Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MOD_solidify_extrude.c « intern « modifiers « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5908a13e93c4994a9a25276043726ba2c2f2f949 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
/* SPDX-License-Identifier: GPL-2.0-or-later */

/** \file
 * \ingroup modifiers
 */

#include "BLI_utildefines.h"

#include "BLI_bitmap.h"
#include "BLI_math.h"
#include "BLI_utildefines_stack.h"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"

#include "MEM_guardedalloc.h"

#include "BKE_deform.h"
#include "BKE_mesh.h"
#include "BKE_particle.h"

#include "MOD_modifiertypes.h"
#include "MOD_solidify_util.h" /* own include */
#include "MOD_util.h"

#ifdef __GNUC__
#  pragma GCC diagnostic error "-Wsign-conversion"
#endif

/* -------------------------------------------------------------------- */
/** \name High Quality Normal Calculation Function
 * \{ */

/* skip shell thickness for non-manifold edges, see T35710. */
#define USE_NONMANIFOLD_WORKAROUND

/* *** derived mesh high quality normal calculation function  *** */
/* could be exposed for other functions to use */

typedef struct EdgeFaceRef {
  int p1; /* init as -1 */
  int p2;
} EdgeFaceRef;

BLI_INLINE bool edgeref_is_init(const EdgeFaceRef *edge_ref)
{
  return !((edge_ref->p1 == 0) && (edge_ref->p2 == 0));
}

/**
 * \param mesh: Mesh to calculate normals for.
 * \param poly_nors: Precalculated face normals.
 * \param r_vert_nors: Return vert normals.
 */
static void mesh_calc_hq_normal(Mesh *mesh,
                                const float (*poly_nors)[3],
                                float (*r_vert_nors)[3],
#ifdef USE_NONMANIFOLD_WORKAROUND
                                BLI_bitmap *edge_tmp_tag
#endif
)
{
  int i;

  const int verts_num = mesh->totvert;
  const int edges_num = mesh->totedge;
  const int polys_num = mesh->totpoly;
  const MPoly *mpoly = BKE_mesh_polys(mesh);
  const MLoop *mloop = BKE_mesh_loops(mesh);
  const MEdge *medge = BKE_mesh_edges(mesh);

  const MPoly *mp = mpoly;

  {
    EdgeFaceRef *edge_ref_array = MEM_calloc_arrayN(
        (size_t)edges_num, sizeof(EdgeFaceRef), "Edge Connectivity");
    EdgeFaceRef *edge_ref;
    float edge_normal[3];

    /* Add an edge reference if it's not there, pointing back to the face index. */
    for (i = 0; i < polys_num; i++, mp++) {
      int j;

      const MLoop *ml = mloop + mp->loopstart;

      for (j = 0; j < mp->totloop; j++, ml++) {
        /* --- add edge ref to face --- */
        edge_ref = &edge_ref_array[ml->e];
        if (!edgeref_is_init(edge_ref)) {
          edge_ref->p1 = i;
          edge_ref->p2 = -1;
        }
        else if ((edge_ref->p1 != -1) && (edge_ref->p2 == -1)) {
          edge_ref->p2 = i;
        }
        else {
          /* 3+ faces using an edge, we can't handle this usefully */
          edge_ref->p1 = edge_ref->p2 = -1;
#ifdef USE_NONMANIFOLD_WORKAROUND
          BLI_BITMAP_ENABLE(edge_tmp_tag, ml->e);
#endif
        }
        /* --- done --- */
      }
    }

    const MEdge *ed;
    for (i = 0, ed = medge, edge_ref = edge_ref_array; i < edges_num; i++, ed++, edge_ref++) {
      /* Get the edge vert indices, and edge value (the face indices that use it) */

      if (edgeref_is_init(edge_ref) && (edge_ref->p1 != -1)) {
        if (edge_ref->p2 != -1) {
          /* We have 2 faces using this edge, calculate the edges normal
           * using the angle between the 2 faces as a weighting */
#if 0
          add_v3_v3v3(edge_normal, face_nors[edge_ref->f1], face_nors[edge_ref->f2]);
          normalize_v3_length(
              edge_normal,
              angle_normalized_v3v3(face_nors[edge_ref->f1], face_nors[edge_ref->f2]));
#else
          mid_v3_v3v3_angle_weighted(
              edge_normal, poly_nors[edge_ref->p1], poly_nors[edge_ref->p2]);
#endif
        }
        else {
          /* only one face attached to that edge */
          /* an edge without another attached- the weight on this is undefined */
          copy_v3_v3(edge_normal, poly_nors[edge_ref->p1]);
        }
        add_v3_v3(r_vert_nors[ed->v1], edge_normal);
        add_v3_v3(r_vert_nors[ed->v2], edge_normal);
      }
    }
    MEM_freeN(edge_ref_array);
  }

  /* normalize vertex normals and assign */
  const float(*vert_normals)[3] = BKE_mesh_vertex_normals_ensure(mesh);
  for (i = 0; i < verts_num; i++) {
    if (normalize_v3(r_vert_nors[i]) == 0.0f) {
      copy_v3_v3(r_vert_nors[i], vert_normals[i]);
    }
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Main Solidify Function
 * \{ */

/* NOLINTNEXTLINE: readability-function-size */
Mesh *MOD_solidify_extrude_modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *mesh)
{
  Mesh *result;
  const SolidifyModifierData *smd = (SolidifyModifierData *)md;

  const uint verts_num = (uint)mesh->totvert;
  const uint edges_num = (uint)mesh->totedge;
  const uint polys_num = (uint)mesh->totpoly;
  const uint loops_num = (uint)mesh->totloop;
  uint newLoops = 0, newPolys = 0, newEdges = 0, newVerts = 0, rimVerts = 0;

  /* Only use material offsets if we have 2 or more materials. */
  const short mat_nr_max = ctx->object->totcol > 1 ? ctx->object->totcol - 1 : 0;
  const short mat_ofs = mat_nr_max ? smd->mat_ofs : 0;
  const short mat_ofs_rim = mat_nr_max ? smd->mat_ofs_rim : 0;

