Welcome to mirror list, hosted at ThFree Co, Russian Federation.

node_composite_doubleEdgeMask.c « nodes « composite « nodes « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 955d8813cf1cfbc98ffa5f2020bdb0919d706232 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2011 Blender Foundation.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): Peter Larabell.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/nodes/composite/nodes/node_composite_doubleEdgeMask.c
 *  \ingroup cmpnodes
 */
#include "node_composite_util.h"
/* **************** DblEdgMatte  ******************** */


static bNodeSocketTemplate cmp_node_doubleedgemask_in[]= {
    { SOCK_FLOAT, 1, "Inner Mask", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f, PROP_NONE},  // inner mask socket definition
    { SOCK_FLOAT, 1, "Outer Mask", 0.8f, 0.8f, 0.8f, 1.0f, 0.0f, 1.0f, PROP_NONE},  // outer mask socket definition
    { -1, 0, ""	}                                                                   // input socket array terminator
};
static bNodeSocketTemplate cmp_node_doubleedgemask_out[]= {
    { SOCK_FLOAT, 0, "Mask"},          // output socket definition
    { -1, 0, "" }                      // output socket array terminator
};

static void do_adjacentKeepBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize){
    int x;
    unsigned int isz=0; // inner edge size
    unsigned int osz=0; // outer edge size
    unsigned int gsz=0; // gradient fill area size
    /* Test the four corners */
    /* upper left corner */
    x=t-rw+1;
    // test if inner mask is filled
    if(limask[x]){
        // test if pixel underneath, or to the right, are empty in the inner mask,
        // but filled in the outer mask
        if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        osz++;                                   // increment outer edge size
        lres[x]=3;                               // flag pixel as outer edge
    }
    /* upper right corner */
    x=t;
    // test if inner mask is filled
    if(limask[x]){
        // test if pixel underneath, or to the left, are empty in the inner mask,
        // but filled in the outer mask
        if((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        osz++;                                   // increment outer edge size
        lres[x]=3;                               // flag pixel as outer edge
    }
    /* lower left corner */
    x=0;
    // test if inner mask is filled
    if(limask[x]){
        // test if pixel above, or to the right, are empty in the inner mask,
        // but filled in the outer mask
        if((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        osz++;                                   // increment outer edge size
        lres[x]=3;                               // flag pixel as outer edge
    }
    /* lower right corner */
    x=rw-1;
    // test if inner mask is filled
    if(limask[x]){
        // test if pixel above, or to the left, are empty in the inner mask,
        // but filled in the outer mask
        if((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        osz++;                                   // increment outer edge size
        lres[x]=3;                               // flag pixel as outer edge
    }

    /* Test the TOP row of pixels in buffer, except corners */
    for(x= t-1; x>=(t-rw)+2; x--) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if pixel to the right, or to the left, are empty in the inner mask,
            // but filled in the outer mask
            if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        }
    }

    /* Test the BOTTOM row of pixels in buffer, except corners */
    for(x= rw-2; x; x--) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if pixel to the right, or to the left, are empty in the inner mask,
            // but filled in the outer mask
            if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        }
    }
    /* Test the LEFT edge of pixels in buffer, except corners */
    for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if pixel underneath, or above, are empty in the inner mask,
            // but filled in the outer mask
            if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        }
    }

    /* Test the RIGHT edge of pixels in buffer, except corners */
    for(x= t-rw; x>rw; x-=rw) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if pixel underneath, or above, are empty in the inner mask,
            // but filled in the outer mask
            if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        }
    }

    rsize[0]=isz;  // fill in our return sizes for edges + fill
    rsize[1]=osz;
    rsize[2]=gsz;
}

