Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MOD_solidify_nonmanifold.c « intern « modifiers « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9c96de884cb523a491f8bdedb9d59112e52a27d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
/* SPDX-License-Identifier: GPL-2.0-or-later */

/** \file
 * \ingroup modifiers
 */

#include "BLI_utildefines.h"

#include "BLI_math.h"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"

#include "MEM_guardedalloc.h"

#include "BKE_deform.h"
#include "BKE_mesh.h"
#include "BKE_particle.h"

#include "MOD_modifiertypes.h"
#include "MOD_solidify_util.h" /* Own include. */
#include "MOD_util.h"

#ifdef __GNUC__
#  pragma GCC diagnostic error "-Wsign-conversion"
#endif

/* -------------------------------------------------------------------- */
/** \name Local Utilities
 * \{ */

/**
 * Similar to #project_v3_v3v3_normalized that returns the dot-product.
 */
static float project_v3_v3(float r[3], const float a[3])
{
  float d = dot_v3v3(r, a);
  r[0] -= a[0] * d;
  r[1] -= a[1] * d;
  r[2] -= a[2] * d;
  return d;
}

static float angle_signed_on_axis_normalized_v3v3_v3(const float n[3],
                                                     const float ref_n[3],
                                                     const float axis[3])
{
  float d = dot_v3v3(n, ref_n);
  CLAMP(d, -1, 1);
  float angle = acosf(d);
  float cross[3];
  cross_v3_v3v3(cross, n, ref_n);
  if (dot_v3v3(cross, axis) >= 0) {
    angle = 2 * M_PI - angle;
  }
  return angle;
}

static float clamp_nonzero(const float value, const float epsilon)
{
  BLI_assert(!(epsilon < 0.0f));
  /* Return closest value with `abs(value) >= epsilon`. */
  if (value < 0.0f) {
    return min_ff(value, -epsilon);
  }
  return max_ff(value, epsilon);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Main Solidify Function
 * \{ */

/* Data structures for manifold solidify. */

typedef struct NewFaceRef {
  const MPoly *face;
  uint index;
  bool reversed;
  struct NewEdgeRef **link_edges;
} NewFaceRef;

typedef struct OldEdgeFaceRef {
  uint *faces;
  uint faces_len;
  bool *faces_reversed;
  uint used;
} OldEdgeFaceRef;

typedef struct OldVertEdgeRef {
  uint *edges;
  uint edges_len;
} OldVertEdgeRef;

typedef struct NewEdgeRef {
  uint old_edge;
  NewFaceRef *faces[2];
  struct EdgeGroup *link_edge_groups[2];
  float angle;
  uint new_edge;
} NewEdgeRef;

typedef struct EdgeGroup {
  bool valid;
  NewEdgeRef **edges;
  uint edges_len;
  uint open_face_edge;
  bool is_orig_closed;
  bool is_even_split;
  uint split;
  bool is_singularity;
  uint topo_group;
  float co[3];
  float no[3];
  uint new_vert;
} EdgeGroup;

typedef struct FaceKeyPair {
  float angle;
  NewFaceRef *face;
} FaceKeyPair;

static int comp_float_int_pair(const void *a, const void *b)
{
  FaceKeyPair *x = (FaceKeyPair *)a;
  FaceKeyPair *y = (FaceKeyPair *)b;
  return (int)(x->angle > y->angle) - (int)(x->angle < y->angle);
}

/* NOLINTNEXTLINE: readability-function-size */
Mesh *MOD_solidify_nonmanifold_modifyMesh(ModifierData *md,
                                          const ModifierEvalContext *ctx,
                                          Mesh *mesh)
{
  Mesh *result;
  const SolidifyModifierData *smd = (SolidifyModifierData *)md;

  const uint verts_num = (uint)mesh->totvert;
  const uint edges_num = (uint)mesh->totedge;
  const uint polys_num = (uint)mesh->totpoly;

  if (polys_num == 0 && verts_num != 0) {
    return mesh;
  }

  /* Only use material offsets if we have 2 or more materials. */
  const short mat_nrs = ctx->object->totcol > 1 ? ctx->object->totcol : 1;
  const short mat_nr_max = mat_nrs - 1;
  const short mat_ofs = mat_nrs > 1 ? smd->mat_ofs : 0;
  const short mat_ofs_rim = mat_nrs > 1 ? smd->mat_ofs_rim : 0;

  /* #ofs_front and #ofs_back are the offset from the original
   * surface along the normal, where #oft_front is along the positive
   * and #oft_back is along the negative normal. */
  const float ofs_front = (smd->offset_fac + 1.0f) * 0.5f * smd->offset;
  const float ofs_back = ofs_front - smd->offset * smd->offset_fac;
  /* #ofs_front_clamped and #ofs_back_clamped are the same as
   * #ofs_front and #ofs_back, but never zero. */
  const float ofs_front_clamped = clamp_nonzero(ofs_front, 1e-5f);
  const float ofs_back_clamped = clamp_nonzero(ofs_back, 1e-5f);
  const float offset_fac_vg = smd->offset_fac_vg;
  const float offset_fac_vg_inv = 1.0f - smd->offset_fac_vg;
  const float offset = fabsf(smd->offset) * smd->offset_clamp;
  const bool do_angle_clamp = smd->flag & MOD_SOLIDIFY_OFFSET_ANGLE_CLAMP;
  /* #do_flip, flips the normals of the result. This is inverted if negative thickness
   * is used, since simple solidify with negative thickness keeps the faces facing outside. */
  const bool do_flip = ((smd->flag & MOD_SOLIDIFY_FLIP) != 0) == (smd->offset > 0);
  const bool do_rim = smd->flag & MOD_SOLIDIFY_RIM;
  const bool do_shell = ((smd->flag & MOD_SOLIDIFY_RIM) && (smd->flag & MOD_SOLIDIFY_NOSHELL)) ==
                        0;
  const bool do_clamp = (smd->offset_clamp != 0.0f);

  const float bevel_convex = smd->bevel_convex;

  const MDeformVert *dvert;
  const bool defgrp_invert = (smd->flag & MOD_SOLIDIFY_VGROUP_INV) != 0;
  int defgrp_index;
  const int shell_defgrp_index = BKE_id_defgroup_name_index(&mesh->id, smd->shell_defgrp_name);
  const int rim_defgrp_index = BKE_id_defgroup_name_index(&mesh->id, smd->rim_defgrp_name);

  MOD_get_vgroup(ctx->object, mesh, smd->defgrp_name, &dvert, &defgrp_index);

  const bool do_flat_faces = dvert && (smd->flag & MOD_SOLIDIFY_NONMANIFOLD_FLAT_FACES);

  const float(*orig_positions)[3] = BKE_mesh_positions(mesh);
  const MEdge *orig_medge = BKE_mesh_edges(mesh);
  const MPoly *orig_mpoly = BKE_mesh_polys(mesh);
  const MLoop *orig_mloop = BKE_mesh_loops(mesh);

  /* These might be null. */
  const float *orig_vert_bweight = CustomData_get_layer(&mesh->vdata, CD_BWEIGHT);
  const float *orig_edge_bweight = CustomData_get_layer(&mesh->edata, CD_BWEIGHT);
  const float *orig_edge_crease = CustomData_get_layer(&mesh->edata, CD_CREASE);

  uint new_verts_num = 0;
  uint new_edges_num = 0;
  uint new_loops_num = 0;
  uint new_polys_num = 0;

#define MOD_SOLIDIFY_EMPTY_TAG ((uint)-1)

  /* Calculate only face normals. Copied because they are modified directly below. */
  float(*poly_nors)[3] = MEM_malloc_arrayN(polys_num, sizeof(float[3]), __func__);
  memcpy(poly_nors, BKE_mesh_poly_normals_ensure(mesh), sizeof(float[3]) * polys_num);

  NewFaceRef *face_sides_arr = MEM_malloc_arrayN(
      polys_num * 2, sizeof(*face_sides_arr), "face_sides_arr in solidify");
  bool *null_faces =
      (smd->nonmanifold_offset_mode == MOD_SOLIDIFY_NONMANIFOLD_OFFSET_MODE_CONSTRAINTS) ?
          MEM_calloc_arrayN(polys_num, sizeof(*null_faces), "null_faces in solidify") :
          NULL;
  uint largest_ngon = 3;
  /* Calculate face to #NewFaceRef map. */
  {
    const MPoly *mp = orig_mpoly;
    for (uint i = 0; i < polys_num; i++, mp++) {
      /* Make normals for faces without area (should really be avoided though). */
      if (len_squared_v3(poly_nors[i]) < 0.5f) {
        const MEdge *e = orig_medge + orig_mloop[mp->loopstart].e;
        float edgedir[3];
        sub_v3_v3v3(edgedir, orig_positions[e->v2], orig_positions[e->v1]);
        if (fabsf(edgedir[2]) < fabsf(edgedir[1])) {
          poly_nors[i][2] = 1.0f;
        }
        else {
          poly_nors[i][1] = 1.0f;
        }
        if (null_faces) {
          null_faces[i] = true;
        }
      }

      NewEdgeRef **link_edges = MEM_calloc_arrayN(
          (uint)mp->totloop, sizeof(*link_edges), "NewFaceRef::link_edges in solidify");
      face_sides_arr[i * 2] = (NewFaceRef){
          .face = mp, .index = i, .reversed = false, .link_edges = link_edges};
      link_edges = MEM_calloc_arrayN(
          (uint)mp->totloop, sizeof(*link_edges), "NewFaceRef::link_edges in solidify");
      face_sides_arr[i * 2 + 1] = (NewFaceRef){
          .face = mp, .index = i, .reversed = true, .link_edges = link_edges};
      if (mp->totloop > largest_ngon) {
        largest_ngon = (uint)mp->totloop;
      }
      /* add to final mesh face count */
      if (do_shell) {
        new_polys_num += 2;
        new_loops_num += (uint)mp->totloop * 2;
      }
    }
  }

  uint *edge_adj_faces_len = MEM_calloc_arrayN(
      edges_num, sizeof(*edge_adj_faces_len), "edge_adj_faces_len in solidify");
  /* Count for each edge how many faces it has adjacent. */
  {
    const MPoly *mp = orig_mpoly;
    for (uint i = 0; i < polys_num; i++, mp++) {
      const MLoop *ml = orig_mloop + mp->loopstart;
      for (uint j = 0; j < mp->totloop; j++, ml++) {
        edge_adj_faces_len[ml->e]++;
      }
    }
  }

  /* Original edge to #NewEdgeRef map. */
  NewEdgeRef ***orig_edge_data_arr = MEM_calloc_arrayN(
      edges_num, sizeof(*orig_edge_data_arr), "orig_edge_data_arr in solidify");
  /* Original edge length cache. */
  float *orig_edge_lengths = MEM_calloc_arrayN(
      edges_num, sizeof(*orig_edge_lengths), "orig_edge_lengths in solidify");
  /* Edge groups for every original vert. */
  EdgeGroup **orig_vert_groups_arr = MEM_calloc_arrayN(
      verts_num, sizeof(*orig_vert_groups_arr), "orig_vert_groups_arr in solidify");
  /* vertex map used to map duplicates. */
  uint *vm = MEM_malloc_arrayN(verts_num, sizeof(*vm), "orig_vert_map in solidify");
  for (uint i = 0; i < verts_num; i++) {
    vm[i] = i;
  }

  uint edge_index = 0;
  uint loop_index = 0;
  uint poly_index = 0;

  bool has_singularities = false;

  /* Vert edge adjacent map. */
  OldVertEdgeRef **vert_adj_edges = MEM_calloc_arrayN(
      verts_num, sizeof(*vert_adj_edges), "vert_adj_edges in solidify");
  /* Original vertex positions (changed for degenerated geometry). */
  float(*orig_mvert_co)[3] = MEM_malloc_arrayN(
      verts_num, sizeof(*orig_mvert_co), "orig_mvert_co in solidify");
  /* Fill in the original vertex positions. */
  for (uint i = 0; i < verts_num; i++) {
    orig_mvert_co[i][0] = orig_positions[i][0];
    orig_mvert_co[i][1] = orig_positions[i][1];
    orig_mvert_co[i][2] = orig_positions[i][2];
  }

  /* Create edge to #NewEdgeRef map. */
  {
    OldEdgeFaceRef **edge_adj_faces = MEM_calloc_arrayN(
        edges_num, sizeof(*edge_adj_faces), "edge_adj_faces in solidify");

    /* Create link_faces for edges. */
    {
      const MPoly *mp = orig_mpoly;
      for (uint i = 0; i < polys_num; i++, mp++) {
        const MLoop *ml = orig_mloop + mp->loopstart;
        for (uint j = 0; j < mp->totloop; j++, ml++) {
          const uint edge = ml->e;
          const bool reversed = orig_medge[edge].v2 != ml->v;
          OldEdgeFaceRef *old_face_edge_ref = edge_adj_faces[edge];
          if (old_face_edge_ref == NULL) {
            const uint len = edge_adj_faces_len[edge];
            BLI_assert(len > 0);
            uint *adj_faces = MEM_malloc_arrayN(
                len, sizeof(*adj_faces), "OldEdgeFaceRef::faces in solidify");
            bool *adj_faces_reversed = MEM_malloc_arrayN(
                len, sizeof(*adj_faces_reversed), "OldEdgeFaceRef::reversed in solidify");
            adj_faces[0] = i;
            for (uint k = 1; k < len; k++) {
              adj_faces[k] = MOD_SOLIDIFY_EMPTY_TAG;
            }
            adj_faces_reversed[0] = reversed;
            OldEdgeFaceRef *ref = MEM_mallocN(sizeof(*ref), "OldEdgeFaceRef in solidify");
            *ref = (OldEdgeFaceRef){adj_faces, len, adj_faces_reversed, 1};
            edge_adj_faces[edge] = ref;
          }
          else {
            for (uint k = 1; k < old_face_edge_ref->faces_len; k++) {
              if (old_face_edge_ref->faces[k] == MOD_SOLIDIFY_EMPTY_TAG) {
                old_face_edge_ref->faces[k] = i;
                old_face_edge_ref->faces_reversed[k] = reversed;
                break;
              }
            }
          }
        }
      }
    }

    float edgedir[3] = {0, 0, 0};
    uint *vert_adj_edges_len = MEM_calloc_arrayN(
        verts_num, sizeof(*vert_adj_edges_len), "vert_adj_edges_len in solidify");