  /* use for edges */
  /* over-alloc new_vert_arr, old_vert_arr */
  uint *new_vert_arr = NULL;
  STACK_DECLARE(new_vert_arr);

  uint *new_edge_arr = NULL;
  STACK_DECLARE(new_edge_arr);

  uint *old_vert_arr = MEM_calloc_arrayN(
      verts_num, sizeof(*old_vert_arr), "old_vert_arr in solidify");

  uint *edge_users = NULL;
  int *edge_order = NULL;

  float(*vert_nors)[3] = NULL;
  const float(*poly_nors)[3] = NULL;

  const bool need_poly_normals = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) ||
                                 (smd->flag & MOD_SOLIDIFY_EVEN) ||
                                 (smd->flag & MOD_SOLIDIFY_OFFSET_ANGLE_CLAMP) ||
                                 (smd->bevel_convex != 0);

  const float ofs_orig = -(((-smd->offset_fac + 1.0f) * 0.5f) * smd->offset);
  const float ofs_new = smd->offset + ofs_orig;
  const float offset_fac_vg = smd->offset_fac_vg;
  const float offset_fac_vg_inv = 1.0f - smd->offset_fac_vg;
  const float bevel_convex = smd->bevel_convex;
  const bool do_flip = (smd->flag & MOD_SOLIDIFY_FLIP) != 0;
  const bool do_clamp = (smd->offset_clamp != 0.0f);
  const bool do_angle_clamp = do_clamp && (smd->flag & MOD_SOLIDIFY_OFFSET_ANGLE_CLAMP) != 0;
  const bool do_bevel_convex = bevel_convex != 0.0f;
  const bool do_rim = (smd->flag & MOD_SOLIDIFY_RIM) != 0;
  const bool do_shell = !(do_rim && (smd->flag & MOD_SOLIDIFY_NOSHELL) != 0);

  /* weights */
  const MDeformVert *dvert;
  const bool defgrp_invert = (smd->flag & MOD_SOLIDIFY_VGROUP_INV) != 0;
  int defgrp_index;
  const int shell_defgrp_index = BKE_id_defgroup_name_index(&mesh->id, smd->shell_defgrp_name);
  const int rim_defgrp_index = BKE_id_defgroup_name_index(&mesh->id, smd->rim_defgrp_name);

  /* array size is doubled in case of using a shell */
  const uint stride = do_shell ? 2 : 1;

  const float(*mesh_vert_normals)[3] = BKE_mesh_vertex_normals_ensure(mesh);

  MOD_get_vgroup(ctx->object, mesh, smd->defgrp_name, &dvert, &defgrp_index);

  const float(*orig_positions)[3] = BKE_mesh_positions(mesh);
  const MEdge *orig_medge = BKE_mesh_edges(mesh);
  const MPoly *orig_mpoly = BKE_mesh_polys(mesh);
  const MLoop *orig_mloop = BKE_mesh_loops(mesh);

  if (need_poly_normals) {
    /* calculate only face normals */
    poly_nors = BKE_mesh_poly_normals_ensure(mesh);
  }

  STACK_INIT(new_vert_arr, verts_num * 2);
  STACK_INIT(new_edge_arr, edges_num * 2);

  if (do_rim) {
    BLI_bitmap *orig_mvert_tag = BLI_BITMAP_NEW(verts_num, __func__);
    uint eidx;
    uint i;

#define INVALID_UNUSED ((uint)-1)
#define INVALID_PAIR ((uint)-2)

    new_vert_arr = MEM_malloc_arrayN(verts_num, 2 * sizeof(*new_vert_arr), __func__);
    new_edge_arr = MEM_malloc_arrayN(
        ((edges_num * 2) + verts_num), sizeof(*new_edge_arr), __func__);

    edge_users = MEM_malloc_arrayN(edges_num, sizeof(*edge_users), "solid_mod edges");
    edge_order = MEM_malloc_arrayN(edges_num, sizeof(*edge_order), "solid_mod order");

    /* save doing 2 loops here... */
#if 0
    copy_vn_i(edge_users, edges_num, INVALID_UNUSED);
#endif

    const MEdge *ed;
    for (eidx = 0, ed = orig_medge; eidx < edges_num; eidx++, ed++) {
      edge_users[eidx] = INVALID_UNUSED;
    }

    const MPoly *mp;
    for (i = 0, mp = orig_mpoly; i < polys_num; i++, mp++) {
      int j;

      const MLoop *ml = orig_mloop + mp->loopstart;
      const MLoop *ml_prev = ml + (mp->totloop - 1);

      for (j = 0; j < mp->totloop; j++, ml++) {
        /* add edge user */
        eidx = ml_prev->e;
        if (edge_users[eidx] == INVALID_UNUSED) {
          ed = orig_medge + eidx;
          BLI_assert(ELEM(ml_prev->v, ed->v1, ed->v2) && ELEM(ml->v, ed->v1, ed->v2));
          edge_users[eidx] = (ml_prev->v > ml->v) == (ed->v1 < ed->v2) ? i : (i + polys_num);
          edge_order[eidx] = j;
        }
        else {
          edge_users[eidx] = INVALID_PAIR;
        }
        ml_prev = ml;
      }
    }

    for (eidx = 0, ed = orig_medge; eidx < edges_num; eidx++, ed++) {
      if (!ELEM(edge_users[eidx], INVALID_UNUSED, INVALID_PAIR)) {
        BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v1);
        BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v2);
        STACK_PUSH(new_edge_arr, eidx);
        newPolys++;
        newLoops += 4;
      }
    }

    for (i = 0; i < verts_num; i++) {
      if (BLI_BITMAP_TEST(orig_mvert_tag, i)) {
        old_vert_arr[i] = STACK_SIZE(new_vert_arr);
        STACK_PUSH(new_vert_arr, i);
        rimVerts++;
      }
      else {
        old_vert_arr[i] = INVALID_UNUSED;
      }
    }