static void do_adjacentBleedBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize){
    int x;
    unsigned int isz=0; // inner edge size
    unsigned int osz=0; // outer edge size
    unsigned int gsz=0; // gradient fill area size
    /* Test the four corners */
    /* upper left corner */
    x=t-rw+1;
    // test if inner mask is filled
    if(limask[x]){
        // test if pixel underneath, or to the right, are empty in the inner mask,
        // but filled in the outer mask
        if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+1] && lomask[x+1])){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        if(!lomask[x-rw] || !lomask[x+1]) {      // test if outer mask is empty underneath or to the right
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        } else {
            gsz++;                               // increment the gradient pixel count
            lres[x]=2;                           // flag pixel as gradient
        }
    }
    /* upper right corner */
    x=t;
    // test if inner mask is filled
    if(limask[x]){
        // test if pixel underneath, or to the left, are empty in the inner mask,
        // but filled in the outer mask
        if((!limask[x-rw] && lomask[x-rw]) || (!limask[x-1] && lomask[x-1])){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        if(!lomask[x-rw] || !lomask[x-1]) {      // test if outer mask is empty underneath or to the left
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        } else {
            gsz++;                               // increment the gradient pixel count
            lres[x]=2;                           // flag pixel as gradient
        }
    }
    /* lower left corner */
    x=0;
    // test if inner mask is filled
    if(limask[x]){
        // test if pixel above, or to the right, are empty in the inner mask,
        // but filled in the outer mask
        if((!limask[x+rw] && lomask[x+rw]) || (!limask[x+1] && lomask[x+1])){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        if(!lomask[x+rw] || !lomask[x+1]) {      // test if outer mask is empty above or to the right
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        } else {
            gsz++;                               // increment the gradient pixel count
            lres[x]=2;                           // flag pixel as gradient
        }
    }
    /* lower right corner */
    x=rw-1;
    // test if inner mask is filled
    if(limask[x]){
        // test if pixel above, or to the left, are empty in the inner mask,
        // but filled in the outer mask
        if((!limask[x+rw] && lomask[x+rw]) || (!limask[x-1] && lomask[x-1])){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        if(!lomask[x+rw] || !lomask[x-1]) {      // test if outer mask is empty above or to the left
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        } else {
            gsz++;                               // increment the gradient pixel count
            lres[x]=2;                           // flag pixel as gradient
        }
    }
    /* Test the TOP row of pixels in buffer, except corners */
    for(x= t-1; x>=(t-rw)+2; x--) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if pixel to the left, or to the right, are empty in the inner mask,
            // but filled in the outer mask
            if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            if(!lomask[x-1] || !lomask[x+1]) {   // test if outer mask is empty to the left or to the right
                osz++;                           // increment outer edge size
                lres[x]=3;                       // flag pixel as outer edge
            } else {
                gsz++;                           // increment the gradient pixel count
                lres[x]=2;                       // flag pixel as gradient
            }
        }
    }

    /* Test the BOTTOM row of pixels in buffer, except corners */
    for(x= rw-2; x; x--) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if pixel to the left, or to the right, are empty in the inner mask,
            // but filled in the outer mask
            if((!limask[x-1] && lomask[x-1]) || (!limask[x+1] && lomask[x+1])) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            if(!lomask[x-1] || !lomask[x+1]) {   // test if outer mask is empty to the left or to the right
                osz++;                           // increment outer edge size
                lres[x]=3;                       // flag pixel as outer edge
            } else {
                gsz++;                           // increment the gradient pixel count
                lres[x]=2;                       // flag pixel as gradient
            }
        }
    }
    /* Test the LEFT edge of pixels in buffer, except corners */
    for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if pixel underneath, or above, are empty in the inner mask,
            // but filled in the outer mask
            if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
                osz++;                           // increment outer edge size
                lres[x]=3;                       // flag pixel as outer edge
            } else {
                gsz++;                           // increment the gradient pixel count
                lres[x]=2;                       // flag pixel as gradient
            }
        }
    }

