot], attr->input_name);
    SNPRINTF(info.name_buffer.var_names[slot], "v%d", attr->id);

    blender::StringRefNull attr_name = info.name_buffer.attr_names[slot];
    blender::StringRefNull var_name = info.name_buffer.var_names[slot];

    eGPUType input_type, iface_type;

    load_ss << "var_attrs." << var_name;
    switch (attr->type) {
      case CD_ORCO:
        /* Need vec4 to detect usage of default attribute. */
        input_type = GPU_VEC4;
        iface_type = GPU_VEC3;
        load_ss << " = attr_load_orco(" << attr_name << ");\n";
        break;
      case CD_HAIRLENGTH:
        iface_type = input_type = GPU_FLOAT;
        load_ss << " = attr_load_" << input_type << "(" << attr_name << ");\n";
        break;
      case CD_TANGENT:
        iface_type = input_type = GPU_VEC4;
        load_ss << " = attr_load_tangent(" << attr_name << ");\n";
        break;
      default:
        iface_type = input_type = GPU_VEC4;
        load_ss << " = attr_load_" << input_type << "(" << attr_name << ");\n";
        break;
    }

    info.vertex_in(slot--, to_type(input_type), attr_name);
    iface.smooth(to_type(iface_type), var_name);
  }

  output.attr_load = extract_c_str(load_ss);
}

void GPUCodegen::generate_resources()
{
  GPUCodegenCreateInfo &info = *create_info;

  /* Ref. T98190: Defines are optimizations for old compilers.
   * Might become unnecessary with EEVEE-Next. */
  if (GPU_material_flag_get(&mat, GPU_MATFLAG_PRINCIPLED_CLEARCOAT)) {
    info.define("PRINCIPLED_CLEARCOAT");
  }
  if (GPU_material_flag_get(&mat, GPU_MATFLAG_PRINCIPLED_METALLIC)) {
    info.define("PRINCIPLED_METALLIC");
  }
  if (GPU_material_flag_get(&mat, GPU_MATFLAG_PRINCIPLED_DIELECTRIC)) {
    info.define("PRINCIPLED_DIELECTRIC");
  }
  if (GPU_material_flag_get(&mat, GPU_MATFLAG_PRINCIPLED_GLASS)) {
    info.define("PRINCIPLED_GLASS");
  }
  if (GPU_material_flag_get(&mat, GPU_MATFLAG_PRINCIPLED_ANY)) {
    info.define("PRINCIPLED_ANY");
  }

  std::stringstream ss;

  /* Textures. */
  int slot = 0;
  LISTBASE_FOREACH (GPUMaterialTexture *, tex, &graph.textures) {
    if (tex->colorband) {
      const char *name = info.name_buffer.append_sampler_name(tex->sampler_name);
      info.sampler(slot++, ImageType::FLOAT_1D_ARRAY, name, Frequency::BATCH);
    }
    else if (tex->tiled_mapping_name[0] != '\0') {
      const char *name = info.name_buffer.append_sampler_name(tex->sampler_name);
      info.sampler(slot++, ImageType::FLOAT_2D_ARRAY, name, Frequency::BATCH);

      const char *name_mapping = info.name_buffer.append_sampler_name(tex->tiled_mapping_name);
      info.sampler(slot++, ImageType::FLOAT_1D_ARRAY, name_mapping, Frequency::BATCH);
    }
    else {
      const char *name = info.name_buffer.append_sampler_name(tex->sampler_name);
      info.sampler(slot++, ImageType::FLOAT_2D, name, Frequency::BATCH);
    }
  }

  if (!BLI_listbase_is_empty(&ubo_inputs_)) {
    /* NOTE: generate_uniform_buffer() should have sorted the inputs before this. */
    ss << "struct NodeTree {\n";
    LISTBASE_FOREACH (LinkData *, link, &ubo_inputs_) {
      GPUInput *input = (GPUInput *)(link->data);
      ss << input->type << " u" << input->id << ";\n";
    }
    ss << "};\n\n";

    info.uniform_buf(1, "NodeTree", GPU_UBO_BLOCK_NAME, Frequency::BATCH);
  }

  if (!BLI_listbase_is_empty(&graph.uniform_attrs.list)) {
    ss << "struct UniformAttrs {\n";
    LISTBASE_FOREACH (GPUUniformAttr *, attr, &graph.uniform_attrs.list) {
      ss << "vec4 attr" << attr->id << ";\n";
    }
    ss << "};\n\n";

