Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MOD_nodes_evaluator.cc « intern « modifiers « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a312872f5d94a4cc0a87269082ddd5ba2ca20d92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#include "MOD_nodes_evaluator.hh"

#include "NOD_geometry_exec.hh"
#include "NOD_socket_declarations.hh"
#include "NOD_type_conversions.hh"

#include "DEG_depsgraph_query.h"

#include "FN_field.hh"
#include "FN_field_cpp_type.hh"
#include "FN_generic_value_map.hh"
#include "FN_multi_function.hh"

#include "BLT_translation.h"

#include "BLI_enumerable_thread_specific.hh"
#include "BLI_stack.hh"
#include "BLI_task.h"
#include "BLI_task.hh"
#include "BLI_vector_set.hh"

namespace blender::modifiers::geometry_nodes {

using fn::CPPType;
using fn::Field;
using fn::FieldCPPType;
using fn::GField;
using fn::GValueMap;
using nodes::GeoNodeExecParams;
using namespace fn::multi_function_types;

enum class ValueUsage : uint8_t {
  /* The value is definitely used. */
  Required,
  /* The value may be used. */
  Maybe,
  /* The value will definitely not be used. */
  Unused,
};

struct SingleInputValue {
  /**
   * Points either to null or to a value of the type of input.
   */
  void *value = nullptr;
};

struct MultiInputValueItem {
  /**
   * The socket where this value is coming from. This is required to sort the inputs correctly
   * based on the link order later on.
   */
  DSocket origin;
  /**
   * Should only be null directly after construction. After that it should always point to a value
   * of the correct type.
   */
  void *value = nullptr;
};

struct MultiInputValue {
  /**
   * Collection of all the inputs that have been provided already. Note, the same origin can occur
   * multiple times. However, it is guaranteed that if two items have the same origin, they will
   * also have the same value (the pointer is different, but they point to values that would
   * compare equal).
   */
  Vector<MultiInputValueItem> items;
  /**
   * Number of items that need to be added until all inputs have been provided.
   */
  int expected_size = 0;
};

struct InputState {

  /**
   * Type of the socket. If this is null, the socket should just be ignored.
   */
  const CPPType *type = nullptr;

  /**
   * Value of this input socket. By default, the value is empty. When other nodes are done
   * computing their outputs, the computed values will be forwarded to linked input sockets.
   * The value will then live here until it is consumed by the node or it was found that the value
   * is not needed anymore.
   * Whether the `single` or `multi` value is used depends on the socket.
   */
  union {
    SingleInputValue *single;
    MultiInputValue *multi;
  } value;

  /**
   * How the node intends to use this input. By default all inputs may be used. Based on which
   * outputs are used, a node can tell the evaluator that an input will definitely be used or is
   * never used. This allows the evaluator to free values early, avoid copies and other unnecessary
   * computations.
   */
  ValueUsage usage = ValueUsage::Maybe;

  /**
   * True when this input is/was used for an execution. While a node is running, only the inputs
   * that have this set to true are allowed to be used. This makes sure that inputs created while
   * the node is running correctly trigger the node to run again. Furthermore, it gives the node a
   * consistent view of which inputs are available that does not change unexpectedly.
   *
   * While the node is running, this can be checked without a lock, because no one is writing to
   * it. If this is true, the value can be read without a lock as well, because the value is not
   * changed by others anymore.
   */
  bool was_ready_for_execution = false;

  /**
   * True when this input has to be computed for logging/debugging purposes, regardless of whether
   * it is needed for some output.
   */
  bool force_compute = false;
};

struct OutputState {
  /**
   * If this output has been computed and forwarded already. If this is true, the value is not
   * computed/forwarded again.
   */
  bool has_been_computed = false;

  /**
   * Keeps track of how the output value is used. If a connected input becomes required, this
   * output has to become required as well. The output becomes ignored when it has zero potential
   * users that are counted below.
   */
  ValueUsage output_usage = ValueUsage::Maybe;

  /**
   * This is a copy of `output_usage` that is done right before node execution starts. This is
   * done so that the node gets a consistent view of what outputs are used, even when this changes
   * while the node is running (the node might be reevaluated in that case).
   *
   * While the node is running, this can be checked without a lock, because no one is writing to
   * it.
   */
  ValueUsage output_usage_for_execution = ValueUsage::Maybe;

  /**
   * Counts how many times the value from this output might be used. If this number reaches zero,
   * the output is not needed anymore.
   */
  int potential_users = 0;
};

enum class NodeScheduleState {
  /**
   * Default state of every node.
   */
  NotScheduled,
  /**
   * The node has been added to the task group and will be executed by it in the future.
   */
  Scheduled,
  /**
   * The node is currently running.
   */
  Running,
  /**
   * The node is running and has been rescheduled while running. In this case the node will run
   * again. However, we don't add it to the task group immediately, because then the node might run
   * twice at the same time, which is not allowed. Instead, once the node is done running, it will
   * reschedule itself.
   */
  RunningAndRescheduled,
};

struct NodeState {
  /**
   * Needs to be locked when any data in this state is accessed that is not explicitly marked as
   * otherwise.
   */
  std::mutex mutex;

  /**
   * States of the individual input and output sockets. One can index into these arrays without
   * locking. However, to access the data inside a lock is generally necessary.
   *
   * These spans have to be indexed with the socket index. Unavailable sockets have a state as
   * well. Maybe we can handle unavailable sockets differently in Blender in general, so I did not
   * want to add complexity around it here.
   */
  MutableSpan<InputState> inputs;
  MutableSpan<OutputState> outputs;

  /**
   * Nodes that don't support laziness have some special handling the first time they are executed.
   */
  bool non_lazy_node_is_initialized = false;

  /**
   * Used to check that nodes that don't support laziness do not run more than once.
   */
  bool has_been_executed = false;

  /**
   * Becomes true when the node will never be executed again and its inputs are destructed.
   * Generally, a node has finished once all of its outputs with (potential) users have been
   * computed.
   */
  bool node_has_finished = false;

  /**
   * Counts the number of values that still have to be forwarded to this node until it should run
   * again. It counts values from a multi input socket separately.
   * This is used as an optimization so that nodes are not scheduled unnecessarily in many cases.
   */
  int missing_required_inputs = 0;

  /**
   * A node is always in one specific schedule state. This helps to ensure that the same node does
   * not run twice at the same time accidentally.
   */
  NodeScheduleState schedule_state = NodeScheduleState::NotScheduled;
};

/**
 * Container for a node and its state. Packing them into a single struct allows the use of
 * `VectorSet` instead of a `Map` for `node_states_` which simplifies parallel loops over all
 * states.
 *
 * Equality operators and a hash function for `DNode` are provided so that one can lookup this type
 * in `node_states_` just with a `DNode`.
 */
struct NodeWithState {
  DNode node;
  /* Store a pointer instead of `NodeState` directly to keep it small and movable. */
  NodeState *state = nullptr;

  friend bool operator==(const NodeWithState &a, const NodeWithState &b)
  {
    return a.node == b.node;
  }

  friend bool operator==(const NodeWithState &a, const DNode &b)
  {
    return a.node == b;
  }

  friend bool operator==(const DNode &a, const NodeWithState &b)
  {
    return a == b.node;
  }

  uint64_t hash() const
  {
    return node.hash();
  }

  static uint64_t hash_as(const DNode &node)
  {
    return node.hash();
  }
};

class GeometryNodesEvaluator;

