Welcome to mirror list, hosted at ThFree Co, Russian Federation.

usd_writer_mesh.cc « intern « usd « io « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e7d79e888e4a061ac01ac332b92b514ab48c48a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2019 Blender Foundation. All rights reserved. */
#include "usd_writer_mesh.h"
#include "usd_hierarchy_iterator.h"

#include <pxr/usd/usdGeom/mesh.h>
#include <pxr/usd/usdGeom/primvarsAPI.h>
#include <pxr/usd/usdShade/material.h>
#include <pxr/usd/usdShade/materialBindingAPI.h>

#include "BLI_assert.h"
#include "BLI_math_vector.h"

#include "BKE_attribute.h"
#include "BKE_attribute.hh"
#include "BKE_customdata.h"
#include "BKE_lib_id.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_object.h"

#include "DEG_depsgraph.h"

#include "DNA_layer_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_fluidsim_types.h"
#include "DNA_particle_types.h"

#include <iostream>

namespace blender::io::usd {

USDGenericMeshWriter::USDGenericMeshWriter(const USDExporterContext &ctx) : USDAbstractWriter(ctx)
{
}

bool USDGenericMeshWriter::is_supported(const HierarchyContext *context) const
{
  if (usd_export_context_.export_params.visible_objects_only) {
    return context->is_object_visible(usd_export_context_.export_params.evaluation_mode);
  }
  return true;
}

void USDGenericMeshWriter::do_write(HierarchyContext &context)
{
  Object *object_eval = context.object;
  bool needsfree = false;
  Mesh *mesh = get_export_mesh(object_eval, needsfree);

  if (mesh == nullptr) {
    return;
  }

  try {
    write_mesh(context, mesh);

    if (needsfree) {
      free_export_mesh(mesh);
    }
  }
  catch (...) {
    if (needsfree) {
      free_export_mesh(mesh);
    }
    throw;
  }
}

void USDGenericMeshWriter::free_export_mesh(Mesh *mesh)
{
  BKE_id_free(nullptr, mesh);
}

struct USDMeshData {
  pxr::VtArray<pxr::GfVec3f> points;
  pxr::VtIntArray face_vertex_counts;
  pxr::VtIntArray face_indices;
  std::map<short, pxr::VtIntArray> face_groups;

  /* The length of this array specifies the number of creases on the surface. Each element gives
   * the number of (must be adjacent) vertices in each crease, whose indices are linearly laid out
   * in the 'creaseIndices' attribute. Since each crease must be at least one edge long, each
   * element of this array should be greater than one. */
  pxr::VtIntArray crease_lengths;
  /* The indices of all vertices forming creased edges. The size of this array must be equal to the
   * sum of all elements of the 'creaseLengths' attribute. */
  pxr::VtIntArray crease_vertex_indices;
  /* The per-crease or per-edge sharpness for all creases (Usd.Mesh.SHARPNESS_INFINITE for a
   * perfectly sharp crease). Since 'creaseLengths' encodes the number of vertices in each crease,
   * the number of elements in this array will be either 'len(creaseLengths)' or the sum over all X
   * of '(creaseLengths[X] - 1)'. Note that while the RI spec allows each crease to have either a
   * single sharpness or a value per-edge, USD will encode either a single sharpness per crease on
   * a mesh, or sharpness's for all edges making up the creases on a mesh. */
  pxr::VtFloatArray crease_sharpnesses;

  /* The lengths of this array specifies the number of sharp corners (or vertex crease) on the
   * surface. Each value is the index of a vertex in the mesh's vertex list. */
  pxr::VtIntArray corner_indices;
  /* The per-vertex sharpnesses. The lengths of this array must match that of `corner_indices`. */
  pxr::VtFloatArray corner_sharpnesses;
};

void USDGenericMeshWriter::write_uv_maps(const Mesh *mesh, pxr::UsdGeomMesh usd_mesh)
{
  pxr::UsdTimeCode timecode = get_export_time_code();

  pxr::UsdGeomPrimvarsAPI primvarsAPI(usd_mesh.GetPrim());

  const CustomData *ldata = &mesh->ldata;
  for (int layer_idx = 0; layer_idx < ldata->totlayer; layer_idx++) {
    const CustomDataLayer *layer = &ldata->layers[layer_idx];
    if (layer->type != CD_MLOOPUV) {
      continue;
    }

