Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MOD_array.c « intern « modifiers « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a09756b03aa886e30a59c457390ca9868ba6c392 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2005 Blender Foundation. All rights reserved. */

/** \file
 * \ingroup modifiers
 *
 * Array modifier: duplicates the object multiple times along an axis.
 */

#include "MEM_guardedalloc.h"

#include "BLI_utildefines.h"

#include "BLI_math.h"

#include "BLT_translation.h"

#include "DNA_curve_types.h"
#include "DNA_defaults.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"

#include "BKE_anim_path.h"
#include "BKE_context.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_lib_id.h"
#include "BKE_lib_query.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_object_deform.h"
#include "BKE_screen.h"

#include "UI_interface.h"
#include "UI_resources.h"

#include "RNA_access.h"
#include "RNA_prototypes.h"

#include "MOD_ui_common.h"
#include "MOD_util.h"

#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"

static void initData(ModifierData *md)
{
  ArrayModifierData *amd = (ArrayModifierData *)md;

  BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(amd, modifier));

  MEMCPY_STRUCT_AFTER(amd, DNA_struct_default_get(ArrayModifierData), modifier);

  /* Open the first sub-panel by default,
   * it corresponds to Relative offset which is enabled too. */
  md->ui_expand_flag = UI_PANEL_DATA_EXPAND_ROOT | UI_SUBPANEL_DATA_EXPAND_1;
}

static void foreachIDLink(ModifierData *md, Object *ob, IDWalkFunc walk, void *userData)
{
  ArrayModifierData *amd = (ArrayModifierData *)md;

  walk(userData, ob, (ID **)&amd->start_cap, IDWALK_CB_NOP);
  walk(userData, ob, (ID **)&amd->end_cap, IDWALK_CB_NOP);
  walk(userData, ob, (ID **)&amd->curve_ob, IDWALK_CB_NOP);
  walk(userData, ob, (ID **)&amd->offset_ob, IDWALK_CB_NOP);
}

static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
{
  ArrayModifierData *amd = (ArrayModifierData *)md;
  bool need_transform_dependency = false;
  if (amd->start_cap != NULL) {
    DEG_add_object_relation(
        ctx->node, amd->start_cap, DEG_OB_COMP_GEOMETRY, "Array Modifier Start Cap");
  }
  if (amd->end_cap != NULL) {
    DEG_add_object_relation(
        ctx->node, amd->end_cap, DEG_OB_COMP_GEOMETRY, "Array Modifier End Cap");
  }
  if (amd->curve_ob) {
    DEG_add_object_relation(
        ctx->node, amd->curve_ob, DEG_OB_COMP_GEOMETRY, "Array Modifier Curve");
    DEG_add_special_eval_flag(ctx->node, &amd->curve_ob->id, DAG_EVAL_NEED_CURVE_PATH);
  }
  if (amd->offset_ob != NULL) {
    DEG_add_object_relation(
        ctx->node, amd->offset_ob, DEG_OB_COMP_TRANSFORM, "Array Modifier Offset");
    need_transform_dependency = true;
  }

  if (need_transform_dependency) {
    DEG_add_depends_on_transform_relation(ctx->node, "Array Modifier");
  }
}

BLI_INLINE float sum_v3(const float v[3])
{
  return v[0] + v[1] + v[2];
}

/* Structure used for sorting vertices, when processing doubles */
typedef struct SortVertsElem {
  int vertex_num; /* The original index of the vertex, prior to sorting */
  float co[3];    /* Its coordinates */
  float sum_co;   /* `sum_v3(co)`: just so we don't do the sum many times. */
} SortVertsElem;

static int svert_sum_cmp(const void *e1, const void *e2)
{
  const SortVertsElem *sv1 = e1;
  const SortVertsElem *sv2 = e2;

  if (sv1->sum_co > sv2->sum_co) {
    return 1;
  }
  if (sv1->sum_co < sv2->sum_co) {
    return -1;
  }

  return 0;
}

static void svert_from_mvert(SortVertsElem *sv,
                             const float (*positions)[3],
                             const int i_begin,
                             const int i_end)
{
  int i;
  for (i = i_begin; i < i_end; i++, sv++) {
    sv->vertex_num = i;
    copy_v3_v3(sv->co, positions[i]);
    sv->sum_co = sum_v3(positions[i]);
  }
}