/**
 * Utility class that wraps a node whose state is locked. Having this is a separate class is useful
 * because it allows methods to communicate that they expect the node to be locked.
 */
class LockedNode : NonCopyable, NonMovable {
 public:
  /**
   * This is the node that is currently locked.
   */
  const DNode node;
  NodeState &node_state;

  /**
   * Used to delay notifying (and therefore locking) other nodes until the current node is not
   * locked anymore. This might not be strictly necessary to avoid deadlocks in the current code,
   * but it is a good measure to avoid accidentally adding a deadlock later on. By not locking
   * more than one node per thread at a time, deadlocks are avoided.
   *
   * The notifications will be send right after the node is not locked anymore.
   */
  Vector<DOutputSocket> delayed_required_outputs;
  Vector<DOutputSocket> delayed_unused_outputs;
  Vector<DNode> delayed_scheduled_nodes;

  LockedNode(const DNode node, NodeState &node_state) : node(node), node_state(node_state)
  {
  }
};

static const CPPType *get_socket_cpp_type(const SocketRef &socket)
{
  const bNodeSocketType *typeinfo = socket.typeinfo();
  if (typeinfo->get_geometry_nodes_cpp_type == nullptr) {
    return nullptr;
  }
  const CPPType *type = typeinfo->get_geometry_nodes_cpp_type();
  if (type == nullptr) {
    return nullptr;
  }
  /* The evaluator only supports types that have special member functions. */
  if (!type->has_special_member_functions()) {
    return nullptr;
  }
  return type;
}

static const CPPType *get_socket_cpp_type(const DSocket socket)
{
  return get_socket_cpp_type(*socket.socket_ref());
}

/**
 * \note This is not supposed to be a long term solution. Eventually we want that nodes can
 * specify more complex defaults (other than just single values) in their socket declarations.
 */
static bool get_implicit_socket_input(const SocketRef &socket, void *r_value)
{
  const NodeRef &node = socket.node();
  const nodes::NodeDeclaration *node_declaration = node.declaration();
  if (node_declaration == nullptr) {
    return false;
  }
  const nodes::SocketDeclaration &socket_declaration = *node_declaration->inputs()[socket.index()];
  if (socket_declaration.input_field_type() == nodes::InputSocketFieldType::Implicit) {
    const bNode &bnode = *socket.bnode();
    if (socket.typeinfo()->type == SOCK_VECTOR) {
      if (bnode.type == GEO_NODE_SET_CURVE_HANDLES) {
        StringRef side = ((NodeGeometrySetCurveHandlePositions *)bnode.storage)->mode ==
                                 GEO_NODE_CURVE_HANDLE_LEFT ?
                             "handle_left" :
                             "handle_right";
        new (r_value) Field<float3>(bke::AttributeFieldInput::Create<float3>(side));
        return true;
      }
      new (r_value) Field<float3>(bke::AttributeFieldInput::Create<float3>("position"));
      return true;
    }
    if (socket.typeinfo()->type == SOCK_INT) {
      if (ELEM(bnode.type, FN_NODE_RANDOM_VALUE, GEO_NODE_INSTANCE_ON_POINTS)) {
        new (r_value) Field<int>(std::make_shared<bke::IDAttributeFieldInput>());
        return true;
      }
      new (r_value) Field<int>(std::make_shared<fn::IndexFieldInput>());
      return true;
    }
  }
  return false;
}

static void get_socket_value(const SocketRef &socket, void *r_value)
{
  if (get_implicit_socket_input(socket, r_value)) {
    return;
  }

  const bNodeSocketType *typeinfo = socket.typeinfo();
  typeinfo->get_geometry_nodes_cpp_value(*socket.bsocket(), r_value);
}

static bool node_supports_laziness(const DNode node)
{
  return node->typeinfo()->geometry_node_execute_supports_laziness;
}

/** Implements the callbacks that might be called when a node is executed. */
class NodeParamsProvider : public nodes::GeoNodeExecParamsProvider {
 private:
  GeometryNodesEvaluator &evaluator_;
  NodeState &node_state_;

 public:
  NodeParamsProvider(GeometryNodesEvaluator &evaluator, DNode dnode, NodeState &node_state);

  bool can_get_input(StringRef identifier) const override;
  bool can_set_output(StringRef identifier) const override;
  GMutablePointer extract_input(StringRef identifier) override;
  Vector<GMutablePointer> extract_multi_input(StringRef identifier) override;
  GPointer get_input(StringRef identifier) const override;
  GMutablePointer alloc_output_value(const CPPType &type) override;
  void set_output(StringRef identifier, GMutablePointer value) override;
  void set_input_unused(StringRef identifier) override;
  bool output_is_required(StringRef identifier) const override;

  bool lazy_require_input(StringRef identifier) override;
  bool lazy_output_is_required(StringRef identifier) const override;
};

class GeometryNodesEvaluator {
 private:
  /**
   * This allocator lives on after the evaluator has been destructed. Therefore outputs of the
   * entire evaluator should be allocated here.
   */
  LinearAllocator<> &outer_allocator_;
  /**
   * A local linear allocator for each thread. Only use this for values that do not need to live
   * longer than the lifetime of the evaluator itself. Considerations for the future:
   * - We could use an allocator that can free here, some temporary values don't live long.
   * - If we ever run into false sharing bottlenecks, we could use local allocators that allocate
   *   on cache line boundaries. Note, just because a value is allocated in one specific thread,
   *   does not mean that it will only be used by that thread.
   */
  threading::EnumerableThreadSpecific<LinearAllocator<>> local_allocators_;

  /**
   * Every node that is reachable from the output gets its own state. Once all states have been
   * constructed, this map can be used for lookups from multiple threads.
   */
  VectorSet<NodeWithState> node_states_;

  /**
   * Contains all the tasks for the nodes that are currently scheduled.
   */
  TaskPool *task_pool_ = nullptr;

  GeometryNodesEvaluationParams &params_;
  const blender::nodes::DataTypeConversions &conversions_;

  friend NodeParamsProvider;

 public:
  GeometryNodesEvaluator(GeometryNodesEvaluationParams &params)
      : outer_allocator_(params.allocator),
        params_(params),
        conversions_(blender::nodes::get_implicit_type_conversions())
  {
  }

  void execute()
  {
    task_pool_ = BLI_task_pool_create(this, TASK_PRIORITY_HIGH);

    this->create_states_for_reachable_nodes();
    this->forward_group_inputs();
    this->schedule_initial_nodes();

    /* This runs until all initially requested inputs have been computed. */
    BLI_task_pool_work_and_wait(task_pool_);
    BLI_task_pool_free(task_pool_);

    this->extract_group_outputs();
    this->destruct_node_states();
  }

  void create_states_for_reachable_nodes()
  {
    /* This does a depth first search for all the nodes that are reachable from the group
     * outputs. This finds all nodes that are relevant. */
    Stack<DNode> nodes_to_check;
    /* Start at the output sockets. */
    for (const DInputSocket &socket : params_.output_sockets) {
      nodes_to_check.push(socket.node());
    }
    for (const DSocket &socket : params_.force_compute_sockets) {
      nodes_to_check.push(socket.node());
    }
    /* Use the local allocator because the states do not need to outlive the evaluator. */
    LinearAllocator<> &allocator = local_allocators_.local();
    while (!nodes_to_check.is_empty()) {
      const DNode node = nodes_to_check.pop();
      if (node_states_.contains_as(node)) {
        /* This node has been handled already. */
        continue;
      }
      /* Create a new state for the node. */
      NodeState &node_state = *allocator.construct<NodeState>().release();
      node_states_.add_new({node, &node_state});