    /* UV coordinates are stored in a Primvar on the Mesh, and can be referenced from materials.
     * The primvar name is the same as the UV Map name. This is to allow the standard name "st"
     * for texture coordinates by naming the UV Map as such, without having to guess which UV Map
     * is the "standard" one. */
    pxr::TfToken primvar_name(pxr::TfMakeValidIdentifier(layer->name));
    pxr::UsdGeomPrimvar uv_coords_primvar = primvarsAPI.CreatePrimvar(
        primvar_name, pxr::SdfValueTypeNames->TexCoord2fArray, pxr::UsdGeomTokens->faceVarying);

    MLoopUV *mloopuv = static_cast<MLoopUV *>(layer->data);
    pxr::VtArray<pxr::GfVec2f> uv_coords;
    for (int loop_idx = 0; loop_idx < mesh->totloop; loop_idx++) {
      uv_coords.push_back(pxr::GfVec2f(mloopuv[loop_idx].uv));
    }

    if (!uv_coords_primvar.HasValue()) {
      uv_coords_primvar.Set(uv_coords, pxr::UsdTimeCode::Default());
    }
    const pxr::UsdAttribute &uv_coords_attr = uv_coords_primvar.GetAttr();
    usd_value_writer_.SetAttribute(uv_coords_attr, pxr::VtValue(uv_coords), timecode);
  }
}

void USDGenericMeshWriter::write_mesh(HierarchyContext &context, Mesh *mesh)
{
  pxr::UsdTimeCode timecode = get_export_time_code();
  pxr::UsdTimeCode defaultTime = pxr::UsdTimeCode::Default();
  pxr::UsdStageRefPtr stage = usd_export_context_.stage;
  const pxr::SdfPath &usd_path = usd_export_context_.usd_path;

  pxr::UsdGeomMesh usd_mesh = pxr::UsdGeomMesh::Define(stage, usd_path);
  write_visibility(context, timecode, usd_mesh);

  USDMeshData usd_mesh_data;
  get_geometry_data(mesh, usd_mesh_data);

  if (usd_export_context_.export_params.use_instancing && context.is_instance()) {
    if (!mark_as_instance(context, usd_mesh.GetPrim())) {
      return;
    }

    /* The material path will be of the form </_materials/{material name}>, which is outside the
     * sub-tree pointed to by ref_path. As a result, the referenced data is not allowed to point
     * out of its own sub-tree. It does work when we override the material with exactly the same
     * path, though. */
    if (usd_export_context_.export_params.export_materials) {
      assign_materials(context, usd_mesh, usd_mesh_data.face_groups);
    }

    return;
  }

  pxr::UsdAttribute attr_points = usd_mesh.CreatePointsAttr(pxr::VtValue(), true);
  pxr::UsdAttribute attr_face_vertex_counts = usd_mesh.CreateFaceVertexCountsAttr(pxr::VtValue(),
                                                                                  true);
  pxr::UsdAttribute attr_face_vertex_indices = usd_mesh.CreateFaceVertexIndicesAttr(pxr::VtValue(),
                                                                                    true);

  if (!attr_points.HasValue()) {
    /* Provide the initial value as default. This makes USD write the value as constant if they
     * don't change over time. */
    attr_points.Set(usd_mesh_data.points, defaultTime);
    attr_face_vertex_counts.Set(usd_mesh_data.face_vertex_counts, defaultTime);
    attr_face_vertex_indices.Set(usd_mesh_data.face_indices, defaultTime);
  }

  usd_value_writer_.SetAttribute(attr_points, pxr::VtValue(usd_mesh_data.points), timecode);
  usd_value_writer_.SetAttribute(
      attr_face_vertex_counts, pxr::VtValue(usd_mesh_data.face_vertex_counts), timecode);
  usd_value_writer_.SetAttribute(
      attr_face_vertex_indices, pxr::VtValue(usd_mesh_data.face_indices), timecode);