    /* Calculate edge lengths and len vert_adj edges. */
    {
      bool *face_singularity = MEM_calloc_arrayN(
          polys_num, sizeof(*face_singularity), "face_sides_arr in solidify");

      const float merge_tolerance_sqr = smd->merge_tolerance * smd->merge_tolerance;
      uint *combined_verts = MEM_calloc_arrayN(
          verts_num, sizeof(*combined_verts), "combined_verts in solidify");

      const MEdge *ed = orig_medge;
      for (uint i = 0; i < edges_num; i++, ed++) {
        if (edge_adj_faces_len[i] > 0) {
          uint v1 = vm[ed->v1];
          uint v2 = vm[ed->v2];
          if (v1 == v2) {
            continue;
          }

          if (v2 < v1) {
            SWAP(uint, v1, v2);
          }
          sub_v3_v3v3(edgedir, orig_mvert_co[v2], orig_mvert_co[v1]);
          orig_edge_lengths[i] = len_squared_v3(edgedir);

          if (orig_edge_lengths[i] <= merge_tolerance_sqr) {
            /* Merge verts. But first check if that would create a higher poly count. */
            /* This check is very slow. It would need the vertex edge links to get
             * accelerated that are not yet available at this point. */
            bool can_merge = true;
            for (uint k = 0; k < edges_num && can_merge; k++) {
              if (k != i && edge_adj_faces_len[k] > 0 &&
                  (ELEM(vm[orig_medge[k].v1], v1, v2) != ELEM(vm[orig_medge[k].v2], v1, v2))) {
                for (uint j = 0; j < edge_adj_faces[k]->faces_len && can_merge; j++) {
                  const MPoly *mp = orig_mpoly + edge_adj_faces[k]->faces[j];
                  uint changes = 0;
                  int cur = mp->totloop - 1;
                  for (int next = 0; next < mp->totloop && changes <= 2; next++) {
                    uint cur_v = vm[orig_mloop[mp->loopstart + cur].v];
                    uint next_v = vm[orig_mloop[mp->loopstart + next].v];
                    changes += (ELEM(cur_v, v1, v2) != ELEM(next_v, v1, v2));
                    cur = next;
                  }
                  can_merge = can_merge && changes <= 2;
                }
              }
            }

            if (!can_merge) {
              orig_edge_lengths[i] = 0.0f;
              vert_adj_edges_len[v1]++;
              vert_adj_edges_len[v2]++;
              continue;
            }

            mul_v3_fl(edgedir,
                      (combined_verts[v2] + 1) /
                          (float)(combined_verts[v1] + combined_verts[v2] + 2));
            add_v3_v3(orig_mvert_co[v1], edgedir);
            for (uint j = v2; j < verts_num; j++) {
              if (vm[j] == v2) {
                vm[j] = v1;
              }
            }
            vert_adj_edges_len[v1] += vert_adj_edges_len[v2];
            vert_adj_edges_len[v2] = 0;
            combined_verts[v1] += combined_verts[v2] + 1;

            if (do_shell) {
              new_loops_num -= edge_adj_faces_len[i] * 2;
            }

            edge_adj_faces_len[i] = 0;
            MEM_freeN(edge_adj_faces[i]->faces);
            MEM_freeN(edge_adj_faces[i]->faces_reversed);
            MEM_freeN(edge_adj_faces[i]);
            edge_adj_faces[i] = NULL;
          }
          else {
            orig_edge_lengths[i] = sqrtf(orig_edge_lengths[i]);
            vert_adj_edges_len[v1]++;
            vert_adj_edges_len[v2]++;
          }
        }
      }
      /* remove zero faces in a second pass */
      ed = orig_medge;
      for (uint i = 0; i < edges_num; i++, ed++) {
        const uint v1 = vm[ed->v1];
        const uint v2 = vm[ed->v2];
        if (v1 == v2 && edge_adj_faces[i]) {
          /* Remove polys. */
          for (uint j = 0; j < edge_adj_faces[i]->faces_len; j++) {
            const uint face = edge_adj_faces[i]->faces[j];
            if (!face_singularity[face]) {
              bool is_singularity = true;
              for (uint k = 0; k < orig_mpoly[face].totloop; k++) {
                if (vm[orig_mloop[((uint)orig_mpoly[face].loopstart) + k].v] != v1) {
                  is_singularity = false;
                  break;
                }
              }
              if (is_singularity) {
                face_singularity[face] = true;
                /* remove from final mesh poly count */
                if (do_shell) {
                  new_polys_num -= 2;
                }
              }
            }
          }

          if (do_shell) {
            new_loops_num -= edge_adj_faces_len[i] * 2;
          }

          edge_adj_faces_len[i] = 0;
          MEM_freeN(edge_adj_faces[i]->faces);
          MEM_freeN(edge_adj_faces[i]->faces_reversed);
          MEM_freeN(edge_adj_faces[i]);
          edge_adj_faces[i] = NULL;
        }
      }

      MEM_freeN(face_singularity);
      MEM_freeN(combined_verts);
    }

    /* Create vert_adj_edges for verts. */
    {
      const MEdge *ed = orig_medge;
      for (uint i = 0; i < edges_num; i++, ed++) {
        if (edge_adj_faces_len[i] > 0) {
          const uint vs[2] = {vm[ed->v1], vm[ed->v2]};
          uint invalid_edge_index = 0;
          bool invalid_edge_reversed = false;
          for (uint j = 0; j < 2; j++) {
            const uint vert = vs[j];
            const uint len = vert_adj_edges_len[vert];
            if (len > 0) {
              OldVertEdgeRef *old_edge_vert_ref = vert_adj_edges[vert];
              if (old_edge_vert_ref == NULL) {
                uint *adj_edges = MEM_calloc_arrayN(
                    len, sizeof(*adj_edges), "OldVertEdgeRef::edges in solidify");
                adj_edges[0] = i;
                for (uint k = 1; k < len; k++) {
                  adj_edges[k] = MOD_SOLIDIFY_EMPTY_TAG;
                }
                OldVertEdgeRef *ref = MEM_mallocN(sizeof(*ref), "OldVertEdgeRef in solidify");
                *ref = (OldVertEdgeRef){adj_edges, 1};
                vert_adj_edges[vert] = ref;
              }
              else {
                const uint *f = old_edge_vert_ref->edges;
                for (uint k = 0; k < len && k <= old_edge_vert_ref->edges_len; k++, f++) {
                  const uint edge = old_edge_vert_ref->edges[k];
                  if (edge == MOD_SOLIDIFY_EMPTY_TAG || k == old_edge_vert_ref->edges_len) {
                    old_edge_vert_ref->edges[k] = i;
                    old_edge_vert_ref->edges_len++;
                    break;
                  }
                  if (vm[orig_medge[edge].v1] == vs[1 - j]) {
                    invalid_edge_index = edge + 1;
                    invalid_edge_reversed = (j == 0);
                    break;
                  }
                  if (vm[orig_medge[edge].v2] == vs[1 - j]) {
                    invalid_edge_index = edge + 1;
                    invalid_edge_reversed = (j == 1);
                    break;
                  }
                }
                if (invalid_edge_index) {
                  if (j == 1) {
                    /* Should never actually be executed. */
                    vert_adj_edges[vs[0]]->edges_len--;
                  }
                  break;
                }
              }
            }
          }
          /* Remove zero faces that are in shape of an edge. */
          if (invalid_edge_index) {
            const uint tmp = invalid_edge_index - 1;
            invalid_edge_index = i;
            i = tmp;
            OldEdgeFaceRef *i_adj_faces = edge_adj_faces[i];
            OldEdgeFaceRef *invalid_adj_faces = edge_adj_faces[invalid_edge_index];
            uint j = 0;
            for (uint k = 0; k < i_adj_faces->faces_len; k++) {
              for (uint l = 0; l < invalid_adj_faces->faces_len; l++) {
                if (i_adj_faces->faces[k] == invalid_adj_faces->faces[l] &&
                    i_adj_faces->faces[k] != MOD_SOLIDIFY_EMPTY_TAG) {
                  i_adj_faces->faces[k] = MOD_SOLIDIFY_EMPTY_TAG;
                  invalid_adj_faces->faces[l] = MOD_SOLIDIFY_EMPTY_TAG;
                  j++;
                }
              }
            }
            /* remove from final face count */
            if (do_shell) {
              new_polys_num -= 2 * j;
              new_loops_num -= 4 * j;
            }
            const uint len = i_adj_faces->faces_len + invalid_adj_faces->faces_len - 2 * j;
            uint *adj_faces = MEM_malloc_arrayN(
                len, sizeof(*adj_faces), "OldEdgeFaceRef::faces in solidify");
            bool *adj_faces_loops_reversed = MEM_malloc_arrayN(
                len, sizeof(*adj_faces_loops_reversed), "OldEdgeFaceRef::reversed in solidify");
            /* Clean merge of adj_faces. */
            j = 0;
            for (uint k = 0; k < i_adj_faces->faces_len; k++) {
              if (i_adj_faces->faces[k] != MOD_SOLIDIFY_EMPTY_TAG) {
                adj_faces[j] = i_adj_faces->faces[k];
                adj_faces_loops_reversed[j++] = i_adj_faces->faces_reversed[k];
              }
            }
            for (uint k = 0; k < invalid_adj_faces->faces_len; k++) {
              if (invalid_adj_faces->faces[k] != MOD_SOLIDIFY_EMPTY_TAG) {
                adj_faces[j] = invalid_adj_faces->faces[k];
                adj_faces_loops_reversed[j++] = (invalid_edge_reversed !=
                                                 invalid_adj_faces->faces_reversed[k]);
              }
            }
            BLI_assert(j == len);
            edge_adj_faces_len[invalid_edge_index] = 0;
            edge_adj_faces_len[i] = len;
            MEM_freeN(i_adj_faces->faces);
            MEM_freeN(i_adj_faces->faces_reversed);
            i_adj_faces->faces_len = len;
            i_adj_faces->faces = adj_faces;
            i_adj_faces->faces_reversed = adj_faces_loops_reversed;
            i_adj_faces->used += invalid_adj_faces->used;
            MEM_freeN(invalid_adj_faces->faces);
            MEM_freeN(invalid_adj_faces->faces_reversed);
            MEM_freeN(invalid_adj_faces);
            edge_adj_faces[invalid_edge_index] = i_adj_faces;
            /* Reset counter to continue. */
            i = invalid_edge_index;
          }
        }
      }
    }

    MEM_freeN(vert_adj_edges_len);