/**
 * Take as inputs two sets of verts, to be processed for detection of doubles and mapping.
 * Each set of verts is defined by its start within mverts array and its verts_num;
 * It builds a mapping for all vertices within source,
 * to vertices within target, or -1 if no double found.
 * The `int doubles_map[verts_source_num]` array must have been allocated by caller.
 */
static void dm_mvert_map_doubles(int *doubles_map,
                                 const float (*positions)[3],
                                 const int target_start,
                                 const int target_verts_num,
                                 const int source_start,
                                 const int source_verts_num,
                                 const float dist)
{
  const float dist3 = ((float)M_SQRT3 + 0.00005f) * dist; /* Just above sqrt(3) */
  int i_source, i_target, i_target_low_bound, target_end, source_end;
  SortVertsElem *sorted_verts_target, *sorted_verts_source;
  SortVertsElem *sve_source, *sve_target, *sve_target_low_bound;
  bool target_scan_completed;

  target_end = target_start + target_verts_num;
  source_end = source_start + source_verts_num;

  /* build array of MVerts to be tested for merging */
  sorted_verts_target = MEM_malloc_arrayN(target_verts_num, sizeof(SortVertsElem), __func__);
  sorted_verts_source = MEM_malloc_arrayN(source_verts_num, sizeof(SortVertsElem), __func__);

  /* Copy target vertices index and cos into SortVertsElem array */
  svert_from_mvert(sorted_verts_target, positions, target_start, target_end);

  /* Copy source vertices index and cos into SortVertsElem array */
  svert_from_mvert(sorted_verts_source, positions, source_start, source_end);

  /* sort arrays according to sum of vertex coordinates (sumco) */
  qsort(sorted_verts_target, target_verts_num, sizeof(SortVertsElem), svert_sum_cmp);
  qsort(sorted_verts_source, source_verts_num, sizeof(SortVertsElem), svert_sum_cmp);

  sve_target_low_bound = sorted_verts_target;
  i_target_low_bound = 0;
  target_scan_completed = false;

  /* Scan source vertices, in #SortVertsElem sorted array,
   * all the while maintaining the lower bound of possible doubles in target vertices. */
  for (i_source = 0, sve_source = sorted_verts_source; i_source < source_verts_num;
       i_source++, sve_source++) {
    int best_target_vertex = -1;
    float best_dist_sq = dist * dist;
    float sve_source_sumco;

    /* If source has already been assigned to a target (in an earlier call, with other chunks) */
    if (doubles_map[sve_source->vertex_num] != -1) {
      continue;
    }

    /* If target fully scanned already, then all remaining source vertices cannot have a double */
    if (target_scan_completed) {
      doubles_map[sve_source->vertex_num] = -1;
      continue;
    }

    sve_source_sumco = sum_v3(sve_source->co);

    /* Skip all target vertices that are more than dist3 lower in terms of sumco */
    /* and advance the overall lower bound, applicable to all remaining vertices as well. */
    while ((i_target_low_bound < target_verts_num) &&
           (sve_target_low_bound->sum_co < sve_source_sumco - dist3)) {
      i_target_low_bound++;
      sve_target_low_bound++;
    }
    /* If end of target list reached, then no more possible doubles */
    if (i_target_low_bound >= target_verts_num) {
      doubles_map[sve_source->vertex_num] = -1;
      target_scan_completed = true;
      continue;
    }
    /* Test target candidates starting at the low bound of possible doubles,
     * ordered in terms of sumco. */
    i_target = i_target_low_bound;
    sve_target = sve_target_low_bound;

    /* i_target will scan vertices in the
     * [v_source_sumco - dist3;  v_source_sumco + dist3] range */

    while ((i_target < target_verts_num) && (sve_target->sum_co <= sve_source_sumco + dist3)) {
      /* Testing distance for candidate double in target */
      /* v_target is within dist3 of v_source in terms of sumco;  check real distance */
      float dist_sq;
      if ((dist_sq = len_squared_v3v3(sve_source->co, sve_target->co)) <= best_dist_sq) {
        /* Potential double found */
        best_dist_sq = dist_sq;
        best_target_vertex = sve_target->vertex_num;

        /* If target is already mapped, we only follow that mapping if final target remains
         * close enough from current vert (otherwise no mapping at all).
         * Note that if we later find another target closer than this one, then we check it.
         * But if other potential targets are farther,
         * then there will be no mapping at all for this source. */
        while (best_target_vertex != -1 &&
               !ELEM(doubles_map[best_target_vertex], -1, best_target_vertex)) {
          if (compare_len_v3v3(positions[sve_source->vertex_num],
                               positions[doubles_map[best_target_vertex]],
                               dist)) {
            best_target_vertex = doubles_map[best_target_vertex];
          }
          else {
            best_target_vertex = -1;
          }
        }
      }
      i_target++;
      sve_target++;
    }
    /* End of candidate scan: if none found then no doubles */
    doubles_map[sve_source->vertex_num] = best_target_vertex;
  }