    MEM_freeN(orig_mvert_tag);
  }

  if (do_shell == false) {
    /* only add rim vertices */
    newVerts = rimVerts;
    /* each extruded face needs an opposite edge */
    newEdges = newPolys;
  }
  else {
    /* (stride == 2) in this case, so no need to add newVerts/newEdges */
    BLI_assert(newVerts == 0);
    BLI_assert(newEdges == 0);
  }

#ifdef USE_NONMANIFOLD_WORKAROUND
  BLI_bitmap *edge_tmp_tag = BLI_BITMAP_NEW(mesh->totedge, __func__);
#endif

  if (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) {
    vert_nors = MEM_calloc_arrayN(verts_num, sizeof(float[3]), "mod_solid_vno_hq");
    mesh_calc_hq_normal(mesh,
                        poly_nors,
                        vert_nors
#ifdef USE_NONMANIFOLD_WORKAROUND
                        ,
                        edge_tmp_tag
#endif
    );
  }

  result = BKE_mesh_new_nomain_from_template(mesh,
                                             (int)((verts_num * stride) + newVerts),
                                             (int)((edges_num * stride) + newEdges + rimVerts),
                                             0,
                                             (int)((loops_num * stride) + newLoops),
                                             (int)((polys_num * stride) + newPolys));

  float(*positions)[3] = BKE_mesh_positions_for_write(result);
  MEdge *medge = BKE_mesh_edges_for_write(result);
  MPoly *mpoly = BKE_mesh_polys_for_write(result);
  MLoop *mloop = BKE_mesh_loops_for_write(result);

  if (do_shell) {
    CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, (int)verts_num);
    CustomData_copy_data(&mesh->vdata, &result->vdata, 0, (int)verts_num, (int)verts_num);

    CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, (int)edges_num);
    CustomData_copy_data(&mesh->edata, &result->edata, 0, (int)edges_num, (int)edges_num);

    CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, (int)loops_num);
    /* DO NOT copy here the 'copied' part of loop data, we want to reverse loops
     * (so that winding of copied face get reversed, so that normals get reversed
     * and point in expected direction...).
     * If we also copy data here, then this data get overwritten
     * (and allocated memory becomes memleak). */

    CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, (int)polys_num);
    CustomData_copy_data(&mesh->pdata, &result->pdata, 0, (int)polys_num, (int)polys_num);
  }
  else {
    int i, j;
    CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, (int)verts_num);
    for (i = 0, j = (int)verts_num; i < verts_num; i++) {
      if (old_vert_arr[i] != INVALID_UNUSED) {
        CustomData_copy_data(&mesh->vdata, &result->vdata, i, j, 1);
        j++;
      }
    }

    CustomData_copy_data(&mesh->edata, &result->edata, 0, 0, (int)edges_num);

    for (i = 0, j = (int)edges_num; i < edges_num; i++) {
      if (!ELEM(edge_users[i], INVALID_UNUSED, INVALID_PAIR)) {
        MEdge *ed_src, *ed_dst;
        CustomData_copy_data(&mesh->edata, &result->edata, i, j, 1);

        ed_src = &medge[i];
        ed_dst = &medge[j];
        ed_dst->v1 = old_vert_arr[ed_src->v1] + verts_num;
        ed_dst->v2 = old_vert_arr[ed_src->v2] + verts_num;
        j++;
      }
    }

    /* will be created later */
    CustomData_copy_data(&mesh->ldata, &result->ldata, 0, 0, (int)loops_num);
    CustomData_copy_data(&mesh->pdata, &result->pdata, 0, 0, (int)polys_num);
  }

  float *result_edge_bweight = NULL;
  if (do_bevel_convex) {
    result_edge_bweight = CustomData_add_layer(
        &result->edata, CD_BWEIGHT, CD_SET_DEFAULT, NULL, result->totedge);
  }

  /* initializes: (i_end, do_shell_align, mv). */
#define INIT_VERT_ARRAY_OFFSETS(test) \
  if (((ofs_new >= ofs_orig) == do_flip) == test) { \
    i_end = verts_num; \
    do_shell_align = true; \
    vert_index = 0; \
  } \
  else { \
    if (do_shell) { \
      i_end = verts_num; \
      do_shell_align = true; \
    } \
    else { \
      i_end = newVerts; \
      do_shell_align = false; \
    } \
    vert_index = verts_num; \
  } \
  (void)0

  int *dst_material_index = BKE_mesh_material_indices_for_write(result);

  /* flip normals */

  if (do_shell) {
    uint i;

    MPoly *mp = mpoly + polys_num;
    for (i = 0; i < mesh->totpoly; i++, mp++) {
      const int loop_end = mp->totloop - 1;
      MLoop *ml2;
      uint e;
      int j;

      /* reverses the loop direction (MLoop.v as well as custom-data)
       * MLoop.e also needs to be corrected too, done in a separate loop below. */
      ml2 = mloop + mp->loopstart + mesh->totloop;
#if 0
      for (j = 0; j < mp->totloop; j++) {
        CustomData_copy_data(&mesh->ldata,
                             &result->ldata,
                             mp->loopstart + j,
                             mp->loopstart + (loop_end - j) + mesh->totloop,
                             1);
      }
#else
      /* slightly more involved, keep the first vertex the same for the copy,
       * ensures the diagonals in the new face match the original. */
      j = 0;
      for (int j_prev = loop_end; j < mp->totloop; j_prev = j++) {
        CustomData_copy_data(&mesh->ldata,
                             &result->ldata,
                             mp->loopstart + j,
                             mp->loopstart + (loop_end - j_prev) + mesh->totloop,
                             1);
      }
#endif

      if (mat_ofs) {
        dst_material_index[mp - mpoly] += mat_ofs;
        CLAMP(dst_material_index[mp - mpoly], 0, mat_nr_max);
      }

      e = ml2[0].e;
      for (j = 0; j < loop_end; j++) {
        ml2[j].e = ml2[j + 1].e;
      }
      ml2[loop_end].e = e;

      mp->loopstart += mesh->totloop;

      for (j = 0; j < mp->totloop; j++) {
        ml2[j].e += edges_num;
        ml2[j].v += verts_num;
      }
    }