      /* Push all linked origins on the stack. */
      for (const InputSocketRef *input_ref : node->inputs()) {
        const DInputSocket input{node.context(), input_ref};
        input.foreach_origin_socket(
            [&](const DSocket origin) { nodes_to_check.push(origin.node()); });
      }
    }

    /* Initialize the more complex parts of the node states in parallel. At this point no new
     * node states are added anymore, so it is safe to lookup states from `node_states_` from
     * multiple threads. */
    threading::parallel_for(
        IndexRange(node_states_.size()), 50, [&, this](const IndexRange range) {
          LinearAllocator<> &allocator = this->local_allocators_.local();
          for (const NodeWithState &item : node_states_.as_span().slice(range)) {
            this->initialize_node_state(item.node, *item.state, allocator);
          }
        });

    /* Mark input sockets that have to be computed. */
    for (const DSocket &socket : params_.force_compute_sockets) {
      NodeState &node_state = *node_states_.lookup_key_as(socket.node()).state;
      if (socket->is_input()) {
        node_state.inputs[socket->index()].force_compute = true;
      }
    }
  }

  void initialize_node_state(const DNode node, NodeState &node_state, LinearAllocator<> &allocator)
  {
    /* Construct arrays of the correct size. */
    node_state.inputs = allocator.construct_array<InputState>(node->inputs().size());
    node_state.outputs = allocator.construct_array<OutputState>(node->outputs().size());

    /* Initialize input states. */
    for (const int i : node->inputs().index_range()) {
      InputState &input_state = node_state.inputs[i];
      const DInputSocket socket = node.input(i);
      if (!socket->is_available()) {
        /* Unavailable sockets should never be used. */
        input_state.type = nullptr;
        input_state.usage = ValueUsage::Unused;
        continue;
      }
      const CPPType *type = get_socket_cpp_type(socket);
      input_state.type = type;
      if (type == nullptr) {
        /* This is not a known data socket, it shouldn't be used. */
        input_state.usage = ValueUsage::Unused;
        continue;
      }
      /* Construct the correct struct that can hold the input(s). */
      if (socket->is_multi_input_socket()) {
        input_state.value.multi = allocator.construct<MultiInputValue>().release();
        /* Count how many values should be added until the socket is complete. */
        socket.foreach_origin_socket(
            [&](DSocket UNUSED(origin)) { input_state.value.multi->expected_size++; });
        /* If no links are connected, we do read the value from socket itself. */
        if (input_state.value.multi->expected_size == 0) {
          input_state.value.multi->expected_size = 1;
        }
      }
      else {
        input_state.value.single = allocator.construct<SingleInputValue>().release();
      }
    }
    /* Initialize output states. */
    for (const int i : node->outputs().index_range()) {
      OutputState &output_state = node_state.outputs[i];
      const DOutputSocket socket = node.output(i);
      if (!socket->is_available()) {
        /* Unavailable outputs should never be used. */
        output_state.output_usage = ValueUsage::Unused;
        continue;
      }
      const CPPType *type = get_socket_cpp_type(socket);
      if (type == nullptr) {
        /* Non data sockets should never be used. */
        output_state.output_usage = ValueUsage::Unused;
        continue;
      }
      /* Count the number of potential users for this socket. */
      socket.foreach_target_socket(
          [&, this](const DInputSocket target_socket) {
            const DNode target_node = target_socket.node();
            if (!this->node_states_.contains_as(target_node)) {
              /* The target node is not computed because it is not computed to the output. */
              return;
            }
            output_state.potential_users += 1;
          },
          {});
      if (output_state.potential_users == 0) {
        /* If it does not have any potential users, it is unused. It might become required again in
         * `schedule_initial_nodes`. */
        output_state.output_usage = ValueUsage::Unused;
      }
    }
  }

  void destruct_node_states()
  {
    threading::parallel_for(
        IndexRange(node_states_.size()), 50, [&, this](const IndexRange range) {
          for (const NodeWithState &item : node_states_.as_span().slice(range)) {
            this->destruct_node_state(item.node, *item.state);
          }
        });
  }

  void destruct_node_state(const DNode node, NodeState &node_state)
  {
    /* Need to destruct stuff manually, because it's allocated by a custom allocator. */
    for (const int i : node->inputs().index_range()) {
      InputState &input_state = node_state.inputs[i];
      if (input_state.type == nullptr) {
        continue;
      }
      const InputSocketRef &socket_ref = node->input(i);
      if (socket_ref.is_multi_input_socket()) {
        MultiInputValue &multi_value = *input_state.value.multi;
        for (MultiInputValueItem &item : multi_value.items) {
          input_state.type->destruct(item.value);
        }
        multi_value.~MultiInputValue();
      }
      else {
        SingleInputValue &single_value = *input_state.value.single;
        void *value = single_value.value;
        if (value != nullptr) {
          input_state.type->destruct(value);
        }
        single_value.~SingleInputValue();
      }
    }

    destruct_n(node_state.inputs.data(), node_state.inputs.size());
    destruct_n(node_state.outputs.data(), node_state.outputs.size());

    node_state.~NodeState();
  }

  void forward_group_inputs()
  {
    for (auto &&item : params_.input_values.items()) {
      const DOutputSocket socket = item.key;
      GMutablePointer value = item.value;

      const DNode node = socket.node();
      if (!node_states_.contains_as(node)) {
        /* The socket is not connected to any output. */
        this->log_socket_value({socket}, value);
        value.destruct();
        continue;
      }
      this->forward_output(socket, value);
    }
  }

  void schedule_initial_nodes()
  {
    for (const DInputSocket &socket : params_.output_sockets) {
      const DNode node = socket.node();
      NodeState &node_state = this->get_node_state(node);
      this->with_locked_node(node, node_state, [&](LockedNode &locked_node) {
        /* Setting an input as required will schedule any linked node. */
        this->set_input_required(locked_node, socket);
      });
    }
    for (const DSocket socket : params_.force_compute_sockets) {
      const DNode node = socket.node();
      NodeState &node_state = this->get_node_state(node);
      this->with_locked_node(node, node_state, [&](LockedNode &locked_node) {
        if (socket->is_input()) {
          this->set_input_required(locked_node, DInputSocket(socket));
        }
        else {
          OutputState &output_state = node_state.outputs[socket->index()];
          output_state.output_usage = ValueUsage::Required;
          this->schedule_node(locked_node);
        }
      });
    }
  }

  void schedule_node(LockedNode &locked_node)
  {
    switch (locked_node.node_state.schedule_state) {
      case NodeScheduleState::NotScheduled: {
        /* The node will be scheduled once it is not locked anymore. We could schedule the node
         * right here, but that would result in a deadlock if the task pool decides to run the task
         * immediately (this only happens when Blender is started with a single thread). */
        locked_node.node_state.schedule_state = NodeScheduleState::Scheduled;
        locked_node.delayed_scheduled_nodes.append(locked_node.node);
        break;
      }
      case NodeScheduleState::Scheduled: {
        /* Scheduled already, nothing to do. */
        break;
      }
      case NodeScheduleState::Running: {
        /* Reschedule node while it is running.
         * The node will reschedule itself when it is done. */
        locked_node.node_state.schedule_state = NodeScheduleState::RunningAndRescheduled;
        break;
      }
      case NodeScheduleState::RunningAndRescheduled: {
        /* Scheduled already, nothing to do. */
        break;
      }
    }
  }

  static void run_node_from_task_pool(TaskPool *task_pool, void *task_data)
  {
    void *user_data = BLI_task_pool_user_data(task_pool);
    GeometryNodesEvaluator &evaluator = *(GeometryNodesEvaluator *)user_data;
    const NodeWithState *node_with_state = (const NodeWithState *)task_data;

    evaluator.node_task_run(node_with_state->node, *node_with_state->state);
  }

  void node_task_run(const DNode node, NodeState &node_state)
  {
    /* These nodes are sometimes scheduled. We could also check for them in other places, but
     * it's the easiest to do it here. */
    if (node->is_group_input_node() || node->is_group_output_node()) {
      return;
    }

    const bool do_execute_node = this->node_task_preprocessing(node, node_state);