    /* Filter duplicate polys. */
    {
      const MEdge *ed = orig_medge;
      /* Iterate over edges and only check the faces around an edge for duplicates
       * (performance optimization). */
      for (uint i = 0; i < edges_num; i++, ed++) {
        if (edge_adj_faces_len[i] > 0) {
          const OldEdgeFaceRef *adj_faces = edge_adj_faces[i];
          uint adj_len = adj_faces->faces_len;
          /* Not that #adj_len doesn't need to equal edge_adj_faces_len anymore
           * because #adj_len is shared when a face got collapsed to an edge. */
          if (adj_len > 1) {
            /* For each face pair check if they have equal verts. */
            for (uint j = 0; j < adj_len; j++) {
              const uint face = adj_faces->faces[j];
              const int j_loopstart = orig_mpoly[face].loopstart;
              const int totloop = orig_mpoly[face].totloop;
              const uint j_first_v = vm[orig_mloop[j_loopstart].v];
              for (uint k = j + 1; k < adj_len; k++) {
                if (orig_mpoly[adj_faces->faces[k]].totloop != totloop) {
                  continue;
                }
                /* Find first face first loop vert in second face loops. */
                const int k_loopstart = orig_mpoly[adj_faces->faces[k]].loopstart;
                int l;
                const MLoop *ml = orig_mloop + k_loopstart;
                for (l = 0; l < totloop && vm[ml->v] != j_first_v; l++, ml++) {
                  /* Pass. */
                }
                if (l == totloop) {
                  continue;
                }
                /* Check if all following loops have equal verts. */
                const bool reversed = adj_faces->faces_reversed[j] != adj_faces->faces_reversed[k];
                const int count_dir = reversed ? -1 : 1;
                bool has_diff = false;
                ml = orig_mloop + j_loopstart;
                for (int m = 0, n = l + totloop; m < totloop && !has_diff;
                     m++, n += count_dir, ml++) {
                  has_diff = has_diff || vm[ml->v] != vm[orig_mloop[k_loopstart + n % totloop].v];
                }
                /* If the faces are equal, discard one (j). */
                if (!has_diff) {
                  ml = orig_mloop + j_loopstart;
                  uint del_loops = 0;
                  for (uint m = 0; m < totloop; m++, ml++) {
                    const uint e = ml->e;
                    OldEdgeFaceRef *e_adj_faces = edge_adj_faces[e];
                    if (e_adj_faces) {
                      uint face_index = j;
                      uint *e_adj_faces_faces = e_adj_faces->faces;
                      bool *e_adj_faces_reversed = e_adj_faces->faces_reversed;
                      const uint faces_len = e_adj_faces->faces_len;
                      if (e_adj_faces_faces != adj_faces->faces) {
                        /* Find index of e in #adj_faces. */
                        for (face_index = 0;
                             face_index < faces_len && e_adj_faces_faces[face_index] != face;
                             face_index++) {
                          /* Pass. */
                        }
                        /* If not found. */
                        if (face_index == faces_len) {
                          continue;
                        }
                      }
                      else {
                        /* If we shrink #edge_adj_faces[i] we need to update this field. */
                        adj_len--;
                      }
                      memmove(e_adj_faces_faces + face_index,
                              e_adj_faces_faces + face_index + 1,
                              (faces_len - face_index - 1) * sizeof(*e_adj_faces_faces));
                      memmove(e_adj_faces_reversed + face_index,
                              e_adj_faces_reversed + face_index + 1,
                              (faces_len - face_index - 1) * sizeof(*e_adj_faces_reversed));
                      e_adj_faces->faces_len--;
                      if (edge_adj_faces_len[e] > 0) {
                        edge_adj_faces_len[e]--;
                        if (edge_adj_faces_len[e] == 0) {
                          e_adj_faces->used--;
                          edge_adj_faces[e] = NULL;
                        }
                      }
                      else if (e_adj_faces->used > 1) {
                        for (uint n = 0; n < edges_num; n++) {
                          if (edge_adj_faces[n] == e_adj_faces && edge_adj_faces_len[n] > 0) {
                            edge_adj_faces_len[n]--;
                            if (edge_adj_faces_len[n] == 0) {
                              edge_adj_faces[n]->used--;
                              edge_adj_faces[n] = NULL;
                            }
                            break;
                          }
                        }
                      }
                      del_loops++;
                    }
                  }
                  if (do_shell) {
                    new_polys_num -= 2;
                    new_loops_num -= 2 * (uint)del_loops;
                  }
                  break;
                }
              }
            }
          }
        }
      }
    }

    /* Create #NewEdgeRef array. */
    {
      const MEdge *ed = orig_medge;
      for (uint i = 0; i < edges_num; i++, ed++) {
        const uint v1 = vm[ed->v1];
        const uint v2 = vm[ed->v2];
        if (edge_adj_faces_len[i] > 0) {
          if (LIKELY(orig_edge_lengths[i] > FLT_EPSILON)) {
            sub_v3_v3v3(edgedir, orig_mvert_co[v2], orig_mvert_co[v1]);
            mul_v3_fl(edgedir, 1.0f / orig_edge_lengths[i]);
          }
          else {
            /* Smart fallback. */
            /* This makes merging non essential, but correct
             * merging will still give way better results. */
            float pos[3];
            copy_v3_v3(pos, orig_mvert_co[v2]);

            OldVertEdgeRef *link1 = vert_adj_edges[v1];
            float v1_dir[3];
            zero_v3(v1_dir);
            for (int j = 0; j < link1->edges_len; j++) {
              uint e = link1->edges[j];
              if (edge_adj_faces_len[e] > 0 && e != i) {
                uint other_v =
                    vm[vm[orig_medge[e].v1] == v1 ? orig_medge[e].v2 : orig_medge[e].v1];
                sub_v3_v3v3(edgedir, orig_mvert_co[other_v], pos);
                add_v3_v3(v1_dir, edgedir);
              }
            }
            OldVertEdgeRef *link2 = vert_adj_edges[v2];
            float v2_dir[3];
            zero_v3(v2_dir);
            for (int j = 0; j < link2->edges_len; j++) {
              uint e = link2->edges[j];
              if (edge_adj_faces_len[e] > 0 && e != i) {
                uint other_v =
                    vm[vm[orig_medge[e].v1] == v2 ? orig_medge[e].v2 : orig_medge[e].v1];
                sub_v3_v3v3(edgedir, orig_mvert_co[other_v], pos);
                add_v3_v3(v2_dir, edgedir);
              }
            }
            sub_v3_v3v3(edgedir, v2_dir, v1_dir);
            float len = normalize_v3(edgedir);
            if (len == 0.0f) {
              edgedir[0] = 0.0f;
              edgedir[1] = 0.0f;
              edgedir[2] = 1.0f;
            }
          }

          OldEdgeFaceRef *adj_faces = edge_adj_faces[i];
          const uint adj_len = adj_faces->faces_len;
          const uint *adj_faces_faces = adj_faces->faces;
          const bool *adj_faces_reversed = adj_faces->faces_reversed;
          uint new_edges_len = 0;
          FaceKeyPair *sorted_faces = MEM_malloc_arrayN(
              adj_len, sizeof(*sorted_faces), "sorted_faces in solidify");
          if (adj_len > 1) {
            new_edges_len = adj_len;
            /* Get keys for sorting. */
            float ref_nor[3] = {0, 0, 0};
            float nor[3];
            for (uint j = 0; j < adj_len; j++) {
              const bool reverse = adj_faces_reversed[j];
              const uint face_i = adj_faces_faces[j];
              if (reverse) {
                negate_v3_v3(nor, poly_nors[face_i]);
              }
              else {
                copy_v3_v3(nor, poly_nors[face_i]);
              }
              float d = 1;
              if (orig_mpoly[face_i].totloop > 3) {
                d = project_v3_v3(nor, edgedir);
                if (LIKELY(d != 0)) {
                  d = normalize_v3(nor);
                }
                else {
                  d = 1;
                }
              }
              if (UNLIKELY(d == 0.0f)) {
                sorted_faces[j].angle = 0.0f;
              }
              else if (j == 0) {
                copy_v3_v3(ref_nor, nor);
                sorted_faces[j].angle = 0.0f;
              }
              else {
                float angle = angle_signed_on_axis_normalized_v3v3_v3(nor, ref_nor, edgedir);
                sorted_faces[j].angle = -angle;
              }
              sorted_faces[j].face = face_sides_arr + adj_faces_faces[j] * 2 +
                                     (adj_faces_reversed[j] ? 1 : 0);
            }
            /* Sort faces by order around the edge (keep order in faces,
             * reversed and face_angles the same). */
            qsort(sorted_faces, adj_len, sizeof(*sorted_faces), comp_float_int_pair);
          }
          else {
            new_edges_len = 2;
            sorted_faces[0].face = face_sides_arr + adj_faces_faces[0] * 2 +
                                   (adj_faces_reversed[0] ? 1 : 0);
            if (do_rim) {
              /* Only add the loops parallel to the edge for now. */
              new_loops_num += 2;
              new_polys_num++;
            }
          }

          /* Create a list of new edges and fill it. */
          NewEdgeRef **new_edges = MEM_malloc_arrayN(
              new_edges_len + 1, sizeof(*new_edges), "new_edges in solidify");
          new_edges[new_edges_len] = NULL;
          NewFaceRef *faces[2];
          for (uint j = 0; j < new_edges_len; j++) {
            float angle;
            if (adj_len > 1) {
              const uint next_j = j + 1 == adj_len ? 0 : j + 1;
              faces[0] = sorted_faces[j].face;
              faces[1] = sorted_faces[next_j].face->reversed ? sorted_faces[next_j].face - 1 :
                                                               sorted_faces[next_j].face + 1;
              angle = sorted_faces[next_j].angle - sorted_faces[j].angle;
              if (angle < 0) {
                angle += 2 * M_PI;
              }
            }
            else {
              faces[0] = sorted_faces[0].face->reversed ? sorted_faces[0].face - j :
                                                          sorted_faces[0].face + j;
              faces[1] = NULL;
              angle = 0;
            }
            NewEdgeRef *edge_data = MEM_mallocN(sizeof(*edge_data), "edge_data in solidify");
            uint edge_data_edge_index = MOD_SOLIDIFY_EMPTY_TAG;
            if (do_shell || (adj_len == 1 && do_rim)) {
              edge_data_edge_index = 0;
            }
            *edge_data = (NewEdgeRef){.old_edge = i,
                                      .faces = {faces[0], faces[1]},
                                      .link_edge_groups = {NULL, NULL},
                                      .angle = angle,
                                      .new_edge = edge_data_edge_index};
            new_edges[j] = edge_data;
            for (uint k = 0; k < 2; k++) {
              if (faces[k] != NULL) {
                const MLoop *ml = orig_mloop + faces[k]->face->loopstart;
                for (int l = 0; l < faces[k]->face->totloop; l++, ml++) {
                  if (edge_adj_faces[ml->e] == edge_adj_faces[i]) {
                    if (ml->e != i && orig_edge_data_arr[ml->e] == NULL) {
                      orig_edge_data_arr[ml->e] = new_edges;
                    }
                    faces[k]->link_edges[l] = edge_data;
                    break;
                  }
                }
              }
            }
          }
          MEM_freeN(sorted_faces);
          orig_edge_data_arr[i] = new_edges;
          if (do_shell || (adj_len == 1 && do_rim)) {
            new_edges_num += new_edges_len;
          }
        }
      }
    }

    for (uint i = 0; i < edges_num; i++) {
      if (edge_adj_faces[i]) {
        if (edge_adj_faces[i]->used > 1) {
          edge_adj_faces[i]->used--;
        }
        else {
          MEM_freeN(edge_adj_faces[i]->faces);
          MEM_freeN(edge_adj_faces[i]->faces_reversed);
          MEM_freeN(edge_adj_faces[i]);
        }
      }
    }
    MEM_freeN(edge_adj_faces);
  }

  /* Create sorted edge groups for every vert. */
  {
    OldVertEdgeRef **adj_edges_ptr = vert_adj_edges;
    for (uint i = 0; i < verts_num; i++, adj_edges_ptr++) {
      if (*adj_edges_ptr != NULL && (*adj_edges_ptr)->edges_len >= 2) {
        EdgeGroup *edge_groups;

        int eg_index = -1;
        bool contains_long_groups = false;
        uint topo_groups = 0;

        /* Initial sorted creation. */
        {
          const uint *adj_edges = (*adj_edges_ptr)->edges;
          const uint tot_adj_edges = (*adj_edges_ptr)->edges_len;

          uint unassigned_edges_len = 0;
          for (uint j = 0; j < tot_adj_edges; j++) {
            NewEdgeRef **new_edges = orig_edge_data_arr[adj_edges[j]];
            /* TODO: check where the null pointer come from,
             * because there should not be any... */
            if (new_edges) {
              /* count the number of new edges around the original vert */
              while (*new_edges) {
                unassigned_edges_len++;
                new_edges++;
              }
            }
          }
          NewEdgeRef **unassigned_edges = MEM_malloc_arrayN(
              unassigned_edges_len, sizeof(*unassigned_edges), "unassigned_edges in solidify");
          for (uint j = 0, k = 0; j < tot_adj_edges; j++) {
            NewEdgeRef **new_edges = orig_edge_data_arr[adj_edges[j]];
            if (new_edges) {
              while (*new_edges) {
                unassigned_edges[k++] = *new_edges;
                new_edges++;
              }
            }
          }

          /* An edge group will always contain min 2 edges
           * so max edge group count can be calculated. */
          uint edge_groups_len = unassigned_edges_len / 2;
          edge_groups = MEM_calloc_arrayN(
              edge_groups_len + 1, sizeof(*edge_groups), "edge_groups in solidify");

          uint assigned_edges_len = 0;
          NewEdgeRef *found_edge = NULL;
          uint found_edge_index = 0;
          bool insert_at_start = false;
          uint eg_capacity = 5;
          NewFaceRef *eg_track_faces[2] = {NULL, NULL};
          NewFaceRef *last_open_edge_track = NULL;

