Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gpu_shader_common_math_utils.glsl « common « shaders « gpu « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1ba22b4c5daad4029376d9d2c84347e6db3c6251 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/* Float Math */

float safe_divide(float a, float b)
{
  return (b != 0.0) ? a / b : 0.0;
}

/* fmod function compatible with OSL using nvidia reference example. */
float compatible_fmod(float a, float b)
{
  float c = (b != 0.0) ? fract(abs(a / b)) * abs(b) : 0.0;
  return (a < 0.0) ? -c : c;
}

float compatible_pow(float x, float y)
{
  if (y == 0.0) { /* x^0 -> 1, including 0^0 */
    return 1.0;
  }

  /* glsl pow doesn't accept negative x */
  if (x < 0.0) {
    if (mod(-y, 2.0) == 0.0) {
      return pow(-x, y);
    }
    else {
      return -pow(-x, y);
    }
  }
  else if (x == 0.0) {
    return 0.0;
  }

  return pow(x, y);
}

/* A version of pow that returns a fallback value if the computation is undefined. From the spec:
 * The result is undefined if x < 0 or if x = 0 and y is less than or equal 0. */
float fallback_pow(float x, float y, float fallback)
{
  if (x < 0.0 || (x == 0.0 && y <= 0.0)) {
    return fallback;
  }

  return pow(x, y);
}

float wrap(float a, float b, float c)
{
  float range = b - c;
  return (range != 0.0) ? a - (range * floor((a - c) / range)) : c;
}

vec3 wrap(vec3 a, vec3 b, vec3 c)
{
  return vec3(wrap(a.x, b.x, c.x), wrap(a.y, b.y, c.y), wrap(a.z, b.z, c.z));
}

float hypot(float x, float y)
{
  return sqrt(x * x + y * y);
}

int floor_to_int(float x)
{
  return int(floor(x));
}

int quick_floor(float x)
{
  return int(x) - ((x < 0) ? 1 : 0);
}

/* Vector Math */

vec2 safe_divide(vec2 a, vec2 b)
{
  return vec2(safe_divide(a.x, b.x), safe_divide(a.y, b.y));
}

vec3 safe_divide(vec3 a, vec3 b)
{
  return vec3(safe_divide(a.x, b.x), safe_divide(a.y, b.y), safe_divide(a.z, b.z));
}

vec4 safe_divide(vec4 a, vec4 b)
{
  return vec4(
      safe_divide(a.x, b.x), safe_divide(a.y, b.y), safe_divide(a.z, b.z), safe_divide(a.w, b.w));
}

vec2 safe_divide(vec2 a, float b)
{
  return (b != 0.0) ? a / b : vec2(0.0);
}

vec3 safe_divide(vec3 a, float b)
{
  return (b != 0.0) ? a / b : vec3(0.0);
}

vec4 safe_divide(vec4 a, float b)
{
  return (b != 0.0) ? a / b : vec4(0.0);
}

vec3 compatible_fmod(vec3 a, vec3 b)
{
  return vec3(compatible_fmod(a.x, b.x), compatible_fmod(a.y, b.y), compatible_fmod(a.z, b.z));
}

void invert_z(vec3 v, out vec3 outv)
{
  v.z = -v.z;
  outv = v;
}

void vector_normalize(vec3 normal, out vec3 outnormal)
{
  outnormal = normalize(normal);
}

void vector_copy(vec3 normal, out vec3 outnormal)
{
  outnormal = normal;
}

vec3 fallback_pow(vec3 a, float b, vec3 fallback)
{
  return vec3(fallback_pow(a.x, b, fallback.x),
              fallback_pow(a.y, b, fallback.y),
              fallback_pow(a.z, b, fallback.z));
}

/* Matirx Math */

/* Return a 2D rotation matrix with the angle that the input 2D vector makes with the x axis. */
mat2 vector_to_rotation_matrix(vec2 vector)
{
  vec2 normalized_vector = normalize(vector);
  float cos_angle = normalized_vector.x;
  float sin_angle = normalized_vector.y;
  return mat2(cos_angle, sin_angle, -sin_angle, cos_angle);
}

mat3 euler_to_mat3(vec3 euler)
{
  float cx = cos(euler.x);
  float cy = cos(euler.y);
  float cz = cos(euler.z);
  float sx = sin(euler.x);
  float sy = sin(euler.y);
  float sz = sin(euler.z);

  mat3 mat;
  mat[0][0] = cy * cz;
  mat[0][1] = cy * sz;
  mat[0][2] = -sy;

  mat[1][0] = sy * sx * cz - cx * sz;
  mat[1][1] = sy * sx * sz + cx * cz;
  mat[1][2] = cy * sx;

  mat[2][0] = sy * cx * cz + sx * sz;
  mat[2][1] = sy * cx * sz - sx * cz;
  mat[2][2] = cy * cx;
  return mat;
}