    MEdge *ed;
    for (i = 0, ed = medge + edges_num; i < edges_num; i++, ed++) {
      ed->v1 += verts_num;
      ed->v2 += verts_num;
    }
  }

  /* NOTE: copied vertex layers don't have flipped normals yet. do this after applying offset. */
  if ((smd->flag & MOD_SOLIDIFY_EVEN) == 0) {
    /* no even thickness, very simple */
    float ofs_new_vgroup;

    /* for clamping */
    float *vert_lens = NULL;
    float *vert_angs = NULL;
    const float offset = fabsf(smd->offset) * smd->offset_clamp;
    const float offset_sq = offset * offset;

    /* for bevel weight */
    float *edge_angs = NULL;

    if (do_clamp) {
      vert_lens = MEM_malloc_arrayN(verts_num, sizeof(float), "vert_lens");
      copy_vn_fl(vert_lens, (int)verts_num, FLT_MAX);
      for (uint i = 0; i < edges_num; i++) {
        const float ed_len_sq = len_squared_v3v3(positions[medge[i].v1], positions[medge[i].v2]);
        vert_lens[medge[i].v1] = min_ff(vert_lens[medge[i].v1], ed_len_sq);
        vert_lens[medge[i].v2] = min_ff(vert_lens[medge[i].v2], ed_len_sq);
      }
    }

    if (do_angle_clamp || do_bevel_convex) {
      uint eidx;
      if (do_angle_clamp) {
        vert_angs = MEM_malloc_arrayN(verts_num, sizeof(float), "vert_angs");
        copy_vn_fl(vert_angs, (int)verts_num, 0.5f * M_PI);
      }
      if (do_bevel_convex) {
        edge_angs = MEM_malloc_arrayN(edges_num, sizeof(float), "edge_angs");
        if (!do_rim) {
          edge_users = MEM_malloc_arrayN(edges_num, sizeof(*edge_users), "solid_mod edges");
        }
      }
      uint(*edge_user_pairs)[2] = MEM_malloc_arrayN(
          edges_num, sizeof(*edge_user_pairs), "edge_user_pairs");
      for (eidx = 0; eidx < edges_num; eidx++) {
        edge_user_pairs[eidx][0] = INVALID_UNUSED;
        edge_user_pairs[eidx][1] = INVALID_UNUSED;
      }
      const MPoly *mp = orig_mpoly;
      for (uint i = 0; i < polys_num; i++, mp++) {
        const MLoop *ml = orig_mloop + mp->loopstart;
        const MLoop *ml_prev = ml + (mp->totloop - 1);

        for (uint j = 0; j < mp->totloop; j++, ml++) {
          /* add edge user */
          eidx = ml_prev->e;
          const MEdge *ed = orig_medge + eidx;
          BLI_assert(ELEM(ml_prev->v, ed->v1, ed->v2) && ELEM(ml->v, ed->v1, ed->v2));
          char flip = (char)((ml_prev->v > ml->v) == (ed->v1 < ed->v2));
          if (edge_user_pairs[eidx][flip] == INVALID_UNUSED) {
            edge_user_pairs[eidx][flip] = i;
          }
          else {
            edge_user_pairs[eidx][0] = INVALID_PAIR;
            edge_user_pairs[eidx][1] = INVALID_PAIR;
          }
          ml_prev = ml;
        }
      }
      const MEdge *ed = orig_medge;
      float e[3];
      for (uint i = 0; i < edges_num; i++, ed++) {
        if (!ELEM(edge_user_pairs[i][0], INVALID_UNUSED, INVALID_PAIR) &&
            !ELEM(edge_user_pairs[i][1], INVALID_UNUSED, INVALID_PAIR)) {
          const float *n0 = poly_nors[edge_user_pairs[i][0]];
          const float *n1 = poly_nors[edge_user_pairs[i][1]];
          sub_v3_v3v3(e, orig_positions[ed->v1], orig_positions[ed->v2]);
          normalize_v3(e);
          const float angle = angle_signed_on_axis_v3v3_v3(n0, n1, e);
          if (do_angle_clamp) {
            vert_angs[ed->v1] = max_ff(vert_angs[ed->v1], angle);
            vert_angs[ed->v2] = max_ff(vert_angs[ed->v2], angle);
          }
          if (do_bevel_convex) {
            edge_angs[i] = angle;
            if (!do_rim) {
              edge_users[i] = INVALID_PAIR;
            }
          }
        }
      }
      MEM_freeN(edge_user_pairs);
    }

    if (ofs_new != 0.0f) {
      uint i_orig, i_end;
      bool do_shell_align;

      ofs_new_vgroup = ofs_new;

      uint vert_index;
      INIT_VERT_ARRAY_OFFSETS(false);