          while (assigned_edges_len < unassigned_edges_len) {
            found_edge = NULL;
            insert_at_start = false;
            if (eg_index >= 0 && edge_groups[eg_index].edges_len == 0) {
              /* Called every time a new group was started in the last iteration. */
              /* Find an unused edge to start the next group
               * and setup variables to start creating it. */
              uint j = 0;
              NewEdgeRef *edge = NULL;
              while (!edge && j < unassigned_edges_len) {
                edge = unassigned_edges[j++];
                if (edge && last_open_edge_track &&
                    (edge->faces[0] != last_open_edge_track || edge->faces[1] != NULL)) {
                  edge = NULL;
                }
              }
              if (!edge && last_open_edge_track) {
                topo_groups++;
                last_open_edge_track = NULL;
                edge_groups[eg_index].topo_group++;
                j = 0;
                while (!edge && j < unassigned_edges_len) {
                  edge = unassigned_edges[j++];
                }
              }
              else if (!last_open_edge_track && eg_index > 0) {
                topo_groups++;
                edge_groups[eg_index].topo_group++;
              }
              BLI_assert(edge != NULL);
              found_edge_index = j - 1;
              found_edge = edge;
              if (!last_open_edge_track && vm[orig_medge[edge->old_edge].v1] == i) {
                eg_track_faces[0] = edge->faces[0];
                eg_track_faces[1] = edge->faces[1];
                if (edge->faces[1] == NULL) {
                  last_open_edge_track = edge->faces[0]->reversed ? edge->faces[0] - 1 :
                                                                    edge->faces[0] + 1;
                }
              }
              else {
                eg_track_faces[0] = edge->faces[1];
                eg_track_faces[1] = edge->faces[0];
              }
            }
            else if (eg_index >= 0) {
              NewEdgeRef **edge_ptr = unassigned_edges;
              for (found_edge_index = 0; found_edge_index < unassigned_edges_len;
                   found_edge_index++, edge_ptr++) {
                if (*edge_ptr) {
                  NewEdgeRef *edge = *edge_ptr;
                  if (edge->faces[0] == eg_track_faces[1]) {
                    insert_at_start = false;
                    eg_track_faces[1] = edge->faces[1];
                    found_edge = edge;
                    if (edge->faces[1] == NULL) {
                      edge_groups[eg_index].is_orig_closed = false;
                      last_open_edge_track = edge->faces[0]->reversed ? edge->faces[0] - 1 :
                                                                        edge->faces[0] + 1;
                    }
                    break;
                  }
                  if (edge->faces[0] == eg_track_faces[0]) {
                    insert_at_start = true;
                    eg_track_faces[0] = edge->faces[1];
                    found_edge = edge;
                    if (edge->faces[1] == NULL) {
                      edge_groups[eg_index].is_orig_closed = false;
                    }
                    break;
                  }
                  if (edge->faces[1] != NULL) {
                    if (edge->faces[1] == eg_track_faces[1]) {
                      insert_at_start = false;
                      eg_track_faces[1] = edge->faces[0];
                      found_edge = edge;
                      break;
                    }
                    if (edge->faces[1] == eg_track_faces[0]) {
                      insert_at_start = true;
                      eg_track_faces[0] = edge->faces[0];
                      found_edge = edge;
                      break;
                    }
                  }
                }
              }
            }
            if (found_edge) {
              unassigned_edges[found_edge_index] = NULL;
              assigned_edges_len++;
              const uint needed_capacity = edge_groups[eg_index].edges_len + 1;
              if (needed_capacity > eg_capacity) {
                eg_capacity = needed_capacity + 1;
                NewEdgeRef **new_eg = MEM_calloc_arrayN(
                    eg_capacity, sizeof(*new_eg), "edge_group realloc in solidify");
                if (insert_at_start) {
                  memcpy(new_eg + 1,
                         edge_groups[eg_index].edges,
                         edge_groups[eg_index].edges_len * sizeof(*new_eg));
                }
                else {
                  memcpy(new_eg,
                         edge_groups[eg_index].edges,
                         edge_groups[eg_index].edges_len * sizeof(*new_eg));
                }
                MEM_freeN(edge_groups[eg_index].edges);
                edge_groups[eg_index].edges = new_eg;
              }
              else if (insert_at_start) {
                memmove(edge_groups[eg_index].edges + 1,
                        edge_groups[eg_index].edges,
                        edge_groups[eg_index].edges_len * sizeof(*edge_groups[eg_index].edges));
              }
              edge_groups[eg_index].edges[insert_at_start ? 0 : edge_groups[eg_index].edges_len] =
                  found_edge;
              edge_groups[eg_index].edges_len++;
              if (edge_groups[eg_index].edges[edge_groups[eg_index].edges_len - 1]->faces[1] !=
                  NULL) {
                last_open_edge_track = NULL;
              }
              if (edge_groups[eg_index].edges_len > 3) {
                contains_long_groups = true;
              }
            }
            else {
              /* called on first iteration to clean up the eg_index = -1 and start the first group,
               * or when the current group is found to be complete (no new found_edge) */
              eg_index++;
              BLI_assert(eg_index < edge_groups_len);
              eg_capacity = 5;
              NewEdgeRef **edges = MEM_calloc_arrayN(
                  eg_capacity, sizeof(*edges), "edge_group in solidify");
              edge_groups[eg_index] = (EdgeGroup){
                  .valid = true,
                  .edges = edges,
                  .edges_len = 0,
                  .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
                  .is_orig_closed = true,
                  .is_even_split = false,
                  .split = 0,
                  .is_singularity = false,
                  .topo_group = topo_groups,
                  .co = {0.0f, 0.0f, 0.0f},
                  .no = {0.0f, 0.0f, 0.0f},
                  .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
              };
              eg_track_faces[0] = NULL;
              eg_track_faces[1] = NULL;
            }
          }
          /* #eg_index is the number of groups from here on. */
          eg_index++;
          /* #topo_groups is the number of topo groups from here on. */
          topo_groups++;

          MEM_freeN(unassigned_edges);

          /* TODO: reshape the edge_groups array to its actual size
           * after writing is finished to save on memory. */
        }

        /* Split of long self intersection groups */
        {
          uint splits = 0;
          if (contains_long_groups) {
            uint add_index = 0;
            for (uint j = 0; j < eg_index; j++) {
              const uint edges_len = edge_groups[j + add_index].edges_len;
              if (edges_len > 3) {
                bool has_doubles = false;
                bool *doubles = MEM_calloc_arrayN(
                    edges_len, sizeof(*doubles), "doubles in solidify");
                EdgeGroup g = edge_groups[j + add_index];
                for (uint k = 0; k < edges_len; k++) {
                  for (uint l = k + 1; l < edges_len; l++) {
                    if (g.edges[k]->old_edge == g.edges[l]->old_edge) {
                      doubles[k] = true;
                      doubles[l] = true;
                      has_doubles = true;
                    }
                  }
                }
                if (has_doubles) {
                  const uint prior_splits = splits;
                  const uint prior_index = add_index;
                  int unique_start = -1;
                  int first_unique_end = -1;
                  int last_split = -1;
                  int first_split = -1;
                  bool first_even_split = false;
                  uint real_k = 0;
                  while (real_k < edges_len ||
                         (g.is_orig_closed &&
                          (real_k <=
                               (first_unique_end == -1 ? 0 : first_unique_end) + (int)edges_len ||
                           first_split != last_split))) {
                    const uint k = real_k % edges_len;
                    if (!doubles[k]) {
                      if (first_unique_end != -1 && unique_start == -1) {
                        unique_start = (int)real_k;
                      }
                    }
                    else if (first_unique_end == -1) {
                      first_unique_end = (int)k;
                    }
                    else if (unique_start != -1) {
                      const uint split = (((uint)unique_start + real_k + 1) / 2) % edges_len;
                      const bool is_even_split = (((uint)unique_start + real_k) & 1);
                      if (last_split != -1) {
                        /* Override g on first split (no insert). */
                        if (prior_splits != splits) {
                          memmove(edge_groups + j + add_index + 1,
                                  edge_groups + j + add_index,
                                  ((uint)eg_index - j) * sizeof(*edge_groups));
                          add_index++;
                        }
                        if (last_split > split) {
                          const uint edges_len_group = (split + edges_len) - (uint)last_split;
                          NewEdgeRef **edges = MEM_malloc_arrayN(
                              edges_len_group, sizeof(*edges), "edge_group split in solidify");
                          memcpy(edges,
                                 g.edges + last_split,
                                 (edges_len - (uint)last_split) * sizeof(*edges));
                          memcpy(edges + (edges_len - (uint)last_split),
                                 g.edges,
                                 split * sizeof(*edges));
                          edge_groups[j + add_index] = (EdgeGroup){
                              .valid = true,
                              .edges = edges,
                              .edges_len = edges_len_group,
                              .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
                              .is_orig_closed = g.is_orig_closed,
                              .is_even_split = is_even_split,
                              .split = add_index - prior_index + 1 + (uint)!g.is_orig_closed,
                              .is_singularity = false,
                              .topo_group = g.topo_group,
                              .co = {0.0f, 0.0f, 0.0f},
                              .no = {0.0f, 0.0f, 0.0f},
                              .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
                          };
                        }
                        else {
                          const uint edges_len_group = split - (uint)last_split;
                          NewEdgeRef **edges = MEM_malloc_arrayN(
                              edges_len_group, sizeof(*edges), "edge_group split in solidify");
                          memcpy(edges, g.edges + last_split, edges_len_group * sizeof(*edges));
                          edge_groups[j + add_index] = (EdgeGroup){
                              .valid = true,
                              .edges = edges,
                              .edges_len = edges_len_group,
                              .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
                              .is_orig_closed = g.is_orig_closed,
                              .is_even_split = is_even_split,
                              .split = add_index - prior_index + 1 + (uint)!g.is_orig_closed,
                              .is_singularity = false,
                              .topo_group = g.topo_group,
                              .co = {0.0f, 0.0f, 0.0f},
                              .no = {0.0f, 0.0f, 0.0f},
                              .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
                          };
                        }
                        splits++;
                      }
                      last_split = (int)split;
                      if (first_split == -1) {
                        first_split = (int)split;
                        first_even_split = is_even_split;
                      }
                      unique_start = -1;
                    }
                    real_k++;
                  }
                  if (first_split != -1) {
                    if (!g.is_orig_closed) {
                      if (prior_splits != splits) {
                        memmove(edge_groups + (j + prior_index + 1),
                                edge_groups + (j + prior_index),
                                ((uint)eg_index + add_index - (j + prior_index)) *
                                    sizeof(*edge_groups));
                        memmove(edge_groups + (j + add_index + 2),
                                edge_groups + (j + add_index + 1),
                                ((uint)eg_index - j) * sizeof(*edge_groups));
                        add_index++;
                      }
                      else {
                        memmove(edge_groups + (j + add_index + 2),
                                edge_groups + (j + add_index + 1),
                                ((uint)eg_index - j - 1) * sizeof(*edge_groups));
                      }
                      NewEdgeRef **edges = MEM_malloc_arrayN(
                          (uint)first_split, sizeof(*edges), "edge_group split in solidify");
                      memcpy(edges, g.edges, (uint)first_split * sizeof(*edges));
                      edge_groups[j + prior_index] = (EdgeGroup){
                          .valid = true,
                          .edges = edges,
                          .edges_len = (uint)first_split,
                          .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
                          .is_orig_closed = g.is_orig_closed,
                          .is_even_split = first_even_split,
                          .split = 1,
                          .is_singularity = false,
                          .topo_group = g.topo_group,
                          .co = {0.0f, 0.0f, 0.0f},
                          .no = {0.0f, 0.0f, 0.0f},
                          .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
                      };
                      add_index++;
                      splits++;
                      edges = MEM_malloc_arrayN(edges_len - (uint)last_split,
                                                sizeof(*edges),
                                                "edge_group split in solidify");
                      memcpy(edges,
                             g.edges + last_split,
                             (edges_len - (uint)last_split) * sizeof(*edges));
                      edge_groups[j + add_index] = (EdgeGroup){
                          .valid = true,
                          .edges = edges,
                          .edges_len = (edges_len - (uint)last_split),
                          .open_face_edge = MOD_SOLIDIFY_EMPTY_TAG,
                          .is_orig_closed = g.is_orig_closed,
                          .is_even_split = false,
                          .split = add_index - prior_index + 1,
                          .is_singularity = false,
                          .topo_group = g.topo_group,
                          .co = {0.0f, 0.0f, 0.0f},
                          .no = {0.0f, 0.0f, 0.0f},
                          .new_vert = MOD_SOLIDIFY_EMPTY_TAG,
                      };
                    }
                    if (prior_splits != splits) {
                      MEM_freeN(g.edges);
                    }
                  }
                  if (first_unique_end != -1 && prior_splits == splits) {
                    has_singularities = true;
                    edge_groups[j + add_index].is_singularity = true;
                  }
                }
                MEM_freeN(doubles);
              }
            }
          }
        }

        orig_vert_groups_arr[i] = edge_groups;
        /* Count new edges, loops, polys and add to link_edge_groups. */
        {
          uint new_verts = 0;
          bool contains_open_splits = false;
          uint open_edges = 0;
          uint contains_splits = 0;
          uint last_added = 0;
          uint first_added = 0;
          bool first_set = false;
          for (EdgeGroup *g = edge_groups; g->valid; g++) {
            NewEdgeRef **e = g->edges;
            for (uint j = 0; j < g->edges_len; j++, e++) {
              const uint flip = (uint)(vm[orig_medge[(*e)->old_edge].v2] == i);
              BLI_assert(flip || vm[orig_medge[(*e)->old_edge].v1] == i);
              (*e)->link_edge_groups[flip] = g;
            }
            uint added = 0;
            if (do_shell || (do_rim && !g->is_orig_closed)) {
              BLI_assert(g->new_vert == MOD_SOLIDIFY_EMPTY_TAG);
              g->new_vert = new_verts_num++;
              if (do_rim || (do_shell && g->split)) {
                new_verts++;
                contains_splits += (g->split != 0);
                contains_open_splits |= g->split && !g->is_orig_closed;
                added = g->split;
              }
            }
            open_edges += (uint)(added < last_added);
            if (!first_set) {
              first_set = true;
              first_added = added;
            }
            last_added = added;
            if (!(g + 1)->valid || g->topo_group != (g + 1)->topo_group) {
              if (new_verts > 2) {
                new_polys_num++;
                new_edges_num += new_verts;
                open_edges += (uint)(first_added < last_added);
                open_edges -= (uint)(open_edges && !contains_open_splits);
                if (do_shell && do_rim) {
                  new_loops_num += new_verts * 2;
                }
                else if (do_shell) {
                  new_loops_num += new_verts * 2 - open_edges;
                }
                else {  // do_rim
                  new_loops_num += new_verts * 2 + open_edges - contains_splits;
                }
              }
              else if (new_verts == 2) {
                new_edges_num++;
                new_loops_num += 2u - (uint)(!(do_rim && do_shell) && contains_open_splits);
              }
              new_verts = 0;
              contains_open_splits = false;
              contains_splits = 0;
              open_edges = 0;
              last_added = 0;
              first_added = 0;
              first_set = false;
            }
          }
        }
      }
    }
  }