    /* Test the RIGHT edge of pixels in buffer, except corners */
    for(x= t-rw; x>rw; x-=rw) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if pixel underneath, or above, are empty in the inner mask,
            // but filled in the outer mask
            if((!limask[x-rw] && lomask[x-rw]) || (!limask[x+rw] && lomask[x+rw])) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
                osz++;                           // increment outer edge size
                lres[x]=3;                       // flag pixel as outer edge
            } else {
                gsz++;                           // increment the gradient pixel count
                lres[x]=2;                       // flag pixel as gradient
            }
        }
    }

    rsize[0]=isz;  // fill in our return sizes for edges + fill
    rsize[1]=osz;
    rsize[2]=gsz;
}

static void do_allKeepBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize){
    int x;
    unsigned int isz=0; // inner edge size
    unsigned int osz=0; // outer edge size
    unsigned int gsz=0; // gradient fill area size
    /* Test the four corners */
    /* upper left corner */
    x=t-rw+1;
    // test if inner mask is filled
    if(limask[x]){
        // test if the inner mask is empty underneath or to the right
        if(!limask[x-rw] || !limask[x+1]){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        osz++;                                   // increment outer edge size
        lres[x]=3;                               // flag pixel as outer edge
    }
    /* upper right corner */
    x=t;
    // test if inner mask is filled
    if(limask[x]){
        // test if the inner mask is empty underneath or to the left
        if(!limask[x-rw] || !limask[x-1]){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        osz++;                                   // increment outer edge size
        lres[x]=3;                               // flag pixel as outer edge
    }
    /* lower left corner */
    x=0;
    // test if inner mask is filled
    if(limask[x]){
        // test if inner mask is empty above or to the right
        if(!limask[x+rw] || !limask[x+1]){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        osz++;                                   // increment outer edge size
        lres[x]=3;                               // flag pixel as outer edge
    }
    /* lower right corner */
    x=rw-1;
    // test if inner mask is filled
    if(limask[x]){
        // test if inner mask is empty above or to the left
        if(!limask[x+rw] || !limask[x-1]){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        osz++;                                   // increment outer edge size
        lres[x]=3;                               // flag pixel as outer edge
    }

    /* Test the TOP row of pixels in buffer, except corners */
    for(x= t-1; x>=(t-rw)+2; x--) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if inner mask is empty to the left or to the right
            if(!limask[x-1] || !limask[x+1]) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        }
    }

    /* Test the BOTTOM row of pixels in buffer, except corners */
    for(x= rw-2; x; x--) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if inner mask is empty to the left or to the right
            if(!limask[x-1] || !limask[x+1]) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        }
    }
    /* Test the LEFT edge of pixels in buffer, except corners */
    for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if inner mask is empty underneath or above
            if(!limask[x-rw] || !limask[x+rw]) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        }
    }

    /* Test the RIGHT edge of pixels in buffer, except corners */
    for(x= t-rw; x>rw; x-=rw) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if inner mask is empty underneath or above
            if(!limask[x-rw] || !limask[x+rw]) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        }
    }

    rsize[0]=isz;  // fill in our return sizes for edges + fill
    rsize[1]=osz;
    rsize[2]=gsz;
}