    /* Only execute the node if all prerequisites are met. There has to be an output that is
     * required and all required inputs have to be provided already. */
    if (do_execute_node) {
      this->execute_node(node, node_state);
    }

    this->node_task_postprocessing(node, node_state);
  }

  bool node_task_preprocessing(const DNode node, NodeState &node_state)
  {
    bool do_execute_node = false;
    this->with_locked_node(node, node_state, [&](LockedNode &locked_node) {
      BLI_assert(node_state.schedule_state == NodeScheduleState::Scheduled);
      node_state.schedule_state = NodeScheduleState::Running;

      /* Early return if the node has finished already. */
      if (locked_node.node_state.node_has_finished) {
        return;
      }
      /* Prepare outputs and check if actually any new outputs have to be computed. */
      if (!this->prepare_node_outputs_for_execution(locked_node)) {
        return;
      }
      /* Initialize nodes that don't support laziness. This is done after at least one output is
       * required and before we check that all required inputs are provided. This reduces the
       * number of "round-trips" through the task pool by one for most nodes. */
      if (!node_state.non_lazy_node_is_initialized && !node_supports_laziness(node)) {
        this->initialize_non_lazy_node(locked_node);
        node_state.non_lazy_node_is_initialized = true;
      }
      /* Prepare inputs and check if all required inputs are provided. */
      if (!this->prepare_node_inputs_for_execution(locked_node)) {
        return;
      }
      do_execute_node = true;
    });
    return do_execute_node;
  }

  /* A node is finished when it has computed all outputs that may be used have been computed and
   * when no input is still forced to be computed. */
  bool finish_node_if_possible(LockedNode &locked_node)
  {
    if (locked_node.node_state.node_has_finished) {
      /* Early return in case this node is known to have finished already. */
      return true;
    }

    /* Check if there is any output that might be used but has not been computed yet. */
    for (OutputState &output_state : locked_node.node_state.outputs) {
      if (output_state.has_been_computed) {
        continue;
      }
      if (output_state.output_usage != ValueUsage::Unused) {
        return false;
      }
    }

    /* Check if there is an input that still has to be computed. */
    for (InputState &input_state : locked_node.node_state.inputs) {
      if (input_state.force_compute) {
        if (!input_state.was_ready_for_execution) {
          return false;
        }
      }
    }

    /* If there are no remaining outputs, all the inputs can be destructed and/or can become
     * unused. This can also trigger a chain reaction where nodes to the left become finished
     * too. */
    for (const int i : locked_node.node->inputs().index_range()) {
      const DInputSocket socket = locked_node.node.input(i);
      InputState &input_state = locked_node.node_state.inputs[i];
      if (input_state.usage == ValueUsage::Maybe) {
        this->set_input_unused(locked_node, socket);
      }
      else if (input_state.usage == ValueUsage::Required) {
        /* The value was required, so it cannot become unused. However, we can destruct the
         * value. */
        this->destruct_input_value_if_exists(locked_node, socket);
      }
    }
    locked_node.node_state.node_has_finished = true;
    return true;
  }

  bool prepare_node_outputs_for_execution(LockedNode &locked_node)
  {
    bool execution_is_necessary = false;
    for (OutputState &output_state : locked_node.node_state.outputs) {
      /* Update the output usage for execution to the latest value. */
      output_state.output_usage_for_execution = output_state.output_usage;
      if (!output_state.has_been_computed) {
        if (output_state.output_usage == ValueUsage::Required) {
          /* Only evaluate when there is an output that is required but has not been computed. */
          execution_is_necessary = true;
        }
      }
    }
    return execution_is_necessary;
  }

  void initialize_non_lazy_node(LockedNode &locked_node)
  {
    for (const int i : locked_node.node->inputs().index_range()) {
      InputState &input_state = locked_node.node_state.inputs[i];
      if (input_state.type == nullptr) {
        /* Ignore unavailable/non-data sockets. */
        continue;
      }
      /* Nodes that don't support laziness require all inputs. */
      const DInputSocket input_socket = locked_node.node.input(i);
      this->set_input_required(locked_node, input_socket);
    }
  }

  /**
   * Checks if requested inputs are available and "marks" all the inputs that are available
   * during the node execution. Inputs that are provided after this function ends but before the
   * node is executed, cannot be read by the node in the execution (note that this only affects
   * nodes that support lazy inputs).
   */
  bool prepare_node_inputs_for_execution(LockedNode &locked_node)
  {
    for (const int i : locked_node.node_state.inputs.index_range()) {
      InputState &input_state = locked_node.node_state.inputs[i];
      if (input_state.type == nullptr) {
        /* Ignore unavailable and non-data sockets. */
        continue;
      }
      const DInputSocket socket = locked_node.node.input(i);
      const bool is_required = input_state.usage == ValueUsage::Required;

      /* No need to check this socket again. */
      if (input_state.was_ready_for_execution) {
        continue;
      }

      if (socket->is_multi_input_socket()) {
        MultiInputValue &multi_value = *input_state.value.multi;
        /* Checks if all the linked sockets have been provided already. */
        if (multi_value.items.size() == multi_value.expected_size) {
          input_state.was_ready_for_execution = true;
        }
        else if (is_required) {
          /* The input is required but is not fully provided yet. Therefore the node cannot be
           * executed yet. */
          return false;
        }
      }
      else {
        SingleInputValue &single_value = *input_state.value.single;
        if (single_value.value != nullptr) {
          input_state.was_ready_for_execution = true;
        }
        else if (is_required) {
          /* The input is required but has not been provided yet. Therefore the node cannot be
           * executed yet. */
          return false;
        }
      }
    }
    /* All required inputs have been provided. */
    return true;
  }

  /**
   * Actually execute the node. All the required inputs are available and at least one output is
   * required.
   */
  void execute_node(const DNode node, NodeState &node_state)
  {
    const bNode &bnode = *node->bnode();

    if (node_state.has_been_executed) {
      if (!node_supports_laziness(node)) {
        /* Nodes that don't support laziness must not be executed more than once. */
        BLI_assert_unreachable();
      }
    }
    node_state.has_been_executed = true;

    /* Use the geometry node execute callback if it exists. */
    if (bnode.typeinfo->geometry_node_execute != nullptr) {
      this->execute_geometry_node(node, node_state);
      return;
    }

    /* Use the multi-function implementation if it exists. */
    const nodes::NodeMultiFunctions::Item &fn_item = params_.mf_by_node->try_get(node);
    if (fn_item.fn != nullptr) {
      this->execute_multi_function_node(node, fn_item, node_state);
      return;
    }

    this->execute_unknown_node(node, node_state);
  }

  void execute_geometry_node(const DNode node, NodeState &node_state)
  {
    const bNode &bnode = *node->bnode();