      for (i_orig = 0; i_orig < i_end; i_orig++, vert_index++) {
        const uint i = do_shell_align ? i_orig : new_vert_arr[i_orig];
        if (dvert) {
          const MDeformVert *dv = &dvert[i];
          if (defgrp_invert) {
            ofs_new_vgroup = 1.0f - BKE_defvert_find_weight(dv, defgrp_index);
          }
          else {
            ofs_new_vgroup = BKE_defvert_find_weight(dv, defgrp_index);
          }
          ofs_new_vgroup = (offset_fac_vg + (ofs_new_vgroup * offset_fac_vg_inv)) * ofs_new;
        }
        if (do_clamp && offset > FLT_EPSILON) {
          /* always reset because we may have set before */
          if (dvert == NULL) {
            ofs_new_vgroup = ofs_new;
          }
          if (do_angle_clamp) {
            float cos_ang = cosf(((2 * M_PI) - vert_angs[i]) * 0.5f);
            if (cos_ang > 0) {
              float max_off = sqrtf(vert_lens[i]) * 0.5f / cos_ang;
              if (max_off < offset * 0.5f) {
                ofs_new_vgroup *= max_off / offset * 2;
              }
            }
          }
          else {
            if (vert_lens[i] < offset_sq) {
              float scalar = sqrtf(vert_lens[i]) / offset;
              ofs_new_vgroup *= scalar;
            }
          }
        }
        if (vert_nors) {
          madd_v3_v3fl(positions[vert_index], vert_nors[i], ofs_new_vgroup);
        }
        else {
          madd_v3_v3fl(positions[vert_index], mesh_vert_normals[i], ofs_new_vgroup);
        }
      }
    }

    if (ofs_orig != 0.0f) {
      uint i_orig, i_end;
      bool do_shell_align;

      ofs_new_vgroup = ofs_orig;

      /* as above but swapped */
      uint vert_index;
      INIT_VERT_ARRAY_OFFSETS(true);

      for (i_orig = 0; i_orig < i_end; i_orig++, vert_index++) {
        const uint i = do_shell_align ? i_orig : new_vert_arr[i_orig];
        if (dvert) {
          const MDeformVert *dv = &dvert[i];
          if (defgrp_invert) {
            ofs_new_vgroup = 1.0f - BKE_defvert_find_weight(dv, defgrp_index);
          }
          else {
            ofs_new_vgroup = BKE_defvert_find_weight(dv, defgrp_index);
          }
          ofs_new_vgroup = (offset_fac_vg + (ofs_new_vgroup * offset_fac_vg_inv)) * ofs_orig;
        }
        if (do_clamp && offset > FLT_EPSILON) {
          /* always reset because we may have set before */
          if (dvert == NULL) {
            ofs_new_vgroup = ofs_orig;
          }
          if (do_angle_clamp) {
            float cos_ang = cosf(vert_angs[i_orig] * 0.5f);
            if (cos_ang > 0) {
              float max_off = sqrtf(vert_lens[i]) * 0.5f / cos_ang;
              if (max_off < offset * 0.5f) {
                ofs_new_vgroup *= max_off / offset * 2;
              }
            }
          }
          else {
            if (vert_lens[i] < offset_sq) {
              float scalar = sqrtf(vert_lens[i]) / offset;
              ofs_new_vgroup *= scalar;
            }
          }
        }
        if (vert_nors) {
          madd_v3_v3fl(positions[vert_index], vert_nors[i], ofs_new_vgroup);
        }
        else {
          madd_v3_v3fl(positions[vert_index], mesh_vert_normals[i], ofs_new_vgroup);
        }
      }
    }

    if (do_bevel_convex) {
      for (uint i = 0; i < edges_num; i++) {
        if (edge_users[i] == INVALID_PAIR) {
          float angle = edge_angs[i];
          result_edge_bweight[i] = clamp_f(result_edge_bweight[i] +
                                               (angle < M_PI ? clamp_f(bevel_convex, 0.0f, 1.0f) :
                                                               clamp_f(bevel_convex, -1.0f, 0.0f)),
                                           0.0f,
                                           1.0f);
          if (do_shell) {
            result_edge_bweight[i + edges_num] = clamp_f(
                result_edge_bweight[i + edges_num] + (angle > M_PI ?
                                                          clamp_f(bevel_convex, 0.0f, 1.0f) :
                                                          clamp_f(bevel_convex, -1.0f, 0.0f)),
                0,
                1.0f);
          }
        }
      }
      if (!do_rim) {
        MEM_freeN(edge_users);
      }
      MEM_freeN(edge_angs);
    }

    if (do_clamp) {
      MEM_freeN(vert_lens);
      if (do_angle_clamp) {
        MEM_freeN(vert_angs);
      }
    }
  }
  else {
#ifdef USE_NONMANIFOLD_WORKAROUND
    const bool check_non_manifold = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) != 0;
#endif
    /* same as EM_solidify() in editmesh_lib.c */
    float *vert_angles = MEM_calloc_arrayN(
        verts_num, sizeof(float[2]), "mod_solid_pair"); /* 2 in 1 */
    float *vert_accum = vert_angles + verts_num;
    uint vidx;
    uint i;

    if (vert_nors == NULL) {
      vert_nors = MEM_malloc_arrayN(verts_num, sizeof(float[3]), "mod_solid_vno");
      for (i = 0; i < verts_num; i++) {
        copy_v3_v3(vert_nors[i], mesh_vert_normals[i]);
      }
    }

    const MPoly *mp;
    for (i = 0, mp = mpoly; i < polys_num; i++, mp++) {
      /* #BKE_mesh_calc_poly_angles logic is inlined here */
      float nor_prev[3];
      float nor_next[3];

      int i_curr = mp->totloop - 1;
      int i_next = 0;

      const MLoop *ml = &mloop[mp->loopstart];

      sub_v3_v3v3(nor_prev, positions[ml[i_curr - 1].v], positions[ml[i_curr].v]);
      normalize_v3(nor_prev);

      while (i_next < mp->totloop) {
        float angle;
        sub_v3_v3v3(nor_next, positions[ml[i_curr].v], positions[ml[i_next].v]);
        normalize_v3(nor_next);
        angle = angle_normalized_v3v3(nor_prev, nor_next);

        /* --- not related to angle calc --- */
        if (angle < FLT_EPSILON) {
          angle = FLT_EPSILON;
        }

        vidx = ml[i_curr].v;
        vert_accum[vidx] += angle;