  if (!usd_mesh_data.crease_lengths.empty()) {
    pxr::UsdAttribute attr_crease_lengths = usd_mesh.CreateCreaseLengthsAttr(pxr::VtValue(), true);
    pxr::UsdAttribute attr_crease_indices = usd_mesh.CreateCreaseIndicesAttr(pxr::VtValue(), true);
    pxr::UsdAttribute attr_crease_sharpness = usd_mesh.CreateCreaseSharpnessesAttr(pxr::VtValue(),
                                                                                   true);

    if (!attr_crease_lengths.HasValue()) {
      attr_crease_lengths.Set(usd_mesh_data.crease_lengths, defaultTime);
      attr_crease_indices.Set(usd_mesh_data.crease_vertex_indices, defaultTime);
      attr_crease_sharpness.Set(usd_mesh_data.crease_sharpnesses, defaultTime);
    }

    usd_value_writer_.SetAttribute(
        attr_crease_lengths, pxr::VtValue(usd_mesh_data.crease_lengths), timecode);
    usd_value_writer_.SetAttribute(
        attr_crease_indices, pxr::VtValue(usd_mesh_data.crease_vertex_indices), timecode);
    usd_value_writer_.SetAttribute(
        attr_crease_sharpness, pxr::VtValue(usd_mesh_data.crease_sharpnesses), timecode);
  }

  if (!usd_mesh_data.corner_indices.empty() &&
      usd_mesh_data.corner_indices.size() == usd_mesh_data.corner_sharpnesses.size()) {
    pxr::UsdAttribute attr_corner_indices = usd_mesh.CreateCornerIndicesAttr(pxr::VtValue(), true);
    pxr::UsdAttribute attr_corner_sharpnesses = usd_mesh.CreateCornerSharpnessesAttr(
        pxr::VtValue(), true);

    if (!attr_corner_indices.HasValue()) {
      attr_corner_indices.Set(usd_mesh_data.corner_indices, defaultTime);
      attr_corner_sharpnesses.Set(usd_mesh_data.corner_sharpnesses, defaultTime);
    }

    usd_value_writer_.SetAttribute(
        attr_corner_indices, pxr::VtValue(usd_mesh_data.corner_indices), timecode);
    usd_value_writer_.SetAttribute(
        attr_corner_sharpnesses, pxr::VtValue(usd_mesh_data.crease_sharpnesses), timecode);
  }

  if (usd_export_context_.export_params.export_uvmaps) {
    write_uv_maps(mesh, usd_mesh);
  }
  if (usd_export_context_.export_params.export_normals) {
    write_normals(mesh, usd_mesh);
  }
  write_surface_velocity(mesh, usd_mesh);

  /* TODO(Sybren): figure out what happens when the face groups change. */
  if (frame_has_been_written_) {
    return;
  }

  usd_mesh.CreateSubdivisionSchemeAttr().Set(pxr::UsdGeomTokens->none);

  if (usd_export_context_.export_params.export_materials) {
    assign_materials(context, usd_mesh, usd_mesh_data.face_groups);
  }
}

static void get_vertices(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
  usd_mesh_data.points.reserve(mesh->totvert);

  const Span<MVert> verts = mesh->verts();
  for (const int i : verts.index_range()) {
    usd_mesh_data.points.push_back(pxr::GfVec3f(verts[i].co));
  }
}

static void get_loops_polys(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
  /* Only construct face groups (a.k.a. geometry subsets) when we need them for material
   * assignments. */
  const bke::AttributeAccessor attributes = mesh->attributes();
  const VArray<int> material_indices = attributes.lookup_or_default<int>(
      "material_index", ATTR_DOMAIN_FACE, 0);
  if (!material_indices.is_single() && mesh->totcol > 1) {
    const VArraySpan<int> indices_span(material_indices);
    for (const int i : indices_span.index_range()) {
      usd_mesh_data.face_groups[indices_span[i]].push_back(i);
    }
  }

  usd_mesh_data.face_vertex_counts.reserve(mesh->totpoly);
  usd_mesh_data.face_indices.reserve(mesh->totloop);

  const Span<MPoly> polys = mesh->polys();
  const Span<MLoop> loops = mesh->loops();