  MEM_freeN(sorted_verts_source);
  MEM_freeN(sorted_verts_target);
}

static void mesh_merge_transform(Mesh *result,
                                 Mesh *cap_mesh,
                                 const float cap_offset[4][4],
                                 uint cap_verts_index,
                                 uint cap_edges_index,
                                 int cap_loops_index,
                                 int cap_polys_index,
                                 int cap_nverts,
                                 int cap_nedges,
                                 int cap_nloops,
                                 int cap_npolys,
                                 int *remap,
                                 int remap_len,
                                 const bool recalc_normals_later)
{
  int *index_orig;
  int i;
  MEdge *me;
  MLoop *ml;
  MPoly *mp;
  float(*result_positions)[3] = BKE_mesh_positions_for_write(result);
  MEdge *result_edges = BKE_mesh_edges_for_write(result);
  MPoly *result_polys = BKE_mesh_polys_for_write(result);
  MLoop *result_loops = BKE_mesh_loops_for_write(result);

  CustomData_copy_data(&cap_mesh->vdata, &result->vdata, 0, cap_verts_index, cap_nverts);
  CustomData_copy_data(&cap_mesh->edata, &result->edata, 0, cap_edges_index, cap_nedges);
  CustomData_copy_data(&cap_mesh->ldata, &result->ldata, 0, cap_loops_index, cap_nloops);
  CustomData_copy_data(&cap_mesh->pdata, &result->pdata, 0, cap_polys_index, cap_npolys);

  for (i = 0; i < cap_nverts; i++) {
    mul_m4_v3(cap_offset, result_positions[cap_verts_index + i]);
  }

  /* We have to correct normals too, if we do not tag them as dirty later! */
  if (!recalc_normals_later) {
    float(*dst_vert_normals)[3] = BKE_mesh_vertex_normals_for_write(result);
    for (i = 0; i < cap_nverts; i++) {
      mul_mat3_m4_v3(cap_offset, dst_vert_normals[cap_verts_index + i]);
      normalize_v3(dst_vert_normals[cap_verts_index + i]);
    }
  }

  /* remap the vertex groups if necessary */
  if (BKE_mesh_deform_verts(result) != NULL) {
    MDeformVert *dvert = BKE_mesh_deform_verts_for_write(result);
    BKE_object_defgroup_index_map_apply(&dvert[cap_verts_index], cap_nverts, remap, remap_len);
  }

  /* adjust cap edge vertex indices */
  me = result_edges + cap_edges_index;
  for (i = 0; i < cap_nedges; i++, me++) {
    me->v1 += cap_verts_index;
    me->v2 += cap_verts_index;
  }

  /* adjust cap poly loopstart indices */
  mp = result_polys + cap_polys_index;
  for (i = 0; i < cap_npolys; i++, mp++) {
    mp->loopstart += cap_loops_index;
  }

  /* adjust cap loop vertex and edge indices */
  ml = result_loops + cap_loops_index;
  for (i = 0; i < cap_nloops; i++, ml++) {
    ml->v += cap_verts_index;
    ml->e += cap_edges_index;
  }

  /* Set #CD_ORIGINDEX. */
  index_orig = CustomData_get_layer(&result->vdata, CD_ORIGINDEX);
  if (index_orig) {
    copy_vn_i(index_orig + cap_verts_index, cap_nverts, ORIGINDEX_NONE);
  }

  index_orig = CustomData_get_layer(&result->edata, CD_ORIGINDEX);
  if (index_orig) {
    copy_vn_i(index_orig + cap_edges_index, cap_nedges, ORIGINDEX_NONE);
  }

  index_orig = CustomData_get_layer(&result->pdata, CD_ORIGINDEX);
  if (index_orig) {
    copy_vn_i(index_orig + cap_polys_index, cap_npolys, ORIGINDEX_NONE);
  }

  index_orig = CustomData_get_layer(&result->ldata, CD_ORIGINDEX);
  if (index_orig) {
    copy_vn_i(index_orig + cap_loops_index, cap_nloops, ORIGINDEX_NONE);
  }
}

static Mesh *arrayModifier_doArray(ArrayModifierData *amd,
                                   const ModifierEvalContext *ctx,
                                   const Mesh *mesh)
{
  MEdge *me;
  MLoop *ml;
  MPoly *mp;
  int i, j, c, count;
  float length = amd->length;
  /* offset matrix */
  float offset[4][4];
  float scale[3];
  bool offset_has_scale;
  float current_offset[4][4];
  float final_offset[4][4];
  int *full_doubles_map = NULL;
  int tot_doubles;

  const bool use_merge = (amd->flags & MOD_ARR_MERGE) != 0;
  const bool use_recalc_normals = BKE_mesh_vertex_normals_are_dirty(mesh) || use_merge;
  const bool use_offset_ob = ((amd->offset_type & MOD_ARR_OFF_OBJ) && amd->offset_ob != NULL);

  int start_cap_nverts = 0, start_cap_nedges = 0, start_cap_npolys = 0, start_cap_nloops = 0;
  int end_cap_nverts = 0, end_cap_nedges = 0, end_cap_npolys = 0, end_cap_nloops = 0;
  int result_nverts = 0, result_nedges = 0, result_npolys = 0, result_nloops = 0;
  int chunk_nverts, chunk_nedges, chunk_nloops, chunk_npolys;
  int first_chunk_start, first_chunk_nverts, last_chunk_start, last_chunk_nverts;