static void do_allBleedBorders(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize){
    int x;
    unsigned int isz=0; // inner edge size
    unsigned int osz=0; // outer edge size
    unsigned int gsz=0; // gradient fill area size
    /* Test the four corners */
    /* upper left corner */
    x=t-rw+1;
    // test if inner mask is filled
    if(limask[x]){
        // test if the inner mask is empty underneath or to the right
        if(!limask[x-rw] || !limask[x+1]){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        if(!lomask[x-rw] || !lomask[x+1]) {      // test if outer mask is empty underneath or to the right
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        } else {
            gsz++;                               // increment the gradient pixel count
            lres[x]=2;                           // flag pixel as gradient
        }
    }
    /* upper right corner */
    x=t;
    // test if inner mask is filled
    if(limask[x]){
        // test if the inner mask is empty underneath or to the left
        if(!limask[x-rw] || !limask[x-1]){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        if(!lomask[x-rw] || !lomask[x-1]) {      // test if outer mask is empty above or to the left
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        } else {
            gsz++;                               // increment the gradient pixel count
            lres[x]=2;                           // flag pixel as gradient
        }
    }
    /* lower left corner */
    x=0;
    // test if inner mask is filled
    if(limask[x]){
        // test if inner mask is empty above or to the right
        if(!limask[x+rw] || !limask[x+1]){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        if(!lomask[x+rw] || !lomask[x+1]) {      // test if outer mask is empty underneath or to the right
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        } else {
            gsz++;                               // increment the gradient pixel count
            lres[x]=2;                           // flag pixel as gradient
        }
    }
    /* lower right corner */
    x=rw-1;
    // test if inner mask is filled
    if(limask[x]){
        // test if inner mask is empty above or to the left
        if(!limask[x+rw] || !limask[x-1]){
            isz++;                               // increment inner edge size
            lres[x]=4;                           // flag pixel as inner edge
        } else {
            res[x]=1.0f;                         // pixel is just part of inner mask, and it's not an edge
        }
    } else if(lomask[x]){                        // inner mask was empty, test if outer mask is filled
        if(!lomask[x+rw] || !lomask[x-1]) {      // test if outer mask is empty underneath or to the left
            osz++;                               // increment outer edge size
            lres[x]=3;                           // flag pixel as outer edge
        } else {
            gsz++;                               // increment the gradient pixel count
            lres[x]=2;                           // flag pixel as gradient
        }
    }
    /* Test the TOP row of pixels in buffer, except corners */
    for(x= t-1; x>=(t-rw)+2; x--) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if inner mask is empty to the left or to the right
            if(!limask[x-1] || !limask[x+1]) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            if(!lomask[x-1] || !lomask[x+1]) {   // test if outer mask is empty to the left or to the right
                osz++;                           // increment outer edge size
                lres[x]=3;                       // flag pixel as outer edge
            } else {
                gsz++;                           // increment the gradient pixel count
                lres[x]=2;                       // flag pixel as gradient
            }
        }
    }

    /* Test the BOTTOM row of pixels in buffer, except corners */
    for(x= rw-2; x; x--) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if inner mask is empty to the left or to the right
            if(!limask[x-1] || !limask[x+1]) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            if(!lomask[x-1] || !lomask[x+1]) {   // test if outer mask is empty to the left or to the right
                osz++;                           // increment outer edge size
                lres[x]=3;                       // flag pixel as outer edge
            } else {
                gsz++;                           // increment the gradient pixel count
                lres[x]=2;                       // flag pixel as gradient
            }
        }
    }
    /* Test the LEFT edge of pixels in buffer, except corners */
    for(x= t-(rw<<1)+1; x>=rw; x-=rw) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if inner mask is empty underneath or above
            if(!limask[x-rw] || !limask[x+rw]) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
                osz++;                           // increment outer edge size
                lres[x]=3;                       // flag pixel as outer edge
            } else {
                gsz++;                           // increment the gradient pixel count
                lres[x]=2;                       // flag pixel as gradient
            }
        }
    }

    /* Test the RIGHT edge of pixels in buffer, except corners */
    for(x= t-rw; x>rw; x-=rw) {
        // test if inner mask is filled
        if(limask[x]) {
            // test if inner mask is empty underneath or above
            if(!limask[x-rw] || !limask[x+rw]) {
                isz++;                           // increment inner edge size
                lres[x]=4;                       // flag pixel as inner edge
            } else {
                res[x]=1.0f;                     // pixel is just part of inner mask, and it's not an edge
            }
        } else if(lomask[x]) {                   // inner mask was empty, test if outer mask is filled
            if(!lomask[x-rw] || !lomask[x+rw]) { // test if outer mask is empty underneath or above
                osz++;                           // increment outer edge size
                lres[x]=3;                       // flag pixel as outer edge
            } else {
                gsz++;                           // increment the gradient pixel count
                lres[x]=2;                       // flag pixel as gradient
            }
        }
    }

    rsize[0]=isz;  // fill in our return sizes for edges + fill
    rsize[1]=osz;
    rsize[2]=gsz;
}