  /* Free vert_adj_edges memory. */
  {
    uint i = 0;
    for (OldVertEdgeRef **p = vert_adj_edges; i < verts_num; i++, p++) {
      if (*p) {
        MEM_freeN((*p)->edges);
        MEM_freeN(*p);
      }
    }
    MEM_freeN(vert_adj_edges);
  }

  /* TODO: create_regions if fix_intersections. */

  /* General use pointer for #EdgeGroup iteration. */
  EdgeGroup **gs_ptr;

  /* Calculate EdgeGroup vertex coordinates. */
  {
    float *face_weight = NULL;

    if (do_flat_faces) {
      face_weight = MEM_malloc_arrayN(polys_num, sizeof(*face_weight), "face_weight in solidify");

      const MPoly *mp = orig_mpoly;
      for (uint i = 0; i < polys_num; i++, mp++) {
        float scalar_vgroup = 1.0f;
        int loopend = mp->loopstart + mp->totloop;
        const MLoop *ml = orig_mloop + mp->loopstart;
        for (int j = mp->loopstart; j < loopend; j++, ml++) {
          const MDeformVert *dv = &dvert[ml->v];
          if (defgrp_invert) {
            scalar_vgroup = min_ff(1.0f - BKE_defvert_find_weight(dv, defgrp_index),
                                   scalar_vgroup);
          }
          else {
            scalar_vgroup = min_ff(BKE_defvert_find_weight(dv, defgrp_index), scalar_vgroup);
          }
        }
        scalar_vgroup = offset_fac_vg + (scalar_vgroup * offset_fac_vg_inv);
        face_weight[i] = scalar_vgroup;
      }
    }

    gs_ptr = orig_vert_groups_arr;
    for (uint i = 0; i < verts_num; i++, gs_ptr++) {
      if (*gs_ptr) {
        EdgeGroup *g = *gs_ptr;
        for (uint j = 0; g->valid; j++, g++) {
          if (!g->is_singularity) {
            float *nor = g->no;
            /* During vertex position calculation, the algorithm decides if it wants to disable the
             * boundary fix to maintain correct thickness. If the used algorithm does not produce a
             * free move direction (move_nor), it can use approximate_free_direction to decide on
             * a movement direction based on the connected edges. */
            float move_nor[3] = {0, 0, 0};
            bool disable_boundary_fix = (smd->nonmanifold_boundary_mode ==
                                             MOD_SOLIDIFY_NONMANIFOLD_BOUNDARY_MODE_NONE ||
                                         (g->is_orig_closed || g->split));
            bool approximate_free_direction = false;
            /* Constraints Method. */
            if (smd->nonmanifold_offset_mode == MOD_SOLIDIFY_NONMANIFOLD_OFFSET_MODE_CONSTRAINTS) {
              NewEdgeRef *first_edge = NULL;
              NewEdgeRef **edge_ptr = g->edges;
              /* Contains normal and offset [nx, ny, nz, ofs]. */
              float(*planes_queue)[4] = MEM_malloc_arrayN(
                  g->edges_len + 1, sizeof(*planes_queue), "planes_queue in solidify");
              uint queue_index = 0;

              float fallback_nor[3];
              float fallback_ofs = 0.0f;

              const bool cycle = (g->is_orig_closed && !g->split) || g->is_even_split;
              for (uint k = 0; k < g->edges_len; k++, edge_ptr++) {
                if (!(k & 1) || (!cycle && k == g->edges_len - 1)) {
                  NewEdgeRef *edge = *edge_ptr;
                  for (uint l = 0; l < 2; l++) {
                    NewFaceRef *face = edge->faces[l];
                    if (face && (first_edge == NULL ||
                                 (first_edge->faces[0] != face && first_edge->faces[1] != face))) {
                      float ofs = face->reversed ? ofs_back_clamped : ofs_front_clamped;
                      /* Use face_weight here to make faces thinner. */
                      if (do_flat_faces) {
                        ofs *= face_weight[face->index];
                      }

                      if (!null_faces[face->index]) {
                        /* And plane to the queue. */
                        mul_v3_v3fl(planes_queue[queue_index],
                                    poly_nors[face->index],
                                    face->reversed ? -1 : 1);
                        planes_queue[queue_index++][3] = ofs;
                      }
                      else {
                        /* Just use this approximate normal of the null face if there is no other
                         * normal to use. */
                        mul_v3_v3fl(fallback_nor, poly_nors[face->index], face->reversed ? -1 : 1);
                        fallback_ofs = ofs;
                      }
                    }
                  }
                  if ((cycle && k == 0) || (!cycle && k + 3 >= g->edges_len)) {
                    first_edge = edge;
                  }
                }
              }
              if (queue_index > 2) {
                /* Find the two most different normals. */
                float min_p = 2.0f;
                uint min_n0 = 0;
                uint min_n1 = 0;
                for (uint k = 0; k < queue_index; k++) {
                  for (uint m = k + 1; m < queue_index; m++) {
                    float p = dot_v3v3(planes_queue[k], planes_queue[m]);
                    if (p < min_p) {
                      min_p = p;
                      min_n0 = k;
                      min_n1 = m;
                    }
                  }
                }
                /* Put the two found normals, first in the array queue. */
                if (min_n1 != 0) {
                  swap_v4_v4(planes_queue[min_n0], planes_queue[0]);
                  swap_v4_v4(planes_queue[min_n1], planes_queue[1]);
                }
                else {
                  swap_v4_v4(planes_queue[min_n0], planes_queue[1]);
                }
                /* Find the third most important/different normal. */
                min_p = 1.0f;
                min_n1 = 2;
                float max_p = -1.0f;
                for (uint k = 2; k < queue_index; k++) {
                  max_p = max_ff(dot_v3v3(planes_queue[0], planes_queue[k]),
                                 dot_v3v3(planes_queue[1], planes_queue[k]));
                  if (max_p <= min_p) {
                    min_p = max_p;
                    min_n1 = k;
                  }
                }
                swap_v4_v4(planes_queue[min_n1], planes_queue[2]);
              }
              /* Remove/average duplicate normals in planes_queue. */
              while (queue_index > 2) {
                uint best_n0 = 0;
                uint best_n1 = 0;
                float best_p = -1.0f;
                float best_ofs_diff = 0.0f;
                for (uint k = 0; k < queue_index; k++) {
                  for (uint m = k + 1; m < queue_index; m++) {
                    float p = dot_v3v3(planes_queue[m], planes_queue[k]);
                    float ofs_diff = fabsf(planes_queue[m][3] - planes_queue[k][3]);
                    if (p > best_p + FLT_EPSILON || (p >= best_p && ofs_diff < best_ofs_diff)) {
                      best_p = p;
                      best_ofs_diff = ofs_diff;
                      best_n0 = k;
                      best_n1 = m;
                    }
                  }
                }
                /* Make sure there are no equal planes. This threshold is crucial for the
                 * methods below to work without numerical issues. */
                if (best_p < 0.98f) {
                  break;
                }
                add_v3_v3(planes_queue[best_n0], planes_queue[best_n1]);
                normalize_v3(planes_queue[best_n0]);
                planes_queue[best_n0][3] = (planes_queue[best_n0][3] + planes_queue[best_n1][3]) *
                                           0.5f;
                queue_index--;
                memmove(planes_queue + best_n1,
                        planes_queue + best_n1 + 1,
                        (queue_index - best_n1) * sizeof(*planes_queue));
              }
              const uint size = queue_index;
              /* If there is more than 2 planes at this vertex, the boundary fix should be disabled
               * to stay at the correct thickness for all the faces. This is not very good in
               * practice though, since that will almost always disable the boundary fix. Instead
               * introduce a threshold which decides whether the boundary fix can be used without
               * major thickness changes. If the following constant is 1.0, it would always
               * prioritize correct thickness. At 0.7 the thickness is allowed to change a bit if
               * necessary for the fix (~10%). Note this only applies if a boundary fix is used. */
              const float boundary_fix_threshold = 0.7f;
              if (size > 3) {
                /* Use the most general least squares method to find the best position. */
                float mat[3][3];
                zero_m3(mat);
                for (int k = 0; k < 3; k++) {
                  for (int m = 0; m < size; m++) {
                    madd_v3_v3fl(mat[k], planes_queue[m], planes_queue[m][k]);
                  }
                  /* Add a small epsilon to ensure the invert is going to work.
                   * This addition makes the inverse more stable and the results
                   * seem to get more precise. */
                  mat[k][k] += 5e-5f;
                }
                /* NOTE: this matrix invert fails if there is less than 3 different normals. */
                invert_m3(mat);
                zero_v3(nor);
                for (int k = 0; k < size; k++) {
                  madd_v3_v3fl(nor, planes_queue[k], planes_queue[k][3]);
                }
                mul_v3_m3v3(nor, mat, nor);

                if (!disable_boundary_fix) {
                  /* Figure out if the approximate boundary fix can get use here. */
                  float greatest_angle_cos = 1.0f;
                  for (uint k = 0; k < 2; k++) {
                    for (uint m = 2; m < size; m++) {
                      float p = dot_v3v3(planes_queue[m], planes_queue[k]);
                      if (p < greatest_angle_cos) {
                        greatest_angle_cos = p;
                      }
                    }
                  }
                  if (greatest_angle_cos > boundary_fix_threshold) {
                    approximate_free_direction = true;
                  }
                  else {
                    disable_boundary_fix = true;
                  }
                }
              }
              else if (size > 1) {
                /* When up to 3 constraint normals are found, there is a simple solution. */
                const float stop_explosion = 0.999f - fabsf(smd->offset_fac) * 0.05f;
                const float q = dot_v3v3(planes_queue[0], planes_queue[1]);
                float d = 1.0f - q * q;
                cross_v3_v3v3(move_nor, planes_queue[0], planes_queue[1]);
                normalize_v3(move_nor);
                if (d > FLT_EPSILON * 10 && q < stop_explosion) {
                  d = 1.0f / d;
                  mul_v3_fl(planes_queue[0], (planes_queue[0][3] - planes_queue[1][3] * q) * d);
                  mul_v3_fl(planes_queue[1], (planes_queue[1][3] - planes_queue[0][3] * q) * d);
                }
                else {
                  d = 1.0f / (fabsf(q) + 1.0f);
                  mul_v3_fl(planes_queue[0], planes_queue[0][3] * d);
                  mul_v3_fl(planes_queue[1], planes_queue[1][3] * d);
                }
                add_v3_v3v3(nor, planes_queue[0], planes_queue[1]);
                if (size == 3) {
                  d = dot_v3v3(planes_queue[2], move_nor);
                  /* The following threshold ignores the third plane if it is almost orthogonal to
                   * the still free direction. */
                  if (fabsf(d) > 0.02f) {
                    float tmp[3];
                    madd_v3_v3v3fl(tmp, nor, planes_queue[2], -planes_queue[2][3]);
                    mul_v3_v3fl(tmp, move_nor, dot_v3v3(planes_queue[2], tmp) / d);
                    sub_v3_v3(nor, tmp);
                    /* Disable boundary fix if the constraints would be majorly unsatisfied. */
                    if (fabsf(d) > 1.0f - boundary_fix_threshold) {
                      disable_boundary_fix = true;
                    }
                  }
                }
                approximate_free_direction = false;
              }
              else if (size == 1) {
                /* Face corner case. */
                mul_v3_v3fl(nor, planes_queue[0], planes_queue[0][3]);
                if (g->edges_len > 2) {
                  disable_boundary_fix = true;
                  approximate_free_direction = true;
                }
              }
              else {
                /* Fallback case for null faces. */
                mul_v3_v3fl(nor, fallback_nor, fallback_ofs);
                disable_boundary_fix = true;
              }
              MEM_freeN(planes_queue);
            }
            /* Fixed/Even Method. */
            else {
              float total_angle = 0;
              float total_angle_back = 0;
              NewEdgeRef *first_edge = NULL;
              NewEdgeRef **edge_ptr = g->edges;
              float face_nor[3];
              float nor_back[3] = {0, 0, 0};
              bool has_back = false;
              bool has_front = false;
              bool cycle = (g->is_orig_closed && !g->split) || g->is_even_split;
              for (uint k = 0; k < g->edges_len; k++, edge_ptr++) {
                if (!(k & 1) || (!cycle && k == g->edges_len - 1)) {
                  NewEdgeRef *edge = *edge_ptr;
                  for (uint l = 0; l < 2; l++) {
                    NewFaceRef *face = edge->faces[l];
                    if (face && (first_edge == NULL ||
                                 (first_edge->faces[0] != face && first_edge->faces[1] != face))) {
                      float angle = 1.0f;
                      float ofs = face->reversed ? -ofs_back_clamped : ofs_front_clamped;
                      /* Use face_weight here to make faces thinner. */
                      if (do_flat_faces) {
                        ofs *= face_weight[face->index];
                      }

                      if (smd->nonmanifold_offset_mode ==
                          MOD_SOLIDIFY_NONMANIFOLD_OFFSET_MODE_EVEN) {
                        const MLoop *ml_next = orig_mloop + face->face->loopstart;
                        const MLoop *ml = ml_next + (face->face->totloop - 1);
                        const MLoop *ml_prev = ml - 1;
                        for (int m = 0; m < face->face->totloop && vm[ml->v] != i;
                             m++, ml_next++) {
                          ml_prev = ml;
                          ml = ml_next;
                        }
                        angle = angle_v3v3v3(orig_mvert_co[vm[ml_prev->v]],
                                             orig_mvert_co[i],
                                             orig_mvert_co[vm[ml_next->v]]);
                        if (face->reversed) {
                          total_angle_back += angle * ofs * ofs;
                        }
                        else {
                          total_angle += angle * ofs * ofs;
                        }
                      }
                      else {
                        if (face->reversed) {
                          total_angle_back++;
                        }
                        else {
                          total_angle++;
                        }
                      }
                      mul_v3_v3fl(face_nor, poly_nors[face->index], angle * ofs);
                      if (face->reversed) {
                        add_v3_v3(nor_back, face_nor);
                        has_back = true;
                      }
                      else {
                        add_v3_v3(nor, face_nor);
                        has_front = true;
                      }
                    }
                  }
                  if ((cycle && k == 0) || (!cycle && k + 3 >= g->edges_len)) {
                    first_edge = edge;
                  }
                }
              }