  Mesh *result, *start_cap_mesh = NULL, *end_cap_mesh = NULL;

  int *vgroup_start_cap_remap = NULL;
  int vgroup_start_cap_remap_len = 0;
  int *vgroup_end_cap_remap = NULL;
  int vgroup_end_cap_remap_len = 0;

  chunk_nverts = mesh->totvert;
  chunk_nedges = mesh->totedge;
  chunk_nloops = mesh->totloop;
  chunk_npolys = mesh->totpoly;

  count = amd->count;

  Object *start_cap_ob = amd->start_cap;
  if (start_cap_ob && start_cap_ob != ctx->object) {
    if (start_cap_ob->type == OB_MESH && ctx->object->type == OB_MESH) {
      vgroup_start_cap_remap = BKE_object_defgroup_index_map_create(
          start_cap_ob, ctx->object, &vgroup_start_cap_remap_len);
    }

    start_cap_mesh = BKE_modifier_get_evaluated_mesh_from_evaluated_object(start_cap_ob);
    if (start_cap_mesh) {
      start_cap_nverts = start_cap_mesh->totvert;
      start_cap_nedges = start_cap_mesh->totedge;
      start_cap_nloops = start_cap_mesh->totloop;
      start_cap_npolys = start_cap_mesh->totpoly;
    }
  }
  Object *end_cap_ob = amd->end_cap;
  if (end_cap_ob && end_cap_ob != ctx->object) {
    if (end_cap_ob->type == OB_MESH && ctx->object->type == OB_MESH) {
      vgroup_end_cap_remap = BKE_object_defgroup_index_map_create(
          end_cap_ob, ctx->object, &vgroup_end_cap_remap_len);
    }

    end_cap_mesh = BKE_modifier_get_evaluated_mesh_from_evaluated_object(end_cap_ob);
    if (end_cap_mesh) {
      end_cap_nverts = end_cap_mesh->totvert;
      end_cap_nedges = end_cap_mesh->totedge;
      end_cap_nloops = end_cap_mesh->totloop;
      end_cap_npolys = end_cap_mesh->totpoly;
    }
  }

  /* Build up offset array, accumulating all settings options. */

  unit_m4(offset);
  const MEdge *src_edges = BKE_mesh_edges(mesh);
  const MPoly *src_polys = BKE_mesh_polys(mesh);
  const MLoop *src_loops = BKE_mesh_loops(mesh);

  if (amd->offset_type & MOD_ARR_OFF_CONST) {
    add_v3_v3(offset[3], amd->offset);
  }

  if (amd->offset_type & MOD_ARR_OFF_RELATIVE) {
    float min[3], max[3];
    INIT_MINMAX(min, max);
    BKE_mesh_minmax(mesh, min, max);

    for (j = 3; j--;) {
      offset[3][j] += amd->scale[j] * (max[j] - min[j]);
    }
  }

  if (use_offset_ob) {
    float obinv[4][4];
    float result_mat[4][4];

    if (ctx->object) {
      invert_m4_m4(obinv, ctx->object->object_to_world);
    }
    else {
      unit_m4(obinv);
    }

    mul_m4_series(result_mat, offset, obinv, amd->offset_ob->object_to_world);
    copy_m4_m4(offset, result_mat);
  }

  /* Check if there is some scaling. If scaling, then we will not translate mapping */
  mat4_to_size(scale, offset);
  offset_has_scale = !is_one_v3(scale);

  if (amd->fit_type == MOD_ARR_FITCURVE && amd->curve_ob != NULL) {
    Object *curve_ob = amd->curve_ob;
    CurveCache *curve_cache = curve_ob->runtime.curve_cache;
    if (curve_cache != NULL && curve_cache->anim_path_accum_length != NULL) {
      float scale_fac = mat4_to_scale(curve_ob->object_to_world);
      length = scale_fac * BKE_anim_path_get_length(curve_cache);
    }
  }

  /* About 67 million vertices max seems a decent limit for now. */
  const size_t max_verts_num = 1 << 26;

  /* calculate the maximum number of copies which will fit within the
   * prescribed length */
  if (ELEM(amd->fit_type, MOD_ARR_FITLENGTH, MOD_ARR_FITCURVE)) {
    const float float_epsilon = 1e-6f;
    bool offset_is_too_small = false;
    float dist = len_v3(offset[3]);

    if (dist > float_epsilon) {
      /* this gives length = first copy start to last copy end
       * add a tiny offset for floating point rounding errors */
      count = (length + float_epsilon) / dist + 1;