static void do_allEdgeDetection(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize, unsigned int in_isz, unsigned int in_osz, unsigned int in_gsz){
    int x;                             // x = pixel loop counter
    int a;                             // a = pixel loop counter
    int dx;                            // dx = delta x
    int pix_prevRow;                   // pix_prevRow = pixel one row behind the one we are testing in a loop
    int pix_nextRow;                   // pix_nextRow = pixel one row in front of the one we are testing in a loop
    int pix_prevCol;                   // pix_prevCol = pixel one column behind the one we are testing in a loop
    int pix_nextCol;                   // pix_nextCol = pixel one column in front of the one we are testing in a loop
    /* Test all rows between the FIRST and LAST rows, excluding left and right edges */
    for(x= (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
        a=x-2;
        pix_prevRow=a+rw;
        pix_nextRow=a-rw;
        pix_prevCol=a+1;
        pix_nextCol=a-1;
        while(a>dx-2) {
            if(!limask[a]) {             // if the inner mask is empty
                if(lomask[a]) {          // if the outer mask is full
                    /*
                      Next we test all 4 directions around the current pixel: next/prev/up/down
                      The test ensures that the outer mask is empty and that the inner mask
                      is also empty. If both conditions are true for any one of the 4 adjacent pixels
                      then the current pixel is counted as being a true outer edge pixel.
                     */
                    if((!lomask[pix_nextCol] && !limask[pix_nextCol]) || \
                       (!lomask[pix_prevCol] && !limask[pix_prevCol]) || \
                       (!lomask[pix_nextRow] && !limask[pix_nextRow]) || \
                       (!lomask[pix_prevRow] && !limask[pix_prevRow])) {
                        in_osz++;           // increment the outer boundary pixel count
                        lres[a]=3;       // flag pixel as part of outer edge
                    } else {             // it's not a boundary pixel, but it is a gradient pixel
                        in_gsz++;           // increment the gradient pixel count
                        lres[a]=2;       // flag pixel as gradient
                    }
                }

            } else {
                if(!limask[pix_nextCol] || !limask[pix_prevCol] || !limask[pix_nextRow] || !limask[pix_prevRow]) {
                    in_isz++;               // increment the inner boundary pixel count
                    lres[a]=4;           // flag pixel as part of inner edge
                } else {
                    res[a]=1.0f;         // pixel is part of inner mask, but not at an edge
                }
            }
            a--;
            pix_prevRow--;
            pix_nextRow--;
            pix_prevCol--;
            pix_nextCol--;
        }
    }

    rsize[0]=in_isz;  // fill in our return sizes for edges + fill
    rsize[1]=in_osz;
    rsize[2]=in_gsz;
}

static void do_adjacentEdgeDetection(unsigned int t, unsigned int rw, unsigned int *limask, unsigned int *lomask, unsigned int *lres, float *res, unsigned int *rsize, unsigned int in_isz, unsigned int in_osz, unsigned int in_gsz){
    int x;                             // x = pixel loop counter
    int a;                             // a = pixel loop counter
    int dx;                            // dx = delta x
    int pix_prevRow;                   // pix_prevRow = pixel one row behind the one we are testing in a loop
    int pix_nextRow;                   // pix_nextRow = pixel one row in front of the one we are testing in a loop
    int pix_prevCol;                   // pix_prevCol = pixel one column behind the one we are testing in a loop
    int pix_nextCol;                   // pix_nextCol = pixel one column in front of the one we are testing in a loop
    /* Test all rows between the FIRST and LAST rows, excluding left and right edges */
    for(x= (t-rw)+1, dx=x-(rw-2); dx>rw; x-=rw,dx-=rw) {
        a=x-2;
        pix_prevRow=a+rw;
        pix_nextRow=a-rw;
        pix_prevCol=a+1;
        pix_nextCol=a-1;
        while(a>dx-2) {
            if(!limask[a]) {             // if the inner mask is empty
                if(lomask[a]) {          // if the outer mask is full
                    /*
                      Next we test all 4 directions around the current pixel: next/prev/up/down
                      The test ensures that the outer mask is empty and that the inner mask
                      is also empty. If both conditions are true for any one of the 4 adjacent pixels
                      then the current pixel is counted as being a true outer edge pixel.
                     */
                    if((!lomask[pix_nextCol] && !limask[pix_nextCol]) || \
                       (!lomask[pix_prevCol] && !limask[pix_prevCol]) || \
                       (!lomask[pix_nextRow] && !limask[pix_nextRow]) || \
                       (!lomask[pix_prevRow] && !limask[pix_prevRow])) {
                        in_osz++;           // increment the outer boundary pixel count
                        lres[a]=3;       // flag pixel as part of outer edge
                    } else {             // it's not a boundary pixel, but it is a gradient pixel
                        in_gsz++;           // increment the gradient pixel count
                        lres[a]=2;       // flag pixel as gradient
                    }
                }