              /* Set normal length with selected method. */
              if (smd->nonmanifold_offset_mode == MOD_SOLIDIFY_NONMANIFOLD_OFFSET_MODE_EVEN) {
                if (has_front) {
                  float length_sq = len_squared_v3(nor);
                  if (LIKELY(length_sq > FLT_EPSILON)) {
                    mul_v3_fl(nor, total_angle / length_sq);
                  }
                }
                if (has_back) {
                  float length_sq = len_squared_v3(nor_back);
                  if (LIKELY(length_sq > FLT_EPSILON)) {
                    mul_v3_fl(nor_back, total_angle_back / length_sq);
                  }
                  if (!has_front) {
                    copy_v3_v3(nor, nor_back);
                  }
                }
                if (has_front && has_back) {
                  float nor_length = len_v3(nor);
                  float nor_back_length = len_v3(nor_back);
                  float q = dot_v3v3(nor, nor_back);
                  if (LIKELY(fabsf(q) > FLT_EPSILON)) {
                    q /= nor_length * nor_back_length;
                  }
                  float d = 1.0f - q * q;
                  if (LIKELY(d > FLT_EPSILON)) {
                    d = 1.0f / d;
                    if (LIKELY(nor_length > FLT_EPSILON)) {
                      mul_v3_fl(nor, (1 - nor_back_length * q / nor_length) * d);
                    }
                    if (LIKELY(nor_back_length > FLT_EPSILON)) {
                      mul_v3_fl(nor_back, (1 - nor_length * q / nor_back_length) * d);
                    }
                    add_v3_v3(nor, nor_back);
                  }
                  else {
                    mul_v3_fl(nor, 0.5f);
                    mul_v3_fl(nor_back, 0.5f);
                    add_v3_v3(nor, nor_back);
                  }
                }
              }
              else {
                if (has_front && total_angle > FLT_EPSILON) {
                  mul_v3_fl(nor, 1.0f / total_angle);
                }
                if (has_back && total_angle_back > FLT_EPSILON) {
                  mul_v3_fl(nor_back, 1.0f / total_angle_back);
                  add_v3_v3(nor, nor_back);
                  if (has_front && total_angle > FLT_EPSILON) {
                    mul_v3_fl(nor, 0.5f);
                  }
                }
              }
              /* Set move_nor for boundary fix. */
              if (!disable_boundary_fix && g->edges_len > 2) {
                approximate_free_direction = true;
              }
              else {
                disable_boundary_fix = true;
              }
            }
            if (approximate_free_direction) {
              /* Set move_nor for boundary fix. */
              NewEdgeRef **edge_ptr = g->edges + 1;
              float tmp[3];
              int k;
              for (k = 1; k + 1 < g->edges_len; k++, edge_ptr++) {
                const MEdge *e = orig_medge + (*edge_ptr)->old_edge;
                sub_v3_v3v3(tmp, orig_mvert_co[vm[e->v1] == i ? e->v2 : e->v1], orig_mvert_co[i]);
                add_v3_v3(move_nor, tmp);
              }
              if (k == 1) {
                disable_boundary_fix = true;
              }
              else {
                disable_boundary_fix = normalize_v3(move_nor) == 0.0f;
              }
            }
            /* Fix boundary verts. */
            if (!disable_boundary_fix) {
              /* Constraint normal, nor * constr_nor == 0 after this fix. */
              float constr_nor[3];
              const MEdge *e0_edge = orig_medge + g->edges[0]->old_edge;
              const MEdge *e1_edge = orig_medge + g->edges[g->edges_len - 1]->old_edge;
              float e0[3];
              float e1[3];
              sub_v3_v3v3(e0,
                          orig_mvert_co[vm[e0_edge->v1] == i ? e0_edge->v2 : e0_edge->v1],
                          orig_mvert_co[i]);
              sub_v3_v3v3(e1,
                          orig_mvert_co[vm[e1_edge->v1] == i ? e1_edge->v2 : e1_edge->v1],
                          orig_mvert_co[i]);
              if (smd->nonmanifold_boundary_mode == MOD_SOLIDIFY_NONMANIFOLD_BOUNDARY_MODE_FLAT) {
                cross_v3_v3v3(constr_nor, e0, e1);
                normalize_v3(constr_nor);
              }
              else {
                BLI_assert(smd->nonmanifold_boundary_mode ==
                           MOD_SOLIDIFY_NONMANIFOLD_BOUNDARY_MODE_ROUND);
                float f0[3];
                float f1[3];
                if (g->edges[0]->faces[0]->reversed) {
                  negate_v3_v3(f0, poly_nors[g->edges[0]->faces[0]->index]);
                }
                else {
                  copy_v3_v3(f0, poly_nors[g->edges[0]->faces[0]->index]);
                }
                if (g->edges[g->edges_len - 1]->faces[0]->reversed) {
                  negate_v3_v3(f1, poly_nors[g->edges[g->edges_len - 1]->faces[0]->index]);
                }
                else {
                  copy_v3_v3(f1, poly_nors[g->edges[g->edges_len - 1]->faces[0]->index]);
                }
                float n0[3];
                float n1[3];
                cross_v3_v3v3(n0, e0, f0);
                cross_v3_v3v3(n1, f1, e1);
                normalize_v3(n0);
                normalize_v3(n1);
                add_v3_v3v3(constr_nor, n0, n1);
                normalize_v3(constr_nor);
              }
              float d = dot_v3v3(constr_nor, move_nor);
              /* Only allow the thickness to increase about 10 times. */
              if (fabsf(d) > 0.1f) {
                mul_v3_fl(move_nor, dot_v3v3(constr_nor, nor) / d);
                sub_v3_v3(nor, move_nor);
              }
            }
            float scalar_vgroup = 1;
            /* Use vertex group. */
            if (dvert && !do_flat_faces) {
              const MDeformVert *dv = &dvert[i];
              if (defgrp_invert) {
                scalar_vgroup = 1.0f - BKE_defvert_find_weight(dv, defgrp_index);
              }
              else {
                scalar_vgroup = BKE_defvert_find_weight(dv, defgrp_index);
              }
              scalar_vgroup = offset_fac_vg + (scalar_vgroup * offset_fac_vg_inv);
            }
            /* Do clamping. */
            if (do_clamp) {
              if (do_angle_clamp) {
                if (g->edges_len > 2) {
                  float min_length = 0;
                  float angle = 0.5f * M_PI;
                  uint k = 0;
                  for (NewEdgeRef **p = g->edges; k < g->edges_len; k++, p++) {
                    float length = orig_edge_lengths[(*p)->old_edge];
                    float e_ang = (*p)->angle;
                    if (e_ang > angle) {
                      angle = e_ang;
                    }
                    if (length < min_length || k == 0) {
                      min_length = length;
                    }
                  }
                  float cos_ang = cosf(angle * 0.5f);
                  if (cos_ang > 0) {
                    float max_off = min_length * 0.5f / cos_ang;
                    if (max_off < offset * 0.5f) {
                      scalar_vgroup *= max_off / offset * 2;
                    }
                  }
                }
              }
              else {
                float min_length = 0;
                uint k = 0;
                for (NewEdgeRef **p = g->edges; k < g->edges_len; k++, p++) {
                  float length = orig_edge_lengths[(*p)->old_edge];
                  if (length < min_length || k == 0) {
                    min_length = length;
                  }
                }
                if (min_length < offset) {
                  scalar_vgroup *= min_length / offset;
                }
              }
            }
            mul_v3_fl(nor, scalar_vgroup);
            add_v3_v3v3(g->co, nor, orig_mvert_co[i]);
          }
          else {
            copy_v3_v3(g->co, orig_mvert_co[i]);
          }
        }
      }
    }

    if (do_flat_faces) {
      MEM_freeN(face_weight);
    }
  }

  MEM_freeN(orig_mvert_co);
  if (null_faces) {
    MEM_freeN(null_faces);
  }

  /* TODO: create vertdata for intersection fixes (intersection fixing per topology region). */

  /* Correction for adjacent one sided groups around a vert to
   * prevent edge duplicates and null polys. */
  uint(*singularity_edges)[2] = NULL;
  uint totsingularity = 0;
  if (has_singularities) {
    has_singularities = false;
    uint i = 0;
    uint singularity_edges_len = 1;
    singularity_edges = MEM_malloc_arrayN(
        singularity_edges_len, sizeof(*singularity_edges), "singularity_edges in solidify");
    for (NewEdgeRef ***new_edges = orig_edge_data_arr; i < edges_num; i++, new_edges++) {
      if (*new_edges && (do_shell || edge_adj_faces_len[i] == 1) && (**new_edges)->old_edge == i) {
        for (NewEdgeRef **l = *new_edges; *l; l++) {
          if ((*l)->link_edge_groups[0]->is_singularity &&
              (*l)->link_edge_groups[1]->is_singularity) {
            const uint v1 = (*l)->link_edge_groups[0]->new_vert;
            const uint v2 = (*l)->link_edge_groups[1]->new_vert;
            bool exists_already = false;
            uint j = 0;
            for (uint(*p)[2] = singularity_edges; j < totsingularity; p++, j++) {
              if (((*p)[0] == v1 && (*p)[1] == v2) || ((*p)[0] == v2 && (*p)[1] == v1)) {
                exists_already = true;
                break;
              }
            }
            if (!exists_already) {
              has_singularities = true;
              if (singularity_edges_len <= totsingularity) {
                singularity_edges_len = totsingularity + 1;
                singularity_edges = MEM_reallocN_id(singularity_edges,
                                                    singularity_edges_len *
                                                        sizeof(*singularity_edges),
                                                    "singularity_edges in solidify");
              }
              singularity_edges[totsingularity][0] = v1;
              singularity_edges[totsingularity][1] = v2;
              totsingularity++;
              if (edge_adj_faces_len[i] == 1 && do_rim) {
                new_loops_num -= 2;
                new_polys_num--;
              }
            }
            else {
              new_edges_num--;
            }
          }
        }
      }
    }
  }

  /* Create Mesh *result with proper capacity. */
  result = BKE_mesh_new_nomain_from_template(mesh,
                                             (int)(new_verts_num),
                                             (int)(new_edges_num),
                                             0,
                                             (int)(new_loops_num),
                                             (int)(new_polys_num));

  float(*positions)[3] = BKE_mesh_positions_for_write(result);
  MEdge *medge = BKE_mesh_edges_for_write(result);
  MPoly *mpoly = BKE_mesh_polys_for_write(result);
  MLoop *mloop = BKE_mesh_loops_for_write(result);

  int *origindex_edge = CustomData_get_layer(&result->edata, CD_ORIGINDEX);
  int *origindex_poly = CustomData_get_layer(&result->pdata, CD_ORIGINDEX);

  float *result_edge_bweight = CustomData_get_layer(&result->edata, CD_BWEIGHT);
  if (bevel_convex != 0.0f || orig_vert_bweight != NULL) {
    result_edge_bweight = CustomData_add_layer(
        &result->edata, CD_BWEIGHT, CD_SET_DEFAULT, NULL, result->totedge);
  }

  /* Checks that result has dvert data. */
  MDeformVert *dst_dvert = NULL;
  if (shell_defgrp_index != -1 || rim_defgrp_index != -1) {
    dst_dvert = BKE_mesh_deform_verts_for_write(result);
  }

  /* Get vertex crease layer and ensure edge creases are active if vertex creases are found, since
   * they will introduce edge creases in the used custom interpolation method. */
  const float *vertex_crease = CustomData_get_layer(&mesh->vdata, CD_CREASE);
  float *result_edge_crease = NULL;
  if (vertex_crease) {
    result_edge_crease = (float *)CustomData_add_layer(
        &result->edata, CD_CREASE, CD_SET_DEFAULT, NULL, result->totedge);
    /* delete all vertex creases in the result if a rim is used. */
    if (do_rim) {
      CustomData_free_layers(&result->vdata, CD_CREASE, result->totvert);
    }
  }

  /* Make_new_verts. */
  {
    gs_ptr = orig_vert_groups_arr;
    for (uint i = 0; i < verts_num; i++, gs_ptr++) {
      EdgeGroup *gs = *gs_ptr;
      if (gs) {
        EdgeGroup *g = gs;
        for (uint j = 0; g->valid; j++, g++) {
          if (g->new_vert != MOD_SOLIDIFY_EMPTY_TAG) {
            CustomData_copy_data(&mesh->vdata, &result->vdata, (int)i, (int)g->new_vert, 1);
            copy_v3_v3(positions[g->new_vert], g->co);
          }
        }
      }
    }
  }