      /* Ensure we keep things to a reasonable level, in terms of rough total amount of generated
       * vertices.
       */
      if (((size_t)count * (size_t)chunk_nverts + (size_t)start_cap_nverts +
           (size_t)end_cap_nverts) > max_verts_num) {
        count = 1;
        offset_is_too_small = true;
      }
    }
    else {
      /* if the offset has no translation, just make one copy */
      count = 1;
      offset_is_too_small = true;
    }

    if (offset_is_too_small) {
      BKE_modifier_set_error(
          ctx->object,
          &amd->modifier,
          "The offset is too small, we cannot generate the amount of geometry it would require");
    }
  }
  /* Ensure we keep things to a reasonable level, in terms of rough total amount of generated
   * vertices.
   */
  else if (((size_t)count * (size_t)chunk_nverts + (size_t)start_cap_nverts +
            (size_t)end_cap_nverts) > max_verts_num) {
    count = 1;
    BKE_modifier_set_error(ctx->object,
                           &amd->modifier,
                           "The amount of copies is too high, we cannot generate the amount of "
                           "geometry it would require");
  }

  if (count < 1) {
    count = 1;
  }

  /* The number of verts, edges, loops, polys, before eventually merging doubles */
  result_nverts = chunk_nverts * count + start_cap_nverts + end_cap_nverts;
  result_nedges = chunk_nedges * count + start_cap_nedges + end_cap_nedges;
  result_nloops = chunk_nloops * count + start_cap_nloops + end_cap_nloops;
  result_npolys = chunk_npolys * count + start_cap_npolys + end_cap_npolys;

  /* Initialize a result dm */
  result = BKE_mesh_new_nomain_from_template(
      mesh, result_nverts, result_nedges, 0, result_nloops, result_npolys);
  float(*result_positions)[3] = BKE_mesh_positions_for_write(result);
  MEdge *result_edges = BKE_mesh_edges_for_write(result);
  MPoly *result_polys = BKE_mesh_polys_for_write(result);
  MLoop *result_loops = BKE_mesh_loops_for_write(result);

  if (use_merge) {
    /* Will need full_doubles_map for handling merge */
    full_doubles_map = MEM_malloc_arrayN(result_nverts, sizeof(int), "mod array doubles map");
    copy_vn_i(full_doubles_map, result_nverts, -1);
  }

  /* copy customdata to original geometry */
  CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, chunk_nverts);
  CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, chunk_nedges);
  CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, chunk_nloops);
  CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, chunk_npolys);

  /* Subdivision-surface for eg won't have mesh data in the custom-data arrays.
   * Now add #position/#MEdge/#MPoly layers. */
  if (!CustomData_has_layer(&mesh->edata, CD_MEDGE)) {
    memcpy(result_edges, src_edges, sizeof(MEdge) * mesh->totedge);
  }
  if (!CustomData_has_layer(&mesh->pdata, CD_MPOLY)) {
    memcpy(result_loops, src_loops, sizeof(MLoop) * mesh->totloop);
    memcpy(result_polys, src_polys, sizeof(MPoly) * mesh->totpoly);
  }

  /* Remember first chunk, in case of cap merge */
  first_chunk_start = 0;
  first_chunk_nverts = chunk_nverts;

  unit_m4(current_offset);
  const float(*src_vert_normals)[3] = NULL;
  float(*dst_vert_normals)[3] = NULL;
  if (!use_recalc_normals) {
    src_vert_normals = BKE_mesh_vertex_normals_ensure(mesh);
    dst_vert_normals = BKE_mesh_vertex_normals_for_write(result);
    BKE_mesh_vertex_normals_clear_dirty(result);
  }

  for (c = 1; c < count; c++) {
    /* copy customdata to new geometry */
    CustomData_copy_data(&mesh->vdata, &result->vdata, 0, c * chunk_nverts, chunk_nverts);
    CustomData_copy_data(&mesh->edata, &result->edata, 0, c * chunk_nedges, chunk_nedges);
    CustomData_copy_data(&mesh->ldata, &result->ldata, 0, c * chunk_nloops, chunk_nloops);
    CustomData_copy_data(&mesh->pdata, &result->pdata, 0, c * chunk_npolys, chunk_npolys);

    const int vert_offset = c * chunk_nverts;

    /* recalculate cumulative offset here */
    mul_m4_m4m4(current_offset, current_offset, offset);

    /* apply offset to all new verts */
    for (i = 0; i < chunk_nverts; i++) {
      const int i_dst = vert_offset + i;
      mul_m4_v3(current_offset, result_positions[i_dst]);