    /* TODO(fclem): Use the macro for length. Currently not working for EEVEE. */
    /* DRW_RESOURCE_CHUNK_LEN = 512 */
    info.uniform_buf(2, "UniformAttrs", GPU_ATTRIBUTE_UBO_BLOCK_NAME "[512]", Frequency::BATCH);
  }

  info.typedef_source_generated = ss.str();
}

void GPUCodegen::generate_library()
{
  GPUCodegenCreateInfo &info = *create_info;

  void *value;
  GSetIterState pop_state = {};
  while (BLI_gset_pop(graph.used_libraries, &pop_state, &value)) {
    auto deps = gpu_shader_dependency_get_resolved_source((const char *)value);
    info.dependencies_generated.extend_non_duplicates(deps);
  }
}

void GPUCodegen::node_serialize(std::stringstream &eval_ss, const GPUNode *node)
{
  /* Declare constants. */
  LISTBASE_FOREACH (GPUInput *, input, &node->inputs) {
    switch (input->source) {
      case GPU_SOURCE_FUNCTION_CALL:
        eval_ss << input->type << " " << input << "; " << input->function_call << input << ");\n";
        break;
      case GPU_SOURCE_STRUCT:
        eval_ss << input->type << " " << input << " = CLOSURE_DEFAULT;\n";
        break;
      case GPU_SOURCE_CONSTANT:
        eval_ss << input->type << " " << input << " = " << (GPUConstant *)input << ";\n";
        break;
      default:
        break;
    }
  }
  /* Declare temporary variables for node output storage. */
  LISTBASE_FOREACH (GPUOutput *, output, &node->outputs) {
    eval_ss << output->type << " " << output << ";\n";
  }

  /* Function call. */
  eval_ss << node->name << "(";
  /* Input arguments. */
  LISTBASE_FOREACH (GPUInput *, input, &node->inputs) {
    switch (input->source) {
      case GPU_SOURCE_OUTPUT:
      case GPU_SOURCE_ATTR: {
        /* These inputs can have non matching types. Do conversion. */
        eGPUType to = input->type;
        eGPUType from = (input->source == GPU_SOURCE_ATTR) ? input->attr->gputype :
                                                             input->link->output->type;
        if (from != to) {
          /* Use defines declared inside codegen_lib (i.e: vec4_from_float). */
          eval_ss << to << "_from_" << from << "(";
        }

        if (input->source == GPU_SOURCE_ATTR) {
          eval_ss << input;
        }
        else {
          eval_ss << input->link->output;
        }

        if (from != to) {
          eval_ss << ")";
        }
        break;
      }
      default:
        eval_ss << input;
        break;
    }
    eval_ss << ", ";
  }
  /* Output arguments. */
  LISTBASE_FOREACH (GPUOutput *, output, &node->outputs) {
    eval_ss << output;
    if (output->next) {
      eval_ss << ", ";
    }
  }
  eval_ss << ");\n\n";
}

char *GPUCodegen::graph_serialize(eGPUNodeTag tree_tag, GPUNodeLink *output_link)
{
  if (output_link == nullptr) {
    return nullptr;
  }

  std::stringstream eval_ss;
  /* NOTE: The node order is already top to bottom (or left to right in node editor)
   * because of the evaluation order inside ntreeExecGPUNodes(). */
  LISTBASE_FOREACH (GPUNode *, node, &graph.nodes) {
    if ((node->tag & tree_tag) == 0) {
      continue;
    }
    node_serialize(eval_ss, node);
  }
  eval_ss << "return " << output_link->output << ";\n";

  char *eval_c_str = extract_c_str(eval_ss);
  BLI_hash_mm2a_add(&hm2a_, (uchar *)eval_c_str, eval_ss.str().size());
  return eval_c_str;
}

char *GPUCodegen::graph_serialize(eGPUNodeTag tree_tag)
{
  std::stringstream eval_ss;
  LISTBASE_FOREACH (GPUNode *, node, &graph.nodes) {
    if (node->tag & tree_tag) {
      node_serialize(eval_ss, node);
    }
  }
  char *eval_c_str = extract_c_str(eval_ss);
  BLI_hash_mm2a_add(&hm2a_, (uchar *)eval_c_str, eval_ss.str().size());
  return eval_c_str;
}

void GPUCodegen::generate_uniform_buffer()
{
  /* Extract uniform inputs. */
  LISTBASE_FOREACH (GPUNode *, node, &graph.nodes) {
    LISTBASE_FOREACH (GPUInput *, input, &node->inputs) {
      if (input->source == GPU_SOURCE_UNIFORM && !input->link) {
        /* We handle the UBO uniforms separately. */
        BLI_addtail(&ubo_inputs_, BLI_genericNodeN(input));
      }
    }
  }
  if (!BLI_listbase_is_empty(&ubo_inputs_)) {
    /* This sorts the inputs based on size. */
    GPU_material_uniform_buffer_create(&mat, &ubo_inputs_);
  }
}