#ifdef USE_NONMANIFOLD_WORKAROUND
        /* skip 3+ face user edges */
        if ((check_non_manifold == false) ||
            LIKELY(!BLI_BITMAP_TEST(edge_tmp_tag, ml[i_curr].e) &&
                   !BLI_BITMAP_TEST(edge_tmp_tag, ml[i_next].e))) {
          vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], poly_nors[i]) *
                               angle;
        }
        else {
          vert_angles[vidx] += angle;
        }
#else
        vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], poly_nors[i]) * angle;
#endif
        /* --- end non-angle-calc section --- */

        /* step */
        copy_v3_v3(nor_prev, nor_next);
        i_curr = i_next;
        i_next++;
      }
    }

    /* vertex group support */
    if (dvert) {
      const MDeformVert *dv = dvert;
      float scalar;

      if (defgrp_invert) {
        for (i = 0; i < verts_num; i++, dv++) {
          scalar = 1.0f - BKE_defvert_find_weight(dv, defgrp_index);
          scalar = offset_fac_vg + (scalar * offset_fac_vg_inv);
          vert_angles[i] *= scalar;
        }
      }
      else {
        for (i = 0; i < verts_num; i++, dv++) {
          scalar = BKE_defvert_find_weight(dv, defgrp_index);
          scalar = offset_fac_vg + (scalar * offset_fac_vg_inv);
          vert_angles[i] *= scalar;
        }
      }
    }

    /* for angle clamp */
    float *vert_angs = NULL;
    /* for bevel convex */
    float *edge_angs = NULL;

    if (do_angle_clamp || do_bevel_convex) {
      uint eidx;
      if (do_angle_clamp) {
        vert_angs = MEM_malloc_arrayN(verts_num, sizeof(float), "vert_angs even");
        copy_vn_fl(vert_angs, (int)verts_num, 0.5f * M_PI);
      }
      if (do_bevel_convex) {
        edge_angs = MEM_malloc_arrayN(edges_num, sizeof(float), "edge_angs even");
        if (!do_rim) {
          edge_users = MEM_malloc_arrayN(edges_num, sizeof(*edge_users), "solid_mod edges");
        }
      }
      uint(*edge_user_pairs)[2] = MEM_malloc_arrayN(
          edges_num, sizeof(*edge_user_pairs), "edge_user_pairs");
      for (eidx = 0; eidx < edges_num; eidx++) {
        edge_user_pairs[eidx][0] = INVALID_UNUSED;
        edge_user_pairs[eidx][1] = INVALID_UNUSED;
      }
      for (i = 0, mp = orig_mpoly; i < polys_num; i++, mp++) {
        const MLoop *ml = orig_mloop + mp->loopstart;
        const MLoop *ml_prev = ml + (mp->totloop - 1);

        for (int j = 0; j < mp->totloop; j++, ml++) {
          /* add edge user */
          eidx = ml_prev->e;
          const MEdge *ed = orig_medge + eidx;
          BLI_assert(ELEM(ml_prev->v, ed->v1, ed->v2) && ELEM(ml->v, ed->v1, ed->v2));
          char flip = (char)((ml_prev->v > ml->v) == (ed->v1 < ed->v2));
          if (edge_user_pairs[eidx][flip] == INVALID_UNUSED) {
            edge_user_pairs[eidx][flip] = i;
          }
          else {
            edge_user_pairs[eidx][0] = INVALID_PAIR;
            edge_user_pairs[eidx][1] = INVALID_PAIR;
          }
          ml_prev = ml;
        }
      }
      const MEdge *ed = orig_medge;
      float e[3];
      for (i = 0; i < edges_num; i++, ed++) {
        if (!ELEM(edge_user_pairs[i][0], INVALID_UNUSED, INVALID_PAIR) &&
            !ELEM(edge_user_pairs[i][1], INVALID_UNUSED, INVALID_PAIR)) {
          const float *n0 = poly_nors[edge_user_pairs[i][0]];
          const float *n1 = poly_nors[edge_user_pairs[i][1]];
          if (do_angle_clamp) {
            const float angle = M_PI - angle_normalized_v3v3(n0, n1);
            vert_angs[ed->v1] = max_ff(vert_angs[ed->v1], angle);
            vert_angs[ed->v2] = max_ff(vert_angs[ed->v2], angle);
          }
          if (do_bevel_convex) {
            sub_v3_v3v3(e, orig_positions[ed->v1], orig_positions[ed->v2]);
            normalize_v3(e);
            edge_angs[i] = angle_signed_on_axis_v3v3_v3(n0, n1, e);
            if (!do_rim) {
              edge_users[i] = INVALID_PAIR;
            }
          }
        }
      }
      MEM_freeN(edge_user_pairs);
    }

    if (do_clamp) {
      const float clamp_fac = 1 + (do_angle_clamp ? fabsf(smd->offset_fac) : 0);
      const float offset = fabsf(smd->offset) * smd->offset_clamp * clamp_fac;
      if (offset > FLT_EPSILON) {
        float *vert_lens_sq = MEM_malloc_arrayN(verts_num, sizeof(float), "vert_lens_sq");
        const float offset_sq = offset * offset;
        copy_vn_fl(vert_lens_sq, (int)verts_num, FLT_MAX);
        for (i = 0; i < edges_num; i++) {
          const float ed_len = len_squared_v3v3(positions[medge[i].v1], positions[medge[i].v2]);
          vert_lens_sq[medge[i].v1] = min_ff(vert_lens_sq[medge[i].v1], ed_len);
          vert_lens_sq[medge[i].v2] = min_ff(vert_lens_sq[medge[i].v2], ed_len);
        }
        if (do_angle_clamp) {
          for (i = 0; i < verts_num; i++) {
            float cos_ang = cosf(vert_angs[i] * 0.5f);
            if (cos_ang > 0) {
              float max_off = sqrtf(vert_lens_sq[i]) * 0.5f / cos_ang;
              if (max_off < offset * 0.5f) {
                vert_angles[i] *= max_off / offset * 2;
              }
            }
          }
          MEM_freeN(vert_angs);
        }
        else {
          for (i = 0; i < verts_num; i++) {
            if (vert_lens_sq[i] < offset_sq) {
              float scalar = sqrtf(vert_lens_sq[i]) / offset;
              vert_angles[i] *= scalar;
            }
          }
        }
        MEM_freeN(vert_lens_sq);
      }
    }