      /* We have to correct normals too, if we do not tag them as dirty! */
      if (!use_recalc_normals) {
        copy_v3_v3(dst_vert_normals[i_dst], src_vert_normals[i]);
        mul_mat3_m4_v3(current_offset, dst_vert_normals[i_dst]);
        normalize_v3(dst_vert_normals[i_dst]);
      }
    }

    /* adjust edge vertex indices */
    me = result_edges + c * chunk_nedges;
    for (i = 0; i < chunk_nedges; i++, me++) {
      me->v1 += c * chunk_nverts;
      me->v2 += c * chunk_nverts;
    }

    mp = result_polys + c * chunk_npolys;
    for (i = 0; i < chunk_npolys; i++, mp++) {
      mp->loopstart += c * chunk_nloops;
    }

    /* adjust loop vertex and edge indices */
    ml = result_loops + c * chunk_nloops;
    for (i = 0; i < chunk_nloops; i++, ml++) {
      ml->v += c * chunk_nverts;
      ml->e += c * chunk_nedges;
    }

    /* Handle merge between chunk n and n-1 */
    if (use_merge && (c >= 1)) {
      if (!offset_has_scale && (c >= 2)) {
        /* Mapping chunk 3 to chunk 2 is a translation of mapping 2 to 1
         * ... that is except if scaling makes the distance grow */
        int k;
        int this_chunk_index = c * chunk_nverts;
        int prev_chunk_index = (c - 1) * chunk_nverts;
        for (k = 0; k < chunk_nverts; k++, this_chunk_index++, prev_chunk_index++) {
          int target = full_doubles_map[prev_chunk_index];
          if (target != -1) {
            target += chunk_nverts; /* translate mapping */
            while (target != -1 && !ELEM(full_doubles_map[target], -1, target)) {
              /* If target is already mapped, we only follow that mapping if final target remains
               * close enough from current vert (otherwise no mapping at all). */
              if (compare_len_v3v3(result_positions[this_chunk_index],
                                   result_positions[full_doubles_map[target]],
                                   amd->merge_dist)) {
                target = full_doubles_map[target];
              }
              else {
                target = -1;
              }
            }
          }
          full_doubles_map[this_chunk_index] = target;
        }
      }
      else {
        dm_mvert_map_doubles(full_doubles_map,
                             result_positions,
                             (c - 1) * chunk_nverts,
                             chunk_nverts,
                             c * chunk_nverts,
                             chunk_nverts,
                             amd->merge_dist);
      }
    }
  }

  /* handle UVs */
  if (chunk_nloops > 0 && is_zero_v2(amd->uv_offset) == false) {
    const int totuv = CustomData_number_of_layers(&result->ldata, CD_MLOOPUV);
    for (i = 0; i < totuv; i++) {
      MLoopUV *dmloopuv = CustomData_get_layer_n(&result->ldata, CD_MLOOPUV, i);
      dmloopuv += chunk_nloops;
      for (c = 1; c < count; c++) {
        const float uv_offset[2] = {
            amd->uv_offset[0] * (float)c,
            amd->uv_offset[1] * (float)c,
        };
        int l_index = chunk_nloops;
        for (; l_index-- != 0; dmloopuv++) {
          dmloopuv->uv[0] += uv_offset[0];
          dmloopuv->uv[1] += uv_offset[1];
        }
      }
    }
  }

  last_chunk_start = (count - 1) * chunk_nverts;
  last_chunk_nverts = chunk_nverts;

  copy_m4_m4(final_offset, current_offset);

  if (use_merge && (amd->flags & MOD_ARR_MERGEFINAL) && (count > 1)) {
    /* Merge first and last copies */
    dm_mvert_map_doubles(full_doubles_map,
                         result_positions,
                         last_chunk_start,
                         last_chunk_nverts,
                         first_chunk_start,
                         first_chunk_nverts,
                         amd->merge_dist);
  }

  /* start capping */
  if (start_cap_mesh) {
    float start_offset[4][4];
    int start_cap_start = result_nverts - start_cap_nverts - end_cap_nverts;
    invert_m4_m4(start_offset, offset);
    mesh_merge_transform(result,
                         start_cap_mesh,
                         start_offset,
                         result_nverts - start_cap_nverts - end_cap_nverts,
                         result_nedges - start_cap_nedges - end_cap_nedges,
                         result_nloops - start_cap_nloops - end_cap_nloops,
                         result_npolys - start_cap_npolys - end_cap_npolys,
                         start_cap_nverts,
                         start_cap_nedges,
                         start_cap_nloops,
                         start_cap_npolys,
                         vgroup_start_cap_remap,
                         vgroup_start_cap_remap_len,
                         use_recalc_normals);
    /* Identify doubles with first chunk */
    if (use_merge) {
      dm_mvert_map_doubles(full_doubles_map,
                           result_positions,
                           first_chunk_start,
                           first_chunk_nverts,
                           start_cap_start,
                           start_cap_nverts,
                           amd->merge_dist);
    }
  }