  /* Make edges. */
  {
    uint i = 0;
    edge_index += totsingularity;
    for (NewEdgeRef ***new_edges = orig_edge_data_arr; i < edges_num; i++, new_edges++) {
      if (*new_edges && (do_shell || edge_adj_faces_len[i] == 1) && (**new_edges)->old_edge == i) {
        for (NewEdgeRef **l = *new_edges; *l; l++) {
          if ((*l)->new_edge != MOD_SOLIDIFY_EMPTY_TAG) {
            const uint v1 = (*l)->link_edge_groups[0]->new_vert;
            const uint v2 = (*l)->link_edge_groups[1]->new_vert;
            uint insert = edge_index;
            if (has_singularities && ((*l)->link_edge_groups[0]->is_singularity &&
                                      (*l)->link_edge_groups[1]->is_singularity)) {
              uint j = 0;
              for (uint(*p)[2] = singularity_edges; j < totsingularity; p++, j++) {
                if (((*p)[0] == v1 && (*p)[1] == v2) || ((*p)[0] == v2 && (*p)[1] == v1)) {
                  insert = j;
                  break;
                }
              }
              BLI_assert(insert == j);
            }
            else {
              edge_index++;
            }
            CustomData_copy_data(&mesh->edata, &result->edata, (int)i, (int)insert, 1);
            BLI_assert(v1 != MOD_SOLIDIFY_EMPTY_TAG);
            BLI_assert(v2 != MOD_SOLIDIFY_EMPTY_TAG);
            medge[insert].v1 = v1;
            medge[insert].v2 = v2;
            medge[insert].flag = orig_medge[(*l)->old_edge].flag | ME_EDGEDRAW;
            if (result_edge_crease) {
              result_edge_crease[insert] = orig_edge_crease ? orig_edge_crease[(*l)->old_edge] :
                                                              0.0f;
            }
            if (result_edge_bweight) {
              result_edge_bweight[insert] = orig_edge_bweight ? orig_edge_bweight[(*l)->old_edge] :
                                                                0.0f;
            }
            if (bevel_convex != 0.0f && (*l)->faces[1] != NULL) {
              result_edge_bweight[insert] = clamp_f(
                  result_edge_bweight[insert] +
                      ((*l)->angle > M_PI + FLT_EPSILON ?
                           clamp_f(bevel_convex, 0.0f, 1.0f) :
                           ((*l)->angle < M_PI - FLT_EPSILON ? clamp_f(bevel_convex, -1.0f, 0.0f) :
                                                               0)),
                  0.0f,
                  1.0f);
            }
            (*l)->new_edge = insert;
          }
        }
      }
    }
  }
  if (singularity_edges) {
    MEM_freeN(singularity_edges);
  }

  /* DEBUG CODE FOR BUG-FIXING (can not be removed because every bug-fix needs this badly!). */
#if 0
  {
    /* this code will output the content of orig_vert_groups_arr.
     * in orig_vert_groups_arr these conditions must be met for every vertex:
     * - new_edge value should have no duplicates
     * - every old_edge value should appear twice
     * - every group should have at least two members (edges)
     * NOTE: that there can be vertices that only have one group. They are called singularities.
     * These vertices will only have one side (there is no way of telling apart front
     * from back like on a mobius strip)
     */

    /* Debug output format:
     * <original vertex id>:
     * {
     *   { <old edge id>/<new edge id>, } \
     *     (tg:<topology group id>)(s:<is split group>,c:<is closed group (before splitting)>)
     * }
     */
    gs_ptr = orig_vert_groups_arr;
    for (uint i = 0; i < verts_num; i++, gs_ptr++) {
      EdgeGroup *gs = *gs_ptr;
      /* check if the vertex is present (may be dissolved because of proximity) */
      if (gs) {
        printf("%d:\n", i);
        for (EdgeGroup *g = gs; g->valid; g++) {
          NewEdgeRef **e = g->edges;
          for (uint j = 0; j < g->edges_len; j++, e++) {
            printf("%u/%d, ", (*e)->old_edge, (int)(*e)->new_edge);
          }
          printf("(tg:%u)(s:%u,c:%d)\n", g->topo_group, g->split, g->is_orig_closed);
        }
      }
    }
  }
#endif

  const int *src_material_index = BKE_mesh_material_indices(mesh);
  int *dst_material_index = BKE_mesh_material_indices_for_write(result);

  /* Make boundary edges/faces. */
  {
    gs_ptr = orig_vert_groups_arr;
    for (uint i = 0; i < verts_num; i++, gs_ptr++) {
      EdgeGroup *gs = *gs_ptr;
      if (gs) {
        EdgeGroup *g = gs;
        EdgeGroup *g2 = gs;
        EdgeGroup *last_g = NULL;
        EdgeGroup *first_g = NULL;
        float mv_crease = vertex_crease ? vertex_crease[i] : 0.0f;
        float mv_bweight = orig_vert_bweight ? orig_vert_bweight[i] : 0.0f;
        /* Data calculation cache. */
        float max_crease;
        float last_max_crease = 0.0f;
        float first_max_crease = 0.0f;
        float max_bweight;
        float last_max_bweight = 0.0f;
        float first_max_bweight = 0.0f;
        short flag;
        short last_flag = 0;
        short first_flag = 0;
        for (uint j = 0; g->valid; g++) {
          if ((do_rim && !g->is_orig_closed) || (do_shell && g->split)) {
            max_crease = 0;
            max_bweight = 0;
            flag = 0;

            BLI_assert(g->edges_len >= 2);

            if (g->edges_len == 2) {
              if (result_edge_crease) {
                if (orig_edge_crease) {
                  max_crease = min_ff(orig_edge_crease[g->edges[0]->old_edge],
                                      orig_edge_crease[g->edges[1]->old_edge]);
                }
                else {
                  max_crease = 0.0f;
                }
              }
            }
            else {
              for (uint k = 1; k < g->edges_len - 1; k++) {
                const uint orig_edge_index = g->edges[k]->old_edge;
                const MEdge *ed = &orig_medge[orig_edge_index];
                if (result_edge_crease) {
                  if (orig_edge_crease && orig_edge_crease[orig_edge_index] > max_crease) {
                    max_crease = orig_edge_crease[orig_edge_index];
                  }
                }
                if (g->edges[k]->new_edge != MOD_SOLIDIFY_EMPTY_TAG) {
                  if (result_edge_bweight) {
                    float bweight = result_edge_bweight[g->edges[k]->new_edge];
                    if (bweight > max_bweight) {
                      max_bweight = bweight;
                    }
                  }
                }
                flag |= ed->flag;
              }
            }

            const float bweight_open_edge =
                orig_edge_bweight ?
                    min_ff(orig_edge_bweight[g->edges[0]->old_edge],
                           orig_edge_bweight[g->edges[g->edges_len - 1]->old_edge]) :
                    0.0f;
            if (bweight_open_edge > 0) {
              max_bweight = min_ff(bweight_open_edge, max_bweight);
            }
            else {
              if (bevel_convex < 0.0f) {
                max_bweight = 0;
              }
            }
            if (!first_g) {
              first_g = g;
              first_max_crease = max_crease;
              first_max_bweight = max_bweight;
              first_flag = flag;
            }
            else {
              last_g->open_face_edge = edge_index;
              CustomData_copy_data(&mesh->edata,
                                   &result->edata,
                                   (int)last_g->edges[0]->old_edge,
                                   (int)edge_index,
                                   1);
              if (origindex_edge) {
                origindex_edge[edge_index] = ORIGINDEX_NONE;
              }
              medge[edge_index].v1 = last_g->new_vert;
              medge[edge_index].v2 = g->new_vert;
              medge[edge_index].flag = ME_EDGEDRAW | ((last_flag | flag) & (ME_SEAM | ME_SHARP));
              if (result_edge_crease) {
                result_edge_crease[edge_index] = max_ff(mv_crease,
                                                        min_ff(last_max_crease, max_crease));
              }
              if (result_edge_bweight) {
                result_edge_bweight[edge_index] = max_ff(mv_bweight,
                                                         min_ff(last_max_bweight, max_bweight));
              }
              edge_index++;
            }
            last_g = g;
            last_max_crease = max_crease;
            last_max_bweight = max_bweight;
            last_flag = flag;
            j++;
          }
          if (!(g + 1)->valid || g->topo_group != (g + 1)->topo_group) {
            if (j == 2) {
              last_g->open_face_edge = edge_index - 1;
            }
            if (j > 2) {
              CustomData_copy_data(&mesh->edata,
                                   &result->edata,
                                   (int)last_g->edges[0]->old_edge,
                                   (int)edge_index,
                                   1);
              if (origindex_edge) {
                origindex_edge[edge_index] = ORIGINDEX_NONE;
              }
              last_g->open_face_edge = edge_index;
              medge[edge_index].v1 = last_g->new_vert;
              medge[edge_index].v2 = first_g->new_vert;
              medge[edge_index].flag = ME_EDGEDRAW |
                                       ((last_flag | first_flag) & (ME_SEAM | ME_SHARP));
              if (result_edge_crease) {
                result_edge_crease[edge_index] = max_ff(mv_crease,
                                                        min_ff(last_max_crease, first_max_crease));
              }
              if (result_edge_bweight) {
                result_edge_bweight[edge_index] = max_ff(
                    mv_bweight, min_ff(last_max_bweight, first_max_bweight));
              }
              edge_index++;

              /* Loop data. */
              int *loops = MEM_malloc_arrayN(j, sizeof(*loops), "loops in solidify");
              /* The result material index is from consensus. */
              short most_mat_nr = 0;
              uint most_mat_nr_face = 0;
              uint most_mat_nr_count = 0;
              for (short l = 0; l < mat_nrs; l++) {
                uint count = 0;
                uint face = 0;
                uint k = 0;
                for (EdgeGroup *g3 = g2; g3->valid && k < j; g3++) {
                  if ((do_rim && !g3->is_orig_closed) || (do_shell && g3->split)) {
                    /* Check both far ends in terms of faces of an edge group. */
                    if ((src_material_index ? src_material_index[g3->edges[0]->faces[0]->index] :
                                              0) == l) {
                      face = g3->edges[0]->faces[0]->index;
                      count++;
                    }
                    NewEdgeRef *le = g3->edges[g3->edges_len - 1];
                    if (le->faces[1] &&
                        (src_material_index ? src_material_index[le->faces[1]->index] : 0) == l) {
                      face = le->faces[1]->index;
                      count++;
                    }
                    else if (!le->faces[1] &&
                             (src_material_index ? src_material_index[le->faces[0]->index] : 0) ==
                                 l) {
                      face = le->faces[0]->index;
                      count++;
                    }
                    k++;
                  }
                }
                if (count > most_mat_nr_count) {
                  most_mat_nr = l;
                  most_mat_nr_face = face;
                  most_mat_nr_count = count;
                }
              }
              CustomData_copy_data(
                  &mesh->pdata, &result->pdata, (int)most_mat_nr_face, (int)poly_index, 1);
              if (origindex_poly) {
                origindex_poly[poly_index] = ORIGINDEX_NONE;
              }
              mpoly[poly_index].loopstart = (int)loop_index;
              mpoly[poly_index].totloop = (int)j;
              dst_material_index[poly_index] = most_mat_nr +
                                               (g->is_orig_closed || !do_rim ? 0 : mat_ofs_rim);
              CLAMP(dst_material_index[poly_index], 0, mat_nr_max);
              mpoly[poly_index].flag = orig_mpoly[most_mat_nr_face].flag;
              poly_index++;

              for (uint k = 0; g2->valid && k < j; g2++) {
                if ((do_rim && !g2->is_orig_closed) || (do_shell && g2->split)) {
                  const MPoly *face = g2->edges[0]->faces[0]->face;
                  const MLoop *ml = orig_mloop + face->loopstart;
                  for (int l = 0; l < face->totloop; l++, ml++) {
                    if (vm[ml->v] == i) {
                      loops[k] = face->loopstart + l;
                      break;
                    }
                  }
                  k++;
                }
              }

              if (!do_flip) {
                for (uint k = 0; k < j; k++) {
                  CustomData_copy_data(&mesh->ldata, &result->ldata, loops[k], (int)loop_index, 1);
                  mloop[loop_index].v = medge[edge_index - j + k].v1;
                  mloop[loop_index++].e = edge_index - j + k;
                }
              }
              else {
                for (uint k = 1; k <= j; k++) {
                  CustomData_copy_data(
                      &mesh->ldata, &result->ldata, loops[j - k], (int)loop_index, 1);
                  mloop[loop_index].v = medge[edge_index - k].v2;
                  mloop[loop_index++].e = edge_index - k;
                }
              }
              MEM_freeN(loops);
            }
            /* Reset everything for the next poly. */
            j = 0;
            last_g = NULL;
            first_g = NULL;
            last_max_crease = 0;
            first_max_crease = 0;
            last_max_bweight = 0;
            first_max_bweight = 0;
            last_flag = 0;
            first_flag = 0;
          }
        }
      }
    }
  }

  /* Make boundary faces. */
  if (do_rim) {
    for (uint i = 0; i < edges_num; i++) {
      if (edge_adj_faces_len[i] == 1 && orig_edge_data_arr[i] &&
          (*orig_edge_data_arr[i])->old_edge == i) {
        NewEdgeRef **new_edges = orig_edge_data_arr[i];