    NodeParamsProvider params_provider{*this, node, node_state};
    GeoNodeExecParams params{params_provider};
    if (node->idname().find("Legacy") != StringRef::not_found) {
      params.error_message_add(geo_log::NodeWarningType::Legacy,
                               TIP_("Legacy node will be removed before Blender 4.0"));
    }
    bnode.typeinfo->geometry_node_execute(params);
  }

  void execute_multi_function_node(const DNode node,
                                   const nodes::NodeMultiFunctions::Item &fn_item,
                                   NodeState &node_state)
  {
    if (node->idname().find("Legacy") != StringRef::not_found) {
      /* Create geometry nodes params just for creating an error message. */
      NodeParamsProvider params_provider{*this, node, node_state};
      GeoNodeExecParams params{params_provider};
      params.error_message_add(geo_log::NodeWarningType::Legacy,
                               TIP_("Legacy node will be removed before Blender 4.0"));
    }

    LinearAllocator<> &allocator = local_allocators_.local();

    /* Prepare the inputs for the multi function. */
    Vector<GField> input_fields;
    for (const int i : node->inputs().index_range()) {
      const InputSocketRef &socket_ref = node->input(i);
      if (!socket_ref.is_available()) {
        continue;
      }
      BLI_assert(!socket_ref.is_multi_input_socket());
      InputState &input_state = node_state.inputs[i];
      BLI_assert(input_state.was_ready_for_execution);
      SingleInputValue &single_value = *input_state.value.single;
      BLI_assert(single_value.value != nullptr);
      input_fields.append(std::move(*(GField *)single_value.value));
    }

    std::shared_ptr<fn::FieldOperation> operation;
    if (fn_item.owned_fn) {
      operation = std::make_shared<fn::FieldOperation>(fn_item.owned_fn, std::move(input_fields));
    }
    else {
      operation = std::make_shared<fn::FieldOperation>(*fn_item.fn, std::move(input_fields));
    }

    /* Forward outputs. */
    int output_index = 0;
    for (const int i : node->outputs().index_range()) {
      const OutputSocketRef &socket_ref = node->output(i);
      if (!socket_ref.is_available()) {
        continue;
      }
      OutputState &output_state = node_state.outputs[i];
      const DOutputSocket socket{node.context(), &socket_ref};
      const CPPType *cpp_type = get_socket_cpp_type(socket_ref);
      GField new_field{operation, output_index};
      new_field = fn::make_field_constant_if_possible(std::move(new_field));
      GField &field_to_forward = *allocator.construct<GField>(std::move(new_field)).release();
      this->forward_output(socket, {cpp_type, &field_to_forward});
      output_state.has_been_computed = true;
      output_index++;
    }
  }

  void execute_unknown_node(const DNode node, NodeState &node_state)
  {
    LinearAllocator<> &allocator = local_allocators_.local();
    for (const OutputSocketRef *socket : node->outputs()) {
      if (!socket->is_available()) {
        continue;
      }
      const CPPType *type = get_socket_cpp_type(*socket);
      if (type == nullptr) {
        continue;
      }
      /* Just forward the default value of the type as a fallback. That's typically better than
       * crashing or doing nothing. */
      OutputState &output_state = node_state.outputs[socket->index()];
      output_state.has_been_computed = true;
      void *buffer = allocator.allocate(type->size(), type->alignment());
      this->construct_default_value(*type, buffer);
      this->forward_output({node.context(), socket}, {*type, buffer});
    }
  }

  void node_task_postprocessing(const DNode node, NodeState &node_state)
  {
    this->with_locked_node(node, node_state, [&](LockedNode &locked_node) {
      const bool node_has_finished = this->finish_node_if_possible(locked_node);
      const bool reschedule_requested = node_state.schedule_state ==
                                        NodeScheduleState::RunningAndRescheduled;
      node_state.schedule_state = NodeScheduleState::NotScheduled;
      if (reschedule_requested && !node_has_finished) {
        /* Either the node rescheduled itself or another node tried to schedule it while it ran. */
        this->schedule_node(locked_node);
      }

      this->assert_expected_outputs_have_been_computed(locked_node);
    });
  }

  void assert_expected_outputs_have_been_computed(LockedNode &locked_node)
  {
#ifdef DEBUG
    /* Outputs can only be computed when all required inputs have been provided. */
    if (locked_node.node_state.missing_required_inputs > 0) {
      return;
    }
    /* If the node is still scheduled, it is not necessary that all its expected outputs are
     * computed yet. */
    if (locked_node.node_state.schedule_state == NodeScheduleState::Scheduled) {
      return;
    }

    const bool supports_laziness = node_supports_laziness(locked_node.node);
    /* Iterating over sockets instead of the states directly, because that makes it easier to
     * figure out which socket is missing when one of the asserts is hit. */
    for (const OutputSocketRef *socket_ref : locked_node.node->outputs()) {
      OutputState &output_state = locked_node.node_state.outputs[socket_ref->index()];
      if (supports_laziness) {
        /* Expected that at least all required sockets have been computed. If more outputs become
         * required later, the node will be executed again. */
        if (output_state.output_usage_for_execution == ValueUsage::Required) {
          BLI_assert(output_state.has_been_computed);
        }
      }
      else {
        /* Expect that all outputs that may be used have been computed, because the node cannot
         * be executed again. */
        if (output_state.output_usage_for_execution != ValueUsage::Unused) {
          BLI_assert(output_state.has_been_computed);
        }
      }
    }
#else
    UNUSED_VARS(locked_node);
#endif
  }

  void extract_group_outputs()
  {
    for (const DInputSocket &socket : params_.output_sockets) {
      BLI_assert(socket->is_available());
      BLI_assert(!socket->is_multi_input_socket());

      const DNode node = socket.node();
      NodeState &node_state = this->get_node_state(node);
      InputState &input_state = node_state.inputs[socket->index()];

      SingleInputValue &single_value = *input_state.value.single;
      void *value = single_value.value;

      /* The value should have been computed by now. If this assert is hit, it means that there
       * was some scheduling issue before. */
      BLI_assert(value != nullptr);

      /* Move value into memory owned by the outer allocator. */
      const CPPType &type = *input_state.type;
      void *buffer = outer_allocator_.allocate(type.size(), type.alignment());
      type.move_construct(value, buffer);

      params_.r_output_values.append({type, buffer});
    }
  }

  /**
   * Load the required input from the socket or trigger nodes to the left to compute the value.
   * When this function is called, the node will always be executed again eventually (either
   * immediately, or when all required inputs have been computed by other nodes).
   */
  void set_input_required(LockedNode &locked_node, const DInputSocket input_socket)
  {
    BLI_assert(locked_node.node == input_socket.node());
    InputState &input_state = locked_node.node_state.inputs[input_socket->index()];

    /* Value set as unused cannot become used again. */
    BLI_assert(input_state.usage != ValueUsage::Unused);

    if (input_state.usage == ValueUsage::Required) {
      /* The value is already required, but the node might expect to be evaluated again. */
      this->schedule_node(locked_node);
      /* Returning here also ensure that the code below is executed at most once per input. */
      return;
    }
    input_state.usage = ValueUsage::Required;

    if (input_state.was_ready_for_execution) {
      /* The value was already ready, but the node might expect to be evaluated again. */
      this->schedule_node(locked_node);
      return;
    }