  if (end_cap_mesh) {
    float end_offset[4][4];
    int end_cap_start = result_nverts - end_cap_nverts;
    mul_m4_m4m4(end_offset, current_offset, offset);
    mesh_merge_transform(result,
                         end_cap_mesh,
                         end_offset,
                         result_nverts - end_cap_nverts,
                         result_nedges - end_cap_nedges,
                         result_nloops - end_cap_nloops,
                         result_npolys - end_cap_npolys,
                         end_cap_nverts,
                         end_cap_nedges,
                         end_cap_nloops,
                         end_cap_npolys,
                         vgroup_end_cap_remap,
                         vgroup_end_cap_remap_len,
                         use_recalc_normals);
    /* Identify doubles with last chunk */
    if (use_merge) {
      dm_mvert_map_doubles(full_doubles_map,
                           result_positions,
                           last_chunk_start,
                           last_chunk_nverts,
                           end_cap_start,
                           end_cap_nverts,
                           amd->merge_dist);
    }
  }
  /* done capping */

  /* Handle merging */
  tot_doubles = 0;
  if (use_merge) {
    for (i = 0; i < result_nverts; i++) {
      int new_i = full_doubles_map[i];
      if (new_i != -1) {
        /* We have to follow chains of doubles
         * (merge start/end especially is likely to create some),
         * those are not supported at all by BKE_mesh_merge_verts! */
        while (!ELEM(full_doubles_map[new_i], -1, new_i)) {
          new_i = full_doubles_map[new_i];
        }
        if (i == new_i) {
          full_doubles_map[i] = -1;
        }
        else {
          full_doubles_map[i] = new_i;
          tot_doubles++;
        }
      }
    }
    if (tot_doubles > 0) {
      result = BKE_mesh_merge_verts(
          result, full_doubles_map, tot_doubles, MESH_MERGE_VERTS_DUMP_IF_EQUAL);
    }
    MEM_freeN(full_doubles_map);
  }

  if (vgroup_start_cap_remap) {
    MEM_freeN(vgroup_start_cap_remap);
  }
  if (vgroup_end_cap_remap) {
    MEM_freeN(vgroup_end_cap_remap);
  }

  return result;
}

static Mesh *modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh)
{
  ArrayModifierData *amd = (ArrayModifierData *)md;
  return arrayModifier_doArray(amd, ctx, mesh);
}

static bool isDisabled(const struct Scene *UNUSED(scene),
                       ModifierData *md,
                       bool UNUSED(useRenderParams))
{
  ArrayModifierData *amd = (ArrayModifierData *)md;

  /* The object type check is only needed here in case we have a placeholder
   * object assigned (because the library containing the curve/mesh is missing).
   *
   * In other cases it should be impossible to have a type mismatch.
   */

  if (amd->curve_ob && amd->curve_ob->type != OB_CURVES_LEGACY) {
    return true;
  }
  if (amd->start_cap && amd->start_cap->type != OB_MESH) {
    return true;
  }
  if (amd->end_cap && amd->end_cap->type != OB_MESH) {
    return true;
  }

  return false;
}

static void panel_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *layout = panel->layout;

  PointerRNA ob_ptr;
  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, &ob_ptr);

  uiLayoutSetPropSep(layout, true);

  uiItemR(layout, ptr, "fit_type", 0, NULL, ICON_NONE);

  int fit_type = RNA_enum_get(ptr, "fit_type");
  if (fit_type == MOD_ARR_FIXEDCOUNT) {
    uiItemR(layout, ptr, "count", 0, NULL, ICON_NONE);
  }
  else if (fit_type == MOD_ARR_FITLENGTH) {
    uiItemR(layout, ptr, "fit_length", 0, NULL, ICON_NONE);
  }
  else if (fit_type == MOD_ARR_FITCURVE) {
    uiItemR(layout, ptr, "curve", 0, NULL, ICON_NONE);
  }

  modifier_panel_end(layout, ptr);
}

static void relative_offset_header_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiItemR(layout, ptr, "use_relative_offset", 0, NULL, ICON_NONE);
}

static void relative_offset_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiLayoutSetPropSep(layout, true);

  uiLayout *col = uiLayoutColumn(layout, false);

  uiLayoutSetActive(col, RNA_boolean_get(ptr, "use_relative_offset"));
  uiItemR(col, ptr, "relative_offset_displace", 0, IFACE_("Factor"), ICON_NONE);
}

static void constant_offset_header_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiItemR(layout, ptr, "use_constant_offset", 0, NULL, ICON_NONE);
}

static void constant_offset_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiLayoutSetPropSep(layout, true);

  uiLayout *col = uiLayoutColumn(layout, false);

  uiLayoutSetActive(col, RNA_boolean_get(ptr, "use_constant_offset"));
  uiItemR(col, ptr, "constant_offset_displace", 0, IFACE_("Distance"), ICON_NONE);
}