            } else {
                if((!limask[pix_nextCol] && lomask[pix_nextCol]) || \
                   (!limask[pix_prevCol] && lomask[pix_prevCol]) || \
                   (!limask[pix_nextRow] && lomask[pix_nextRow]) || \
                   (!limask[pix_prevRow] && lomask[pix_prevRow])) {
                    in_isz++;               // increment the inner boundary pixel count
                    lres[a]=4;           // flag pixel as part of inner edge
                } else {
                    res[a]=1.0f;         // pixel is part of inner mask, but not at an edge
                }
            }
            a--;
            pix_prevRow--;              // advance all four "surrounding" pixel pointers
            pix_nextRow--;
            pix_prevCol--;
            pix_nextCol--;
        }
    }

    rsize[0]=in_isz;  // fill in our return sizes for edges + fill
    rsize[1]=in_osz;
    rsize[2]=in_gsz;
}

static void do_createEdgeLocationBuffer(unsigned int t, unsigned int rw, unsigned int *lres, float *res, unsigned short *gbuf, unsigned int *innerEdgeOffset, unsigned int *outerEdgeOffset, unsigned int isz, unsigned int gsz){
    int x;                             // x = pixel loop counter
    int a;                             // a = temporary pixel index buffer loop counter
    unsigned int ud;                   // ud = unscaled edge distance
    unsigned int dmin;                 // dmin = minimun edge distance

    unsigned int rsl;                  // long used for finding fast 1.0/sqrt
    unsigned int gradientFillOffset;
    unsigned int innerAccum=0;         // for looping inner edge pixel indexes, represents current position from offset
    unsigned int outerAccum=0;         // for looping outer edge pixel indexes, represents current position from offset
    unsigned int gradientAccum=0;      // for looping gradient pixel indexes, represents current position from offset
    /*
    Here we compute the size of buffer needed to hold (row,col) coordinates
    for each pixel previously determined to be either gradient, inner edge,
    or outer edge.

    Allocation is done by requesting 4 bytes "sizeof(int)" per pixel, even
    though gbuf[] is declared as unsigned short* (2 bytes) because we don't
    store the pixel indexes, we only store x,y location of pixel in buffer.

    This does make the assumption that x and y can fit in 16 unsigned bits
    so if Blender starts doing renders greater than 65536 in either direction
    this will need to allocate gbuf[] as unsigned int* and allocate 8 bytes
    per flagged pixel.

    In general, the buffer on-screen:

    Example:  9 by 9 pixel block

    . = pixel non-white in both outer and inner mask
    o = pixel white in outer, but not inner mask, adjacent to "." pixel
    g = pixel white in outer, but not inner mask, not adjacent to "." pixel
    i = pixel white in inner mask, adjacent to "g" or "." pixel
    F = pixel white in inner mask, only adjacent to other pixels white in the inner mask


                     .........   <----- pixel #80
                     ..oooo...
                     .oggggo..
                     .oggiggo.
                     .ogiFigo.
                     .oggiggo.
                     .oggggo..
                     ..oooo...
    pixel #00 -----> .........

    gsz = 18   (18 "g" pixels above)
    isz = 4    (4 "i" pixels above)
    osz = 18   (18 "o" pixels above)