    /* Count how many values still have to be added to this input until it is "complete". */
    int missing_values = 0;
    if (input_socket->is_multi_input_socket()) {
      MultiInputValue &multi_value = *input_state.value.multi;
      missing_values = multi_value.expected_size - multi_value.items.size();
    }
    else {
      SingleInputValue &single_value = *input_state.value.single;
      if (single_value.value == nullptr) {
        missing_values = 1;
      }
    }
    if (missing_values == 0) {
      /* The input is fully available already, but the node might expect to be evaluated again. */
      this->schedule_node(locked_node);
      return;
    }
    /* Increase the total number of missing required inputs. This ensures that the node will be
     * scheduled correctly when all inputs have been provided. */
    locked_node.node_state.missing_required_inputs += missing_values;

    /* Get all origin sockets, because we have to tag those as required as well. */
    Vector<DSocket> origin_sockets;
    input_socket.foreach_origin_socket(
        [&](const DSocket origin_socket) { origin_sockets.append(origin_socket); });

    if (origin_sockets.is_empty()) {
      /* If there are no origin sockets, just load the value from the socket directly. */
      this->load_unlinked_input_value(locked_node, input_socket, input_state, input_socket);
      locked_node.node_state.missing_required_inputs -= 1;
      this->schedule_node(locked_node);
      return;
    }
    bool will_be_triggered_by_other_node = false;
    for (const DSocket &origin_socket : origin_sockets) {
      if (origin_socket->is_input()) {
        /* Load the value directly from the origin socket. In most cases this is an unlinked
         * group input. */
        this->load_unlinked_input_value(locked_node, input_socket, input_state, origin_socket);
        locked_node.node_state.missing_required_inputs -= 1;
        this->schedule_node(locked_node);
      }
      else {
        /* The value has not been computed yet, so when it will be forwarded by another node, this
         * node will be triggered. */
        will_be_triggered_by_other_node = true;

        locked_node.delayed_required_outputs.append(DOutputSocket(origin_socket));
      }
    }
    /* If this node will be triggered by another node, we don't have to schedule it now. */
    if (!will_be_triggered_by_other_node) {
      this->schedule_node(locked_node);
    }
  }

  void set_input_unused(LockedNode &locked_node, const DInputSocket socket)
  {
    InputState &input_state = locked_node.node_state.inputs[socket->index()];

    /* A required socket cannot become unused. */
    BLI_assert(input_state.usage != ValueUsage::Required);

    if (input_state.usage == ValueUsage::Unused) {
      /* Nothing to do in this case. */
      return;
    }
    input_state.usage = ValueUsage::Unused;

    /* If the input is unused, it's value can be destructed now. */
    this->destruct_input_value_if_exists(locked_node, socket);

    if (input_state.was_ready_for_execution) {
      /* If the value was already computed, we don't need to notify origin nodes. */
      return;
    }

    /* Notify origin nodes that might want to set its inputs as unused as well. */
    socket.foreach_origin_socket([&](const DSocket origin_socket) {
      if (origin_socket->is_input()) {
        /* Values from these sockets are loaded directly from the sockets, so there is no node to
         * notify. */
        return;
      }
      /* Delay notification of the other node until this node is not locked anymore. */
      locked_node.delayed_unused_outputs.append(DOutputSocket(origin_socket));
    });
  }

  void send_output_required_notification(const DOutputSocket socket)
  {
    const DNode node = socket.node();
    NodeState &node_state = this->get_node_state(node);
    OutputState &output_state = node_state.outputs[socket->index()];

    this->with_locked_node(node, node_state, [&](LockedNode &locked_node) {
      if (output_state.output_usage == ValueUsage::Required) {
        /* Output is marked as required already. So the node is scheduled already. */
        return;
      }
      /* The origin node needs to be scheduled so that it provides the requested input
       * eventually. */
      output_state.output_usage = ValueUsage::Required;
      this->schedule_node(locked_node);
    });
  }

  void send_output_unused_notification(const DOutputSocket socket)
  {
    const DNode node = socket.node();
    NodeState &node_state = this->get_node_state(node);
    OutputState &output_state = node_state.outputs[socket->index()];

    this->with_locked_node(node, node_state, [&](LockedNode &locked_node) {
      output_state.potential_users -= 1;
      if (output_state.potential_users == 0) {
        /* The socket might be required even though the output is not used by other sockets. That
         * can happen when the socket is forced to be computed. */
        if (output_state.output_usage != ValueUsage::Required) {
          /* The output socket has no users anymore. */
          output_state.output_usage = ValueUsage::Unused;
          /* Schedule the origin node in case it wants to set its inputs as unused as well. */
          this->schedule_node(locked_node);
        }
      }
    });
  }

  void add_node_to_task_pool(const DNode node)
  {
    /* Push the task to the pool while it is not locked to avoid a deadlock in case when the task
     * is executed immediately. */
    const NodeWithState *node_with_state = node_states_.lookup_key_ptr_as(node);
    BLI_task_pool_push(
        task_pool_, run_node_from_task_pool, (void *)node_with_state, false, nullptr);
  }

  /**
   * Moves a newly computed value from an output socket to all the inputs that might need it.
   */
  void forward_output(const DOutputSocket from_socket, GMutablePointer value_to_forward)
  {
    BLI_assert(value_to_forward.get() != nullptr);

    Vector<DSocket> sockets_to_log_to;
    sockets_to_log_to.append(from_socket);

    Vector<DInputSocket> to_sockets;
    auto handle_target_socket_fn = [&, this](const DInputSocket to_socket) {
      if (this->should_forward_to_socket(to_socket)) {
        to_sockets.append(to_socket);
      }
    };
    auto handle_skipped_socket_fn = [&](const DSocket socket) {
      sockets_to_log_to.append(socket);
    };
    from_socket.foreach_target_socket(handle_target_socket_fn, handle_skipped_socket_fn);

    LinearAllocator<> &allocator = local_allocators_.local();

    const CPPType &from_type = *value_to_forward.type();
    Vector<DInputSocket> to_sockets_same_type;
    for (const DInputSocket &to_socket : to_sockets) {
      const CPPType &to_type = *get_socket_cpp_type(to_socket);
      if (from_type == to_type) {
        /* All target sockets that do not need a conversion will be handled afterwards. */
        to_sockets_same_type.append(to_socket);
        /* Multi input socket values are logged once all values are available. */
        if (!to_socket->is_multi_input_socket()) {
          sockets_to_log_to.append(to_socket);
        }
        continue;
      }
      this->forward_to_socket_with_different_type(
          allocator, value_to_forward, from_socket, to_socket, to_type);
    }

    this->log_socket_value(sockets_to_log_to, value_to_forward);

    this->forward_to_sockets_with_same_type(
        allocator, to_sockets_same_type, value_to_forward, from_socket);
  }

  bool should_forward_to_socket(const DInputSocket socket)
  {
    const DNode to_node = socket.node();
    const NodeWithState *target_node_with_state = node_states_.lookup_key_ptr_as(to_node);
    if (target_node_with_state == nullptr) {
      /* If the socket belongs to a node that has no state, the entire node is not used. */
      return false;
    }
    NodeState &target_node_state = *target_node_with_state->state;
    InputState &target_input_state = target_node_state.inputs[socket->index()];

    std::lock_guard lock{target_node_state.mutex};
    /* Do not forward to an input socket whose value won't be used. */
    return target_input_state.usage != ValueUsage::Unused;
  }

  void forward_to_socket_with_different_type(LinearAllocator<> &allocator,
                                             const GPointer value_to_forward,
                                             const DOutputSocket from_socket,
                                             const DInputSocket to_socket,
                                             const CPPType &to_type)
  {
    const CPPType &from_type = *value_to_forward.type();