/**
 * Object offset in a subpanel for consistency with the other offset types.
 */
static void object_offset_header_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiItemR(layout, ptr, "use_object_offset", 0, NULL, ICON_NONE);
}

static void object_offset_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiLayoutSetPropSep(layout, true);

  uiLayout *col = uiLayoutColumn(layout, false);

  uiLayoutSetActive(col, RNA_boolean_get(ptr, "use_object_offset"));
  uiItemR(col, ptr, "offset_object", 0, IFACE_("Object"), ICON_NONE);
}

static void symmetry_panel_header_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiItemR(layout, ptr, "use_merge_vertices", 0, IFACE_("Merge"), ICON_NONE);
}

static void symmetry_panel_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiLayoutSetPropSep(layout, true);

  uiLayout *col = uiLayoutColumn(layout, false);
  uiLayoutSetActive(col, RNA_boolean_get(ptr, "use_merge_vertices"));
  uiItemR(col, ptr, "merge_threshold", 0, IFACE_("Distance"), ICON_NONE);
  uiItemR(col, ptr, "use_merge_vertices_cap", 0, IFACE_("First and Last Copies"), ICON_NONE);
}

static void uv_panel_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *col;
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiLayoutSetPropSep(layout, true);

  col = uiLayoutColumn(layout, true);
  uiItemR(col, ptr, "offset_u", UI_ITEM_R_EXPAND, IFACE_("Offset U"), ICON_NONE);
  uiItemR(col, ptr, "offset_v", UI_ITEM_R_EXPAND, IFACE_("V"), ICON_NONE);
}

static void caps_panel_draw(const bContext *UNUSED(C), Panel *panel)
{
  uiLayout *col;
  uiLayout *layout = panel->layout;

  PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);

  uiLayoutSetPropSep(layout, true);

  col = uiLayoutColumn(layout, false);
  uiItemR(col, ptr, "start_cap", 0, IFACE_("Cap Start"), ICON_NONE);
  uiItemR(col, ptr, "end_cap", 0, IFACE_("End"), ICON_NONE);
}

static void panelRegister(ARegionType *region_type)
{
  PanelType *panel_type = modifier_panel_register(region_type, eModifierType_Array, panel_draw);
  modifier_subpanel_register(region_type,
                             "relative_offset",
                             "",
                             relative_offset_header_draw,
                             relative_offset_draw,
                             panel_type);
  modifier_subpanel_register(region_type,
                             "constant_offset",
                             "",
                             constant_offset_header_draw,
                             constant_offset_draw,
                             panel_type);
  modifier_subpanel_register(
      region_type, "object_offset", "", object_offset_header_draw, object_offset_draw, panel_type);
  modifier_subpanel_register(
      region_type, "merge", "", symmetry_panel_header_draw, symmetry_panel_draw, panel_type);
  modifier_subpanel_register(region_type, "uv", "UVs", NULL, uv_panel_draw, panel_type);
  modifier_subpanel_register(region_type, "caps", "Caps", NULL, caps_panel_draw, panel_type);
}

ModifierTypeInfo modifierType_Array = {
    /* name */ N_("Array"),
    /* structName */ "ArrayModifierData",
    /* structSize */ sizeof(ArrayModifierData),
    /* srna */ &RNA_ArrayModifier,
    /* type */ eModifierTypeType_Constructive,
    /* flags */ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_SupportsMapping |
        eModifierTypeFlag_SupportsEditmode | eModifierTypeFlag_EnableInEditmode |
        eModifierTypeFlag_AcceptsCVs,
    /* icon */ ICON_MOD_ARRAY,

    /* copyData */ BKE_modifier_copydata_generic,

    /* deformVerts */ NULL,
    /* deformMatrices */ NULL,
    /* deformVertsEM */ NULL,
    /* deformMatricesEM */ NULL,
    /* modifyMesh */ modifyMesh,
    /* modifyGeometrySet */ NULL,

    /* initData */ initData,
    /* requiredDataMask */ NULL,
    /* freeData */ NULL,
    /* isDisabled */ isDisabled,
    /* updateDepsgraph */ updateDepsgraph,
    /* dependsOnTime */ NULL,
    /* dependsOnNormals */ NULL,
    /* foreachIDLink */ foreachIDLink,
    /* foreachTexLink */ NULL,
    /* freeRuntimeData */ NULL,
    /* panelRegister */ panelRegister,
    /* blendWrite */ NULL,
    /* blendRead */ NULL,
};