    if (do_bevel_convex) {
      for (i = 0; i < edges_num; i++) {
        if (edge_users[i] == INVALID_PAIR) {
          float angle = edge_angs[i];
          result_edge_bweight[i] = clamp_f(result_edge_bweight[i] +
                                               (angle < M_PI ? clamp_f(bevel_convex, 0.0f, 1.0f) :
                                                               clamp_f(bevel_convex, -1.0f, 0.0f)),
                                           0.0f,
                                           1.0f);
          if (do_shell) {
            result_edge_bweight[i + edges_num] = clamp_f(
                result_edge_bweight[i + edges_num] +
                    (angle > M_PI ? clamp_f(bevel_convex, 0, 1) : clamp_f(bevel_convex, -1, 0)),
                0.0f,
                1.0f);
          }
        }
      }
      if (!do_rim) {
        MEM_freeN(edge_users);
      }
      MEM_freeN(edge_angs);
    }

#undef INVALID_UNUSED
#undef INVALID_PAIR

    if (ofs_new != 0.0f) {
      uint i_orig, i_end;
      bool do_shell_align;

      uint vert_index;
      INIT_VERT_ARRAY_OFFSETS(false);

      for (i_orig = 0; i_orig < i_end; i_orig++, vert_index++) {
        const uint i_other = do_shell_align ? i_orig : new_vert_arr[i_orig];
        if (vert_accum[i_other]) { /* zero if unselected */
          madd_v3_v3fl(positions[vert_index],
                       vert_nors[i_other],
                       ofs_new * (vert_angles[i_other] / vert_accum[i_other]));
        }
      }
    }

    if (ofs_orig != 0.0f) {
      uint i_orig, i_end;
      bool do_shell_align;

      /* same as above but swapped, intentional use of 'ofs_new' */
      uint vert_index;
      INIT_VERT_ARRAY_OFFSETS(true);

      for (i_orig = 0; i_orig < i_end; i_orig++, vert_index++) {
        const uint i_other = do_shell_align ? i_orig : new_vert_arr[i_orig];
        if (vert_accum[i_other]) { /* zero if unselected */
          madd_v3_v3fl(positions[vert_index],
                       vert_nors[i_other],
                       ofs_orig * (vert_angles[i_other] / vert_accum[i_other]));
        }
      }
    }

    MEM_freeN(vert_angles);
  }

#ifdef USE_NONMANIFOLD_WORKAROUND
  MEM_SAFE_FREE(edge_tmp_tag);
#endif

  if (vert_nors) {
    MEM_freeN(vert_nors);
  }

  /* must recalculate normals with vgroups since they can displace unevenly T26888. */
  if (BKE_mesh_vertex_normals_are_dirty(mesh) || do_rim || dvert) {
    BKE_mesh_normals_tag_dirty(result);
  }
  else if (do_shell) {
    uint i;
    /* flip vertex normals for copied verts */
    for (i = 0; i < verts_num; i++) {
      negate_v3((float *)mesh_vert_normals[i]);
    }
  }

  /* Add vertex weights for rim and shell vgroups. */
  if (shell_defgrp_index != -1 || rim_defgrp_index != -1) {
    MDeformVert *dst_dvert = BKE_mesh_deform_verts_for_write(result);

    /* Ultimate security check. */
    if (dst_dvert != NULL) {

      if (rim_defgrp_index != -1) {
        for (uint i = 0; i < rimVerts; i++) {
          BKE_defvert_ensure_index(&dst_dvert[new_vert_arr[i]], rim_defgrp_index)->weight = 1.0f;
          BKE_defvert_ensure_index(&dst_dvert[(do_shell ? new_vert_arr[i] : i) + verts_num],
                                   rim_defgrp_index)
              ->weight = 1.0f;
        }
      }

      if (shell_defgrp_index != -1) {
        for (uint i = verts_num; i < result->totvert; i++) {
          BKE_defvert_ensure_index(&dst_dvert[i], shell_defgrp_index)->weight = 1.0f;
        }
      }
    }
  }
  if (do_rim) {
    uint i;

    /* NOTE(@campbellbarton): Unfortunately re-calculate the normals for the new edge
     * faces is necessary. This could be done in many ways, but probably the quickest
     * way is to calculate the average normals for side faces only.
     * Then blend them with the normals of the edge verts.
     *
     * At the moment its easiest to allocate an entire array for every vertex,
     * even though we only need edge verts. */

#define SOLIDIFY_SIDE_NORMALS

#ifdef SOLIDIFY_SIDE_NORMALS
    /* NOTE(@sybren): due to the code setting normals dirty a few lines above,
     * do_side_normals is always false. */
    const bool do_side_normals = !BKE_mesh_vertex_normals_are_dirty(result);
    /* annoying to allocate these since we only need the edge verts, */
    float(*edge_vert_nos)[3] = do_side_normals ?
                                   MEM_calloc_arrayN(verts_num, sizeof(float[3]), __func__) :
                                   NULL;
    float nor[3];
#endif
    const float crease_rim = smd->crease_rim;
    const float crease_outer = smd->crease_outer;
    const float crease_inner = smd->crease_inner;

    int *origindex_edge;
    int *orig_ed;
    uint j;

    float *result_edge_crease = NULL;
    if (crease_rim || crease_outer || crease_inner) {
      result_edge_crease = (float *)CustomData_add_layer(
          &result->edata, CD_CREASE, CD_SET_DEFAULT, NULL, result->totedge);
    }