    /* Allocate a buffer for the converted value. */
    void *buffer = allocator.allocate(to_type.size(), to_type.alignment());
    GMutablePointer value{to_type, buffer};

    this->convert_value(from_type, to_type, value_to_forward.get(), buffer);

    /* Multi input socket values are logged once all values are available. */
    if (!to_socket->is_multi_input_socket()) {
      this->log_socket_value({to_socket}, value);
    }
    this->add_value_to_input_socket(to_socket, from_socket, value);
  }

  void forward_to_sockets_with_same_type(LinearAllocator<> &allocator,
                                         Span<DInputSocket> to_sockets,
                                         GMutablePointer value_to_forward,
                                         const DOutputSocket from_socket)
  {
    if (to_sockets.is_empty()) {
      /* Value is not used anymore, so it can be destructed. */
      value_to_forward.destruct();
    }
    else if (to_sockets.size() == 1) {
      /* Value is only used by one input socket, no need to copy it. */
      const DInputSocket to_socket = to_sockets[0];
      this->add_value_to_input_socket(to_socket, from_socket, value_to_forward);
    }
    else {
      /* Multiple inputs use the value, make a copy for every input except for one. */
      /* First make the copies, so that the next node does not start modifying the value while we
       * are still making copies. */
      const CPPType &type = *value_to_forward.type();
      for (const DInputSocket &to_socket : to_sockets.drop_front(1)) {
        void *buffer = allocator.allocate(type.size(), type.alignment());
        type.copy_construct(value_to_forward.get(), buffer);
        this->add_value_to_input_socket(to_socket, from_socket, {type, buffer});
      }
      /* Forward the original value to one of the targets. */
      const DInputSocket to_socket = to_sockets[0];
      this->add_value_to_input_socket(to_socket, from_socket, value_to_forward);
    }
  }

  void add_value_to_input_socket(const DInputSocket socket,
                                 const DOutputSocket origin,
                                 GMutablePointer value)
  {
    BLI_assert(socket->is_available());

    const DNode node = socket.node();
    NodeState &node_state = this->get_node_state(node);
    InputState &input_state = node_state.inputs[socket->index()];

    this->with_locked_node(node, node_state, [&](LockedNode &locked_node) {
      if (socket->is_multi_input_socket()) {
        /* Add a new value to the multi-input. */
        MultiInputValue &multi_value = *input_state.value.multi;
        multi_value.items.append({origin, value.get()});

        if (multi_value.expected_size == multi_value.items.size()) {
          this->log_socket_value({socket}, input_state, multi_value.items);
        }
      }
      else {
        /* Assign the value to the input. */
        SingleInputValue &single_value = *input_state.value.single;
        BLI_assert(single_value.value == nullptr);
        single_value.value = value.get();
      }

      if (input_state.usage == ValueUsage::Required) {
        node_state.missing_required_inputs--;
        if (node_state.missing_required_inputs == 0) {
          /* Schedule node if all the required inputs have been provided. */
          this->schedule_node(locked_node);
        }
      }
    });
  }

  void load_unlinked_input_value(LockedNode &locked_node,
                                 const DInputSocket input_socket,
                                 InputState &input_state,
                                 const DSocket origin_socket)
  {
    /* Only takes locked node as parameter, because the node needs to be locked. */
    UNUSED_VARS(locked_node);

    GMutablePointer value = this->get_value_from_socket(origin_socket, *input_state.type);
    if (input_socket->is_multi_input_socket()) {
      MultiInputValue &multi_value = *input_state.value.multi;
      multi_value.items.append({origin_socket, value.get()});
      if (multi_value.expected_size == multi_value.items.size()) {
        this->log_socket_value({input_socket}, input_state, multi_value.items);
      }
    }
    else {
      SingleInputValue &single_value = *input_state.value.single;
      single_value.value = value.get();
      this->log_socket_value({input_socket}, value);
    }
  }

  void destruct_input_value_if_exists(LockedNode &locked_node, const DInputSocket socket)
  {
    InputState &input_state = locked_node.node_state.inputs[socket->index()];
    if (socket->is_multi_input_socket()) {
      MultiInputValue &multi_value = *input_state.value.multi;
      for (MultiInputValueItem &item : multi_value.items) {
        input_state.type->destruct(item.value);
      }
      multi_value.items.clear();
    }
    else {
      SingleInputValue &single_value = *input_state.value.single;
      if (single_value.value != nullptr) {
        input_state.type->destruct(single_value.value);
        single_value.value = nullptr;
      }
    }
  }

  GMutablePointer get_value_from_socket(const DSocket socket, const CPPType &required_type)
  {
    LinearAllocator<> &allocator = local_allocators_.local();

    const CPPType &type = *get_socket_cpp_type(socket);
    void *buffer = allocator.allocate(type.size(), type.alignment());
    get_socket_value(*socket.socket_ref(), buffer);

    if (type == required_type) {
      return {type, buffer};
    }
    void *converted_buffer = allocator.allocate(required_type.size(), required_type.alignment());
    this->convert_value(type, required_type, buffer, converted_buffer);
    type.destruct(buffer);
    return {required_type, converted_buffer};
  }

  void convert_value(const CPPType &from_type,
                     const CPPType &to_type,
                     const void *from_value,
                     void *to_value)
  {
    if (from_type == to_type) {
      from_type.copy_construct(from_value, to_value);
      return;
    }

    const FieldCPPType *from_field_type = dynamic_cast<const FieldCPPType *>(&from_type);
    const FieldCPPType *to_field_type = dynamic_cast<const FieldCPPType *>(&to_type);

    if (from_field_type != nullptr && to_field_type != nullptr) {
      const CPPType &from_base_type = from_field_type->field_type();
      const CPPType &to_base_type = to_field_type->field_type();
      if (conversions_.is_convertible(from_base_type, to_base_type)) {
        const MultiFunction &fn = *conversions_.get_conversion_multi_function(
            MFDataType::ForSingle(from_base_type), MFDataType::ForSingle(to_base_type));
        const GField &from_field = *(const GField *)from_value;
        auto operation = std::make_shared<fn::FieldOperation>(fn, Vector<GField>{from_field});
        new (to_value) GField(std::move(operation), 0);
        return;
      }
    }
    if (conversions_.is_convertible(from_type, to_type)) {
      /* Do the conversion if possible. */
      conversions_.convert_to_uninitialized(from_type, to_type, from_value, to_value);
    }
    else {
      /* Cannot convert, use default value instead. */
      this->construct_default_value(to_type, to_value);
    }
  }

  void construct_default_value(const CPPType &type, void *r_value)
  {
    if (const FieldCPPType *field_cpp_type = dynamic_cast<const FieldCPPType *>(&type)) {
      const CPPType &base_type = field_cpp_type->field_type();
      auto constant_fn = std::make_unique<fn::CustomMF_GenericConstant>(
          base_type, base_type.default_value(), false);
      auto operation = std::make_shared<fn::FieldOperation>(std::move(constant_fn));
      new (r_value) GField(std::move(operation), 0);
      return;
    }
    type.copy_construct(type.default_value(), r_value);
  }

  NodeState &get_node_state(const DNode node)
  {
    return *node_states_.lookup_key_as(node).state;
  }

  void log_socket_value(DSocket socket, InputState &input_state, Span<MultiInputValueItem> values)
  {
    if (params_.geo_logger == nullptr) {
      return;
    }