/* Sets id for unique names for all inputs, resources and temp variables. */
void GPUCodegen::set_unique_ids()
{
  int id = 1;
  LISTBASE_FOREACH (GPUNode *, node, &graph.nodes) {
    LISTBASE_FOREACH (GPUInput *, input, &node->inputs) {
      input->id = id++;
    }
    LISTBASE_FOREACH (GPUOutput *, output, &node->outputs) {
      output->id = id++;
    }
  }
}

void GPUCodegen::generate_graphs()
{
  set_unique_ids();

  output.surface = graph_serialize(GPU_NODE_TAG_SURFACE | GPU_NODE_TAG_AOV, graph.outlink_surface);
  output.volume = graph_serialize(GPU_NODE_TAG_VOLUME, graph.outlink_volume);
  output.displacement = graph_serialize(GPU_NODE_TAG_DISPLACEMENT, graph.outlink_displacement);
  output.thickness = graph_serialize(GPU_NODE_TAG_THICKNESS, graph.outlink_thickness);
  if (!BLI_listbase_is_empty(&graph.outlink_compositor)) {
    output.composite = graph_serialize(GPU_NODE_TAG_COMPOSITOR);
  }

  if (!BLI_listbase_is_empty(&graph.material_functions)) {
    std::stringstream eval_ss;
    eval_ss << "\n/* Generated Functions */\n\n";
    LISTBASE_FOREACH (GPUNodeGraphFunctionLink *, func_link, &graph.material_functions) {
      char *fn = graph_serialize(GPU_NODE_TAG_FUNCTION, func_link->outlink);
      eval_ss << "float " << func_link->name << "() {\n" << fn << "}\n\n";
      MEM_SAFE_FREE(fn);
    }
    output.material_functions = extract_c_str(eval_ss);
  }

  LISTBASE_FOREACH (GPUMaterialAttribute *, attr, &graph.attributes) {
    BLI_hash_mm2a_add(&hm2a_, (uchar *)attr->name, strlen(attr->name));
  }

  hash_ = BLI_hash_mm2a_end(&hm2a_);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name GPUPass
 * \{ */

GPUPass *GPU_generate_pass(GPUMaterial *material,
                           GPUNodeGraph *graph,
                           GPUCodegenCallbackFn finalize_source_cb,
                           void *thunk)
{
  gpu_node_graph_prune_unused(graph);

  /* Extract attributes before compiling so the generated VBOs are ready to accept the future
   * shader. */
  gpu_node_graph_finalize_uniform_attrs(graph);

  GPUCodegen codegen(material, graph);
  codegen.generate_graphs();
  codegen.generate_uniform_buffer();

  /* Cache lookup: Reuse shaders already compiled. */
  GPUPass *pass_hash = gpu_pass_cache_lookup(codegen.hash_get());

  /* FIXME(fclem): This is broken. Since we only check for the hash and not the full source
   * there is no way to have a collision currently. Some advocated to only use a bigger hash. */
  if (pass_hash && (pass_hash->next == nullptr || pass_hash->next->hash != codegen.hash_get())) {
    if (!gpu_pass_is_valid(pass_hash)) {
      /* Shader has already been created but failed to compile. */
      return nullptr;
    }
    /* No collision, just return the pass. */
    BLI_spin_lock(&pass_cache_spin);
    pass_hash->refcount += 1;
    BLI_spin_unlock(&pass_cache_spin);
    return pass_hash;
  }

  /* Either the shader is not compiled or there is a hash collision...
   * continue generating the shader strings. */
  codegen.generate_attribs();
  codegen.generate_resources();
  codegen.generate_library();

  /* Make engine add its own code and implement the generated functions. */
  finalize_source_cb(thunk, material, &codegen.output);

  GPUPass *pass = nullptr;
  if (pass_hash) {
    /* Cache lookup: Reuse shaders already compiled. */
    pass = gpu_pass_cache_resolve_collision(
        pass_hash, codegen.output.create_info, codegen.hash_get());
  }

  if (pass) {
    /* Cache hit. Reuse the same GPUPass and GPUShader. */
    if (!gpu_pass_is_valid(pass)) {
      /* Shader has already been created but failed to compile. */
      return nullptr;
    }
    BLI_spin_lock(&pass_cache_spin);
    pass->refcount += 1;
    BLI_spin_unlock(&pass_cache_spin);
  }
  else {
    /* We still create a pass even if shader compilation
     * fails to avoid trying to compile again and again. */
    pass = (GPUPass *)MEM_callocN(sizeof(GPUPass), "GPUPass");
    pass->shader = nullptr;
    pass->refcount = 1;
    pass->create_info = codegen.create_info;
    pass->hash = codegen.hash_get();
    pass->compiled = false;