    /* add faces & edges */
    origindex_edge = CustomData_get_layer(&result->edata, CD_ORIGINDEX);
    orig_ed = (origindex_edge) ? &origindex_edge[(edges_num * stride) + newEdges] : NULL;
    MEdge *ed = &medge[(edges_num * stride) + newEdges]; /* start after copied edges */
    for (i = 0; i < rimVerts; i++, ed++) {
      ed->v1 = new_vert_arr[i];
      ed->v2 = (do_shell ? new_vert_arr[i] : i) + verts_num;
      ed->flag |= ME_EDGEDRAW;

      if (orig_ed) {
        *orig_ed = ORIGINDEX_NONE;
        orig_ed++;
      }

      if (crease_rim) {
        result_edge_crease[ed - medge] = crease_rim;
      }
    }

    /* faces */
    MPoly *mp = mpoly + (polys_num * stride);
    MLoop *ml = mloop + (loops_num * stride);
    j = 0;
    for (i = 0; i < newPolys; i++, mp++) {
      uint eidx = new_edge_arr[i];
      uint pidx = edge_users[eidx];
      int k1, k2;
      bool flip;

      if (pidx >= polys_num) {
        pidx -= polys_num;
        flip = true;
      }
      else {
        flip = false;
      }

      ed = medge + eidx;

      /* copy most of the face settings */
      CustomData_copy_data(
          &mesh->pdata, &result->pdata, (int)pidx, (int)((polys_num * stride) + i), 1);
      mp->loopstart = (int)(j + (loops_num * stride));
      mp->flag = mpoly[pidx].flag;

      /* notice we use 'mp->totloop' which is later overwritten,
       * we could lookup the original face but there's no point since this is a copy
       * and will have the same value, just take care when changing order of assignment */

      /* prev loop */
      k1 = mpoly[pidx].loopstart + (((edge_order[eidx] - 1) + mp->totloop) % mp->totloop);

      k2 = mpoly[pidx].loopstart + (edge_order[eidx]);

      mp->totloop = 4;

      CustomData_copy_data(
          &mesh->ldata, &result->ldata, k2, (int)((loops_num * stride) + j + 0), 1);
      CustomData_copy_data(
          &mesh->ldata, &result->ldata, k1, (int)((loops_num * stride) + j + 1), 1);
      CustomData_copy_data(
          &mesh->ldata, &result->ldata, k1, (int)((loops_num * stride) + j + 2), 1);
      CustomData_copy_data(
          &mesh->ldata, &result->ldata, k2, (int)((loops_num * stride) + j + 3), 1);

      if (flip == false) {
        ml[j].v = ed->v1;
        ml[j++].e = eidx;

        ml[j].v = ed->v2;
        ml[j++].e = (edges_num * stride) + old_vert_arr[ed->v2] + newEdges;

        ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + verts_num;
        ml[j++].e = (do_shell ? eidx : i) + edges_num;

        ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + verts_num;
        ml[j++].e = (edges_num * stride) + old_vert_arr[ed->v1] + newEdges;
      }
      else {
        ml[j].v = ed->v2;
        ml[j++].e = eidx;

        ml[j].v = ed->v1;
        ml[j++].e = (edges_num * stride) + old_vert_arr[ed->v1] + newEdges;

        ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + verts_num;
        ml[j++].e = (do_shell ? eidx : i) + edges_num;

        ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + verts_num;
        ml[j++].e = (edges_num * stride) + old_vert_arr[ed->v2] + newEdges;
      }

      if (origindex_edge) {
        origindex_edge[ml[j - 3].e] = ORIGINDEX_NONE;
        origindex_edge[ml[j - 1].e] = ORIGINDEX_NONE;
      }

      /* use the next material index if option enabled */
      if (mat_ofs_rim) {
        dst_material_index[mp - mpoly] += mat_ofs_rim;
        CLAMP(dst_material_index[mp - mpoly], 0, mat_nr_max);
      }
      if (crease_outer) {
        /* crease += crease_outer; without wrapping */
        float *cr = &(result_edge_crease[ed - medge]);
        float tcr = *cr + crease_outer;
        *cr = tcr > 1.0f ? 1.0f : tcr;
      }

      if (crease_inner) {
        /* crease += crease_inner; without wrapping */
        float *cr = &(result_edge_crease[edges_num + (do_shell ? eidx : i)]);
        float tcr = *cr + crease_inner;
        *cr = tcr > 1.0f ? 1.0f : tcr;
      }

#ifdef SOLIDIFY_SIDE_NORMALS
      if (do_side_normals) {
        normal_quad_v3(nor,
                       positions[ml[j - 4].v],
                       positions[ml[j - 3].v],
                       positions[ml[j - 2].v],
                       positions[ml[j - 1].v]);

        add_v3_v3(edge_vert_nos[ed->v1], nor);
        add_v3_v3(edge_vert_nos[ed->v2], nor);
      }
#endif
    }

#ifdef SOLIDIFY_SIDE_NORMALS
    if (do_side_normals) {
      const MEdge *ed_orig = medge;
      ed = medge + (edges_num * stride);
      for (i = 0; i < rimVerts; i++, ed++, ed_orig++) {
        float nor_cpy[3];
        int k;

        /* NOTE: only the first vertex (lower half of the index) is calculated. */
        BLI_assert(ed->v1 < verts_num);
        normalize_v3_v3(nor_cpy, edge_vert_nos[ed_orig->v1]);

        for (k = 0; k < 2; k++) { /* loop over both verts of the edge */
          copy_v3_v3(nor, mesh_vert_normals[*(&ed->v1 + k)]);
          add_v3_v3(nor, nor_cpy);
          normalize_v3(nor);
          copy_v3_v3((float *)mesh_vert_normals[*(&ed->v1 + k)], nor);
        }
      }

      MEM_freeN(edge_vert_nos);
    }
#endif

    MEM_freeN(new_vert_arr);
    MEM_freeN(new_edge_arr);

    MEM_freeN(edge_users);
    MEM_freeN(edge_order);
  }

  if (old_vert_arr) {
    MEM_freeN(old_vert_arr);
  }

  return result;
}

#undef SOLIDIFY_SIDE_NORMALS

/** \} */