    Vector<GPointer, 16> value_pointers;
    value_pointers.reserve(values.size());
    const CPPType &type = *input_state.type;
    for (const MultiInputValueItem &item : values) {
      value_pointers.append({type, item.value});
    }
    params_.geo_logger->local().log_multi_value_socket(socket, value_pointers);
  }

  void log_socket_value(Span<DSocket> sockets, GPointer value)
  {
    if (params_.geo_logger == nullptr) {
      return;
    }
    params_.geo_logger->local().log_value_for_sockets(sockets, value);
  }

  /* In most cases when `NodeState` is accessed, the node has to be locked first to avoid race
   * conditions. */
  template<typename Function>
  void with_locked_node(const DNode node, NodeState &node_state, const Function &function)
  {
    LockedNode locked_node{node, node_state};

    node_state.mutex.lock();
    /* Isolate this thread because we don't want it to start executing another node. This other
     * node might want to lock the same mutex leading to a deadlock. */
    threading::isolate_task([&] { function(locked_node); });
    node_state.mutex.unlock();

    /* Then send notifications to the other nodes after the node state is unlocked. This avoids
     * locking two nodes at the same time on this thread and helps to prevent deadlocks. */
    for (const DOutputSocket &socket : locked_node.delayed_required_outputs) {
      this->send_output_required_notification(socket);
    }
    for (const DOutputSocket &socket : locked_node.delayed_unused_outputs) {
      this->send_output_unused_notification(socket);
    }
    for (const DNode &node : locked_node.delayed_scheduled_nodes) {
      this->add_node_to_task_pool(node);
    }
  }
};

NodeParamsProvider::NodeParamsProvider(GeometryNodesEvaluator &evaluator,
                                       DNode dnode,
                                       NodeState &node_state)
    : evaluator_(evaluator), node_state_(node_state)
{
  this->dnode = dnode;
  this->self_object = evaluator.params_.self_object;
  this->modifier = &evaluator.params_.modifier_->modifier;
  this->depsgraph = evaluator.params_.depsgraph;
  this->logger = evaluator.params_.geo_logger;
}

bool NodeParamsProvider::can_get_input(StringRef identifier) const
{
  const DInputSocket socket = this->dnode.input_by_identifier(identifier);
  BLI_assert(socket);

  InputState &input_state = node_state_.inputs[socket->index()];
  if (!input_state.was_ready_for_execution) {
    return false;
  }

  if (socket->is_multi_input_socket()) {
    MultiInputValue &multi_value = *input_state.value.multi;
    return multi_value.items.size() == multi_value.expected_size;
  }
  SingleInputValue &single_value = *input_state.value.single;
  return single_value.value != nullptr;
}

bool NodeParamsProvider::can_set_output(StringRef identifier) const
{
  const DOutputSocket socket = this->dnode.output_by_identifier(identifier);
  BLI_assert(socket);

  OutputState &output_state = node_state_.outputs[socket->index()];
  return !output_state.has_been_computed;
}

GMutablePointer NodeParamsProvider::extract_input(StringRef identifier)
{
  const DInputSocket socket = this->dnode.input_by_identifier(identifier);
  BLI_assert(socket);
  BLI_assert(!socket->is_multi_input_socket());
  BLI_assert(this->can_get_input(identifier));

  InputState &input_state = node_state_.inputs[socket->index()];
  SingleInputValue &single_value = *input_state.value.single;
  void *value = single_value.value;
  single_value.value = nullptr;
  return {*input_state.type, value};
}

Vector<GMutablePointer> NodeParamsProvider::extract_multi_input(StringRef identifier)
{
  const DInputSocket socket = this->dnode.input_by_identifier(identifier);
  BLI_assert(socket);
  BLI_assert(socket->is_multi_input_socket());
  BLI_assert(this->can_get_input(identifier));

  InputState &input_state = node_state_.inputs[socket->index()];
  MultiInputValue &multi_value = *input_state.value.multi;

  Vector<GMutablePointer> ret_values;
  socket.foreach_origin_socket([&](DSocket origin) {
    for (MultiInputValueItem &item : multi_value.items) {
      if (item.origin == origin && item.value != nullptr) {
        ret_values.append({*input_state.type, item.value});
        /* Make sure we do not use the same value again if two values have the same origin. */
        item.value = nullptr;
        return;
      }
    }
    BLI_assert_unreachable();
  });
  if (ret_values.is_empty()) {
    /* If the socket is not linked, we just use the value from the socket itself. */
    BLI_assert(multi_value.items.size() == 1);
    MultiInputValueItem &item = multi_value.items[0];
    BLI_assert(item.origin == socket);
    ret_values.append({*input_state.type, item.value});
  }
  multi_value.items.clear();
  return ret_values;
}

GPointer NodeParamsProvider::get_input(StringRef identifier) const
{
  const DInputSocket socket = this->dnode.input_by_identifier(identifier);
  BLI_assert(socket);
  BLI_assert(!socket->is_multi_input_socket());
  BLI_assert(this->can_get_input(identifier));

  InputState &input_state = node_state_.inputs[socket->index()];
  SingleInputValue &single_value = *input_state.value.single;
  return {*input_state.type, single_value.value};
}

GMutablePointer NodeParamsProvider::alloc_output_value(const CPPType &type)
{
  LinearAllocator<> &allocator = evaluator_.local_allocators_.local();
  return {type, allocator.allocate(type.size(), type.alignment())};
}

void NodeParamsProvider::set_output(StringRef identifier, GMutablePointer value)
{
  const DOutputSocket socket = this->dnode.output_by_identifier(identifier);
  BLI_assert(socket);

  OutputState &output_state = node_state_.outputs[socket->index()];
  BLI_assert(!output_state.has_been_computed);
  evaluator_.forward_output(socket, value);
  output_state.has_been_computed = true;
}

bool NodeParamsProvider::lazy_require_input(StringRef identifier)
{
  BLI_assert(node_supports_laziness(this->dnode));
  const DInputSocket socket = this->dnode.input_by_identifier(identifier);
  BLI_assert(socket);

  InputState &input_state = node_state_.inputs[socket->index()];
  if (input_state.was_ready_for_execution) {
    return false;
  }
  evaluator_.with_locked_node(this->dnode, node_state_, [&](LockedNode &locked_node) {
    evaluator_.set_input_required(locked_node, socket);
  });
  return true;
}

void NodeParamsProvider::set_input_unused(StringRef identifier)
{
  const DInputSocket socket = this->dnode.input_by_identifier(identifier);
  BLI_assert(socket);

  evaluator_.with_locked_node(this->dnode, node_state_, [&](LockedNode &locked_node) {
    evaluator_.set_input_unused(locked_node, socket);
  });
}

bool NodeParamsProvider::output_is_required(StringRef identifier) const
{
  const DOutputSocket socket = this->dnode.output_by_identifier(identifier);
  BLI_assert(socket);

  OutputState &output_state = node_state_.outputs[socket->index()];
  if (output_state.has_been_computed) {
    return false;
  }
  return output_state.output_usage_for_execution != ValueUsage::Unused;
}

bool NodeParamsProvider::lazy_output_is_required(StringRef identifier) const
{
  BLI_assert(node_supports_laziness(this->dnode));
  const DOutputSocket socket = this->dnode.output_by_identifier(identifier);
  BLI_assert(socket);

  OutputState &output_state = node_state_.outputs[socket->index()];
  if (output_state.has_been_computed) {
    return false;
  }
  return output_state.output_usage_for_execution == ValueUsage::Required;
}

void evaluate_geometry_nodes(GeometryNodesEvaluationParams &params)
{
  GeometryNodesEvaluator evaluator{params};
  evaluator.execute();
}

}  // namespace blender::modifiers::geometry_nodes