        NewEdgeRef *edge1 = new_edges[0];
        NewEdgeRef *edge2 = new_edges[1];
        const bool v1_singularity = edge1->link_edge_groups[0]->is_singularity &&
                                    edge2->link_edge_groups[0]->is_singularity;
        const bool v2_singularity = edge1->link_edge_groups[1]->is_singularity &&
                                    edge2->link_edge_groups[1]->is_singularity;
        if (v1_singularity && v2_singularity) {
          continue;
        }

        const uint orig_face_index = (*new_edges)->faces[0]->index;
        const MPoly *face = (*new_edges)->faces[0]->face;
        CustomData_copy_data(
            &mesh->pdata, &result->pdata, (int)(*new_edges)->faces[0]->index, (int)poly_index, 1);
        mpoly[poly_index].loopstart = (int)loop_index;
        mpoly[poly_index].totloop = 4 - (int)(v1_singularity || v2_singularity);
        dst_material_index[poly_index] =
            (src_material_index ? src_material_index[orig_face_index] : 0) + mat_ofs_rim;
        CLAMP(dst_material_index[poly_index], 0, mat_nr_max);
        mpoly[poly_index].flag = face->flag;
        poly_index++;

        int loop1 = -1;
        int loop2 = -1;
        const MLoop *ml = orig_mloop + face->loopstart;
        const uint old_v1 = vm[orig_medge[edge1->old_edge].v1];
        const uint old_v2 = vm[orig_medge[edge1->old_edge].v2];
        for (uint j = 0; j < face->totloop; j++, ml++) {
          if (vm[ml->v] == old_v1) {
            loop1 = face->loopstart + (int)j;
          }
          else if (vm[ml->v] == old_v2) {
            loop2 = face->loopstart + (int)j;
          }
        }
        BLI_assert(loop1 != -1 && loop2 != -1);
        MEdge *open_face_edge;
        uint open_face_edge_index;
        if (!do_flip) {
          if (rim_defgrp_index != -1) {
            BKE_defvert_ensure_index(&dst_dvert[medge[edge1->new_edge].v1], rim_defgrp_index)
                ->weight = 1.0f;
          }
          CustomData_copy_data(&mesh->ldata, &result->ldata, loop1, (int)loop_index, 1);
          mloop[loop_index].v = medge[edge1->new_edge].v1;
          mloop[loop_index++].e = edge1->new_edge;

          if (!v2_singularity) {
            open_face_edge_index = edge1->link_edge_groups[1]->open_face_edge;
            if (rim_defgrp_index != -1) {
              BKE_defvert_ensure_index(&dst_dvert[medge[edge1->new_edge].v2], rim_defgrp_index)
                  ->weight = 1.0f;
            }
            CustomData_copy_data(&mesh->ldata, &result->ldata, loop2, (int)loop_index, 1);
            mloop[loop_index].v = medge[edge1->new_edge].v2;
            open_face_edge = medge + open_face_edge_index;
            if (ELEM(medge[edge2->new_edge].v2, open_face_edge->v1, open_face_edge->v2)) {
              mloop[loop_index++].e = open_face_edge_index;
            }
            else {
              mloop[loop_index++].e = edge2->link_edge_groups[1]->open_face_edge;
            }
          }

          if (rim_defgrp_index != -1) {
            BKE_defvert_ensure_index(&dst_dvert[medge[edge2->new_edge].v2], rim_defgrp_index)
                ->weight = 1.0f;
          }
          CustomData_copy_data(&mesh->ldata, &result->ldata, loop2, (int)loop_index, 1);
          mloop[loop_index].v = medge[edge2->new_edge].v2;
          mloop[loop_index++].e = edge2->new_edge;

          if (!v1_singularity) {
            open_face_edge_index = edge2->link_edge_groups[0]->open_face_edge;
            if (rim_defgrp_index != -1) {
              BKE_defvert_ensure_index(&dst_dvert[medge[edge2->new_edge].v1], rim_defgrp_index)
                  ->weight = 1.0f;
            }
            CustomData_copy_data(&mesh->ldata, &result->ldata, loop1, (int)loop_index, 1);
            mloop[loop_index].v = medge[edge2->new_edge].v1;
            open_face_edge = medge + open_face_edge_index;
            if (ELEM(medge[edge1->new_edge].v1, open_face_edge->v1, open_face_edge->v2)) {
              mloop[loop_index++].e = open_face_edge_index;
            }
            else {
              mloop[loop_index++].e = edge1->link_edge_groups[0]->open_face_edge;
            }
          }
        }
        else {
          if (!v1_singularity) {
            open_face_edge_index = edge1->link_edge_groups[0]->open_face_edge;
            if (rim_defgrp_index != -1) {
              BKE_defvert_ensure_index(&dst_dvert[medge[edge1->new_edge].v1], rim_defgrp_index)
                  ->weight = 1.0f;
            }
            CustomData_copy_data(&mesh->ldata, &result->ldata, loop1, (int)loop_index, 1);
            mloop[loop_index].v = medge[edge1->new_edge].v1;
            open_face_edge = medge + open_face_edge_index;
            if (ELEM(medge[edge2->new_edge].v1, open_face_edge->v1, open_face_edge->v2)) {
              mloop[loop_index++].e = open_face_edge_index;
            }
            else {
              mloop[loop_index++].e = edge2->link_edge_groups[0]->open_face_edge;
            }
          }

          if (rim_defgrp_index != -1) {
            BKE_defvert_ensure_index(&dst_dvert[medge[edge2->new_edge].v1], rim_defgrp_index)
                ->weight = 1.0f;
          }
          CustomData_copy_data(&mesh->ldata, &result->ldata, loop1, (int)loop_index, 1);
          mloop[loop_index].v = medge[edge2->new_edge].v1;
          mloop[loop_index++].e = edge2->new_edge;

          if (!v2_singularity) {
            open_face_edge_index = edge2->link_edge_groups[1]->open_face_edge;
            if (rim_defgrp_index != -1) {
              BKE_defvert_ensure_index(&dst_dvert[medge[edge2->new_edge].v2], rim_defgrp_index)
                  ->weight = 1.0f;
            }
            CustomData_copy_data(&mesh->ldata, &result->ldata, loop2, (int)loop_index, 1);
            mloop[loop_index].v = medge[edge2->new_edge].v2;
            open_face_edge = medge + open_face_edge_index;
            if (ELEM(medge[edge1->new_edge].v2, open_face_edge->v1, open_face_edge->v2)) {
              mloop[loop_index++].e = open_face_edge_index;
            }
            else {
              mloop[loop_index++].e = edge1->link_edge_groups[1]->open_face_edge;
            }
          }

          if (rim_defgrp_index != -1) {
            BKE_defvert_ensure_index(&dst_dvert[medge[edge1->new_edge].v2], rim_defgrp_index)
                ->weight = 1.0f;
          }
          CustomData_copy_data(&mesh->ldata, &result->ldata, loop2, (int)loop_index, 1);
          mloop[loop_index].v = medge[edge1->new_edge].v2;
          mloop[loop_index++].e = edge1->new_edge;
        }
      }
    }
  }

  /* Make faces. */
  if (do_shell) {
    NewFaceRef *fr = face_sides_arr;
    uint *face_loops = MEM_malloc_arrayN(
        largest_ngon * 2, sizeof(*face_loops), "face_loops in solidify");
    uint *face_verts = MEM_malloc_arrayN(
        largest_ngon * 2, sizeof(*face_verts), "face_verts in solidify");
    uint *face_edges = MEM_malloc_arrayN(
        largest_ngon * 2, sizeof(*face_edges), "face_edges in solidify");
    for (uint i = 0; i < polys_num * 2; i++, fr++) {
      const uint loopstart = (uint)fr->face->loopstart;
      uint totloop = (uint)fr->face->totloop;
      uint valid_edges = 0;
      uint k = 0;
      while (totloop > 0 && (!fr->link_edges[totloop - 1] ||
                             fr->link_edges[totloop - 1]->new_edge == MOD_SOLIDIFY_EMPTY_TAG)) {
        totloop--;
      }
      if (totloop > 0) {
        NewEdgeRef *prior_edge = fr->link_edges[totloop - 1];
        uint prior_flip = (uint)(vm[orig_medge[prior_edge->old_edge].v1] ==
                                 vm[orig_mloop[loopstart + (totloop - 1)].v]);
        for (uint j = 0; j < totloop; j++) {
          NewEdgeRef *new_edge = fr->link_edges[j];
          if (new_edge && new_edge->new_edge != MOD_SOLIDIFY_EMPTY_TAG) {
            valid_edges++;
            const uint flip = (uint)(vm[orig_medge[new_edge->old_edge].v2] ==
                                     vm[orig_mloop[loopstart + j].v]);
            BLI_assert(flip ||
                       vm[orig_medge[new_edge->old_edge].v1] == vm[orig_mloop[loopstart + j].v]);
            /* The vert that's in the current loop. */
            const uint new_v1 = new_edge->link_edge_groups[flip]->new_vert;
            /* The vert that's in the next loop. */
            const uint new_v2 = new_edge->link_edge_groups[1 - flip]->new_vert;
            if (k == 0 || face_verts[k - 1] != new_v1) {
              face_loops[k] = loopstart + j;
              if (fr->reversed) {
                face_edges[k] = prior_edge->link_edge_groups[prior_flip]->open_face_edge;
              }
              else {
                face_edges[k] = new_edge->link_edge_groups[flip]->open_face_edge;
              }
              BLI_assert(k == 0 || medge[face_edges[k]].v2 == face_verts[k - 1] ||
                         medge[face_edges[k]].v1 == face_verts[k - 1]);
              BLI_assert(face_edges[k] == MOD_SOLIDIFY_EMPTY_TAG ||
                         medge[face_edges[k]].v2 == new_v1 || medge[face_edges[k]].v1 == new_v1);
              face_verts[k++] = new_v1;
            }
            prior_edge = new_edge;
            prior_flip = 1 - flip;
            if (j < totloop - 1 || face_verts[0] != new_v2) {
              face_loops[k] = loopstart + (j + 1) % totloop;
              face_edges[k] = new_edge->new_edge;
              face_verts[k++] = new_v2;
            }
            else {
              face_edges[0] = new_edge->new_edge;
            }
          }
        }
        if (k > 2 && valid_edges > 2) {
          CustomData_copy_data(&mesh->pdata, &result->pdata, (int)(i / 2), (int)poly_index, 1);
          mpoly[poly_index].loopstart = (int)loop_index;
          mpoly[poly_index].totloop = (int)k;
          dst_material_index[poly_index] = (src_material_index ? src_material_index[fr->index] :
                                                                 0) +
                                           (fr->reversed != do_flip ? mat_ofs : 0);
          CLAMP(dst_material_index[poly_index], 0, mat_nr_max);
          mpoly[poly_index].flag = fr->face->flag;
          if (fr->reversed != do_flip) {
            for (int l = (int)k - 1; l >= 0; l--) {
              if (shell_defgrp_index != -1) {
                BKE_defvert_ensure_index(&dst_dvert[face_verts[l]], shell_defgrp_index)->weight =
                    1.0f;
              }
              CustomData_copy_data(
                  &mesh->ldata, &result->ldata, (int)face_loops[l], (int)loop_index, 1);
              mloop[loop_index].v = face_verts[l];
              mloop[loop_index++].e = face_edges[l];
            }
          }
          else {
            uint l = k - 1;
            for (uint next_l = 0; next_l < k; next_l++) {
              CustomData_copy_data(
                  &mesh->ldata, &result->ldata, (int)face_loops[l], (int)loop_index, 1);
              mloop[loop_index].v = face_verts[l];
              mloop[loop_index++].e = face_edges[next_l];
              l = next_l;
            }
          }
          poly_index++;
        }
      }
    }
    MEM_freeN(face_loops);
    MEM_freeN(face_verts);
    MEM_freeN(face_edges);
  }
  if (edge_index != new_edges_num) {
    BKE_modifier_set_error(ctx->object,
                           md,
                           "Internal Error: edges array wrong size: %u instead of %u",
                           new_edges_num,
                           edge_index);
  }
  if (poly_index != new_polys_num) {
    BKE_modifier_set_error(ctx->object,
                           md,
                           "Internal Error: polys array wrong size: %u instead of %u",
                           new_polys_num,
                           poly_index);
  }
  if (loop_index != new_loops_num) {
    BKE_modifier_set_error(ctx->object,
                           md,
                           "Internal Error: loops array wrong size: %u instead of %u",
                           new_loops_num,
                           loop_index);
  }
  BLI_assert(edge_index == new_edges_num);
  BLI_assert(poly_index == new_polys_num);
  BLI_assert(loop_index == new_loops_num);

  /* Free remaining memory */
  {
    MEM_freeN(vm);
    MEM_freeN(edge_adj_faces_len);
    uint i = 0;
    for (EdgeGroup **p = orig_vert_groups_arr; i < verts_num; i++, p++) {
      if (*p) {
        for (EdgeGroup *eg = *p; eg->valid; eg++) {
          MEM_freeN(eg->edges);
        }
        MEM_freeN(*p);
      }
    }
    MEM_freeN(orig_vert_groups_arr);
    i = edges_num;
    for (NewEdgeRef ***p = orig_edge_data_arr + (edges_num - 1); i > 0; i--, p--) {
      if (*p && (**p)->old_edge == i - 1) {
        for (NewEdgeRef **l = *p; *l; l++) {
          MEM_freeN(*l);
        }
        MEM_freeN(*p);
      }
    }
    MEM_freeN(orig_edge_data_arr);
    MEM_freeN(orig_edge_lengths);
    i = 0;
    for (NewFaceRef *p = face_sides_arr; i < polys_num * 2; i++, p++) {
      MEM_freeN(p->link_edges);
    }
    MEM_freeN(face_sides_arr);
    MEM_freeN(poly_nors);
  }

#undef MOD_SOLIDIFY_EMPTY_TAG

  return result;
}

/** \} */