  for (const int i : polys.index_range()) {
    const MPoly &poly = polys[i];
    usd_mesh_data.face_vertex_counts.push_back(poly.totloop);
    for (const MLoop &loop : loops.slice(poly.loopstart, poly.totloop)) {
      usd_mesh_data.face_indices.push_back(loop.v);
    }
  }
}

static void get_edge_creases(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
  const float *creases = static_cast<const float *>(CustomData_get_layer(&mesh->edata, CD_CREASE));
  if (!creases) {
    return;
  }

  const Span<MEdge> edges = mesh->edges();
  for (const int i : edges.index_range()) {
    const float crease = creases[i];
    if (crease == 0.0f) {
      continue;
    }

    const float sharpness = crease >= 1.0f ? pxr::UsdGeomMesh::SHARPNESS_INFINITE : crease;

    usd_mesh_data.crease_vertex_indices.push_back(edges[i].v1);
    usd_mesh_data.crease_vertex_indices.push_back(edges[i].v2);
    usd_mesh_data.crease_lengths.push_back(2);
    usd_mesh_data.crease_sharpnesses.push_back(sharpness);
  }
}

static void get_vert_creases(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
  const float *creases = static_cast<const float *>(CustomData_get_layer(&mesh->vdata, CD_CREASE));

  if (!creases) {
    return;
  }

  for (int i = 0, v = mesh->totvert; i < v; i++) {
    const float sharpness = creases[i];

    if (sharpness != 0.0f) {
      usd_mesh_data.corner_indices.push_back(i);
      usd_mesh_data.corner_sharpnesses.push_back(sharpness);
    }
  }
}

void USDGenericMeshWriter::get_geometry_data(const Mesh *mesh, USDMeshData &usd_mesh_data)
{
  get_vertices(mesh, usd_mesh_data);
  get_loops_polys(mesh, usd_mesh_data);
  get_edge_creases(mesh, usd_mesh_data);
  get_vert_creases(mesh, usd_mesh_data);
}

void USDGenericMeshWriter::assign_materials(const HierarchyContext &context,
                                            pxr::UsdGeomMesh usd_mesh,
                                            const MaterialFaceGroups &usd_face_groups)
{
  if (context.object->totcol == 0) {
    return;
  }

  /* Binding a material to a geometry subset isn't supported by the Hydra GL viewport yet,
   * which is why we always bind the first material to the entire mesh. See
   * https://github.com/PixarAnimationStudios/USD/issues/542 for more info. */
  bool mesh_material_bound = false;
  pxr::UsdShadeMaterialBindingAPI material_binding_api(usd_mesh.GetPrim());
  for (int mat_num = 0; mat_num < context.object->totcol; mat_num++) {
    Material *material = BKE_object_material_get(context.object, mat_num + 1);
    if (material == nullptr) {
      continue;
    }

    pxr::UsdShadeMaterial usd_material = ensure_usd_material(context, material);
    material_binding_api.Bind(usd_material);

    /* USD seems to support neither per-material nor per-face-group double-sidedness, so we just
     * use the flag from the first non-empty material slot. */
    usd_mesh.CreateDoubleSidedAttr(
        pxr::VtValue((material->blend_flag & MA_BL_CULL_BACKFACE) == 0));

    mesh_material_bound = true;
    break;
  }

  if (!mesh_material_bound) {
    /* Blender defaults to double-sided, but USD to single-sided. */
    usd_mesh.CreateDoubleSidedAttr(pxr::VtValue(true));
  }

  if (!mesh_material_bound || usd_face_groups.size() < 2) {
    /* Either all material slots were empty or there is only one material in use. As geometry
     * subsets are only written when actually used to assign a material, and the mesh already has
     * the material assigned, there is no need to continue. */
    return;
  }

  /* Define a geometry subset per material. */
  for (const MaterialFaceGroups::value_type &face_group : usd_face_groups) {
    short material_number = face_group.first;
    const pxr::VtIntArray &face_indices = face_group.second;