    codegen.create_info = nullptr;

    gpu_pass_cache_insert_after(pass_hash, pass);
  }
  return pass;
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Compilation
 * \{ */

static int count_active_texture_sampler(GPUPass *pass, GPUShader *shader)
{
  int num_samplers = 0;

  for (const ShaderCreateInfo::Resource &res : pass->create_info->pass_resources_) {
    if (res.bind_type == ShaderCreateInfo::Resource::BindType::SAMPLER) {
      if (GPU_shader_get_uniform(shader, res.sampler.name.c_str()) != -1) {
        num_samplers += 1;
      }
    }
  }

  return num_samplers;
}

static bool gpu_pass_shader_validate(GPUPass *pass, GPUShader *shader)
{
  if (shader == nullptr) {
    return false;
  }

  /* NOTE: The only drawback of this method is that it will count a sampler
   * used in the fragment shader and only declared (but not used) in the vertex
   * shader as used by both. But this corner case is not happening for now. */
  int active_samplers_len = count_active_texture_sampler(pass, shader);

  /* Validate against opengl limit. */
  if ((active_samplers_len > GPU_max_textures_frag()) ||
      (active_samplers_len > GPU_max_textures_vert())) {
    return false;
  }

  if (pass->create_info->geometry_source_.is_empty() == false) {
    if (active_samplers_len > GPU_max_textures_geom()) {
      return false;
    }
  }

  return (active_samplers_len * 3 <= GPU_max_textures());
}

bool GPU_pass_compile(GPUPass *pass, const char *shname)
{
  bool success = true;
  if (!pass->compiled) {
    GPUShaderCreateInfo *info = reinterpret_cast<GPUShaderCreateInfo *>(
        static_cast<ShaderCreateInfo *>(pass->create_info));

    pass->create_info->name_ = shname;

    GPUShader *shader = GPU_shader_create_from_info(info);

    /* NOTE: Some drivers / gpu allows more active samplers than the opengl limit.
     * We need to make sure to count active samplers to avoid undefined behavior. */
    if (!gpu_pass_shader_validate(pass, shader)) {
      success = false;
      if (shader != nullptr) {
        fprintf(stderr, "GPUShader: error: too many samplers in shader.\n");
        GPU_shader_free(shader);
        shader = nullptr;
      }
    }
    pass->shader = shader;
    pass->compiled = true;
  }
  return success;
}

GPUShader *GPU_pass_shader_get(GPUPass *pass)
{
  return pass->shader;
}

void GPU_pass_release(GPUPass *pass)
{
  BLI_spin_lock(&pass_cache_spin);
  BLI_assert(pass->refcount > 0);
  pass->refcount--;
  BLI_spin_unlock(&pass_cache_spin);
}

static void gpu_pass_free(GPUPass *pass)
{
  BLI_assert(pass->refcount == 0);
  if (pass->shader) {
    GPU_shader_free(pass->shader);
  }
  delete pass->create_info;
  MEM_freeN(pass);
}

void GPU_pass_cache_garbage_collect(void)
{
  static int lasttime = 0;
  const int shadercollectrate = 60; /* hardcoded for now. */
  int ctime = (int)PIL_check_seconds_timer();

  if (ctime < shadercollectrate + lasttime) {
    return;
  }

  lasttime = ctime;

  BLI_spin_lock(&pass_cache_spin);
  GPUPass *next, **prev_pass = &pass_cache;
  for (GPUPass *pass = pass_cache; pass; pass = next) {
    next = pass->next;
    if (pass->refcount == 0) {
      /* Remove from list */
      *prev_pass = next;
      gpu_pass_free(pass);
    }
    else {
      prev_pass = &pass->next;
    }
  }
  BLI_spin_unlock(&pass_cache_spin);
}

void GPU_pass_cache_init(void)
{
  BLI_spin_init(&pass_cache_spin);
}

void GPU_pass_cache_free(void)
{
  BLI_spin_lock(&pass_cache_spin);
  while (pass_cache) {
    GPUPass *next = pass_cache->next;
    gpu_pass_free(pass_cache);
    pass_cache = next;
  }
  BLI_spin_unlock(&pass_cache_spin);

  BLI_spin_end(&pass_cache_spin);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Module
 * \{ */

void gpu_codegen_init(void)
{
}

void gpu_codegen_exit(void)
{
  // BKE_world_defaults_free_gpu();
  BKE_material_defaults_free_gpu();
  GPU_shader_free_builtin_shaders();
}

/** \} */