    Material *material = BKE_object_material_get(context.object, material_number + 1);
    if (material == nullptr) {
      continue;
    }

    pxr::UsdShadeMaterial usd_material = ensure_usd_material(context, material);
    pxr::TfToken material_name = usd_material.GetPath().GetNameToken();

    pxr::UsdGeomSubset usd_face_subset = material_binding_api.CreateMaterialBindSubset(
        material_name, face_indices);
    pxr::UsdShadeMaterialBindingAPI(usd_face_subset.GetPrim()).Bind(usd_material);
  }
}

void USDGenericMeshWriter::write_normals(const Mesh *mesh, pxr::UsdGeomMesh usd_mesh)
{
  pxr::UsdTimeCode timecode = get_export_time_code();
  const float(*lnors)[3] = static_cast<float(*)[3]>(CustomData_get_layer(&mesh->ldata, CD_NORMAL));
  const Span<MPoly> polys = mesh->polys();
  const Span<MLoop> loops = mesh->loops();

  pxr::VtVec3fArray loop_normals;
  loop_normals.reserve(mesh->totloop);

  if (lnors != nullptr) {
    /* Export custom loop normals. */
    for (int loop_idx = 0, totloop = mesh->totloop; loop_idx < totloop; ++loop_idx) {
      loop_normals.push_back(pxr::GfVec3f(lnors[loop_idx]));
    }
  }
  else {
    /* Compute the loop normals based on the 'smooth' flag. */
    const float(*vert_normals)[3] = BKE_mesh_vertex_normals_ensure(mesh);
    const float(*face_normals)[3] = BKE_mesh_poly_normals_ensure(mesh);
    for (const int i : polys.index_range()) {
      const MPoly &poly = polys[i];

      if ((poly.flag & ME_SMOOTH) == 0) {
        /* Flat shaded, use common normal for all verts. */
        pxr::GfVec3f pxr_normal(face_normals[i]);
        for (int loop_idx = 0; loop_idx < poly.totloop; ++loop_idx) {
          loop_normals.push_back(pxr_normal);
        }
      }
      else {
        /* Smooth shaded, use individual vert normals. */
        for (const MLoop &loop : loops.slice(poly.loopstart, poly.totloop)) {
          loop_normals.push_back(pxr::GfVec3f(vert_normals[loop.v]));
        }
      }
    }
  }

  pxr::UsdAttribute attr_normals = usd_mesh.CreateNormalsAttr(pxr::VtValue(), true);
  if (!attr_normals.HasValue()) {
    attr_normals.Set(loop_normals, pxr::UsdTimeCode::Default());
  }
  usd_value_writer_.SetAttribute(attr_normals, pxr::VtValue(loop_normals), timecode);
  usd_mesh.SetNormalsInterpolation(pxr::UsdGeomTokens->faceVarying);
}

void USDGenericMeshWriter::write_surface_velocity(const Mesh *mesh, pxr::UsdGeomMesh usd_mesh)
{
  /* Export velocity attribute output by fluid sim, sequence cache modifier
   * and geometry nodes. */
  CustomDataLayer *velocity_layer = BKE_id_attribute_find(
      &mesh->id, "velocity", CD_PROP_FLOAT3, ATTR_DOMAIN_POINT);

  if (velocity_layer == nullptr) {
    return;
  }

  const float(*velocities)[3] = reinterpret_cast<float(*)[3]>(velocity_layer->data);

  /* Export per-vertex velocity vectors. */
  pxr::VtVec3fArray usd_velocities;
  usd_velocities.reserve(mesh->totvert);

  for (int vertex_idx = 0, totvert = mesh->totvert; vertex_idx < totvert; ++vertex_idx) {
    usd_velocities.push_back(pxr::GfVec3f(velocities[vertex_idx]));
  }

  pxr::UsdTimeCode timecode = get_export_time_code();
  usd_mesh.CreateVelocitiesAttr().Set(usd_velocities, timecode);
}

USDMeshWriter::USDMeshWriter(const USDExporterContext &ctx) : USDGenericMeshWriter(ctx)
{
}

Mesh *USDMeshWriter::get_export_mesh(Object *object_eval, bool & /*r_needsfree*/)
{
  return BKE_object_get_evaluated_mesh(object_eval);
}

}  // namespace blender::io::usd