    The memory in gbuf[] after filling will look like this:

     gradientFillOffset (0 pixels)                   innerEdgeOffset (18 pixels)    outerEdgeOffset (22 pixels)
    /                                               /                              /
    /                                               /                              /
    |X   Y   X   Y   X   Y   X   Y   >     <X   Y   X   Y   >     <X   Y   X   Y   X   Y   >     <X   Y   X   Y   | <- (x,y)
    +-------------------------------->     <---------------->     <------------------------>     <----------------+
    |0   2   4   6   8   10  12  14  > ... <68  70  72  74  > ... <80  82  84  86  88  90  > ... <152 154 156 158 | <- bytes
    +-------------------------------->     <---------------->     <------------------------>     <----------------+
    |g0  g0  g1  g1  g2  g2  g3  g3  >     <g17 g17 i0  i0  >     <i2  i2  i3  i3  o0  o0  >     <o16 o16 o17 o17 | <- pixel
                                                 /                              /                              /
                                                /                              /                              /
                                               /                              /                              /
      +---------- gradientAccum (18) ---------+      +--- innerAccum (22) ---+      +--- outerAccum (40) ---+


    Ultimately we do need the pixel's memory buffer index to set the output
    pixel color, but it's faster to reconstruct the memory buffer location
    each iteration of the final gradient calculation than it is to deconstruct
    a memory location into x,y pairs each round.
*/


    gradientFillOffset=0;                              // since there are likely "more" of these, put it first. :)
    *innerEdgeOffset=gradientFillOffset+gsz;           // set start of inner edge indexes
    *outerEdgeOffset=(*innerEdgeOffset)+isz;           // set start of outer edge indexes
    /* set the accumulators to correct positions */    // set up some accumulator variables for loops
    gradientAccum = gradientFillOffset;                // each accumulator variable starts at its respective
    innerAccum = *innerEdgeOffset;                     // section's offset so when we start filling, each
    outerAccum = *outerEdgeOffset;                     // section fills up it's allocated space in gbuf
    //uses dmin=row, rsl=col
    for(x=0,dmin=0; x<t; x+=rw,dmin++) {
        for(rsl=0; rsl<rw; rsl++) {
            a=x+rsl;
            if(lres[a]==2) {           // it is a gradient pixel flagged by 2
                ud=gradientAccum<<1;   // double the index to reach correct unsigned short location
                gbuf[ud]=dmin;         // insert pixel's row into gradient pixel location buffer
                gbuf[ud+1]=rsl;        // insert pixel's column into gradient pixel location buffer
                gradientAccum++;       // increment gradient index buffer pointer
            } else if(lres[a]==3) {    // it is an outer edge pixel flagged by 3
                ud=outerAccum<<1;      // double the index to reach correct unsigned short location
                gbuf[ud]=dmin;         // insert pixel's row into outer edge pixel location buffer
                gbuf[ud+1]=rsl;        // insert pixel's column into outer edge pixel location buffer
                outerAccum++;          // increment outer edge index buffer pointer
                res[a]=0.0f;           // set output pixel intensity now since it won't change later
            } else if(lres[a]==4) {    // it is an inner edge pixel flagged by 4
                ud=innerAccum<<1;      // double int index to reach correct unsigned short location
                gbuf[ud]=dmin;         // insert pixel's row into inner edge pixel location buffer
                gbuf[ud+1]=rsl;        // insert pixel's column into inner edge pixel location buffer
                innerAccum++;          // increment inner edge index buffer pointer
                res[a]=1.0f;           // set output pixel intensity now since it won't change later
            }
        }
    }

}

static void do_fillGradientBuffer(unsigned int rw, float *res, unsigned short *gbuf, unsigned int isz, unsigned int osz, unsigned int gsz, unsigned int innerEdgeOffset, unsigned int outerEdgeOffset){
    int x;                             // x = pixel loop counter
    int a;                             // a = temporary pixel index buffer loop counter
    int fsz;                           // size of the frame
    unsigned int rsl;                  // long used for finding fast 1.0/sqrt
    float rsf;                         // float used for finding fast 1.0/sqrt
    const float rsopf = 1.5f;          // constant float used for finding fast 1.0/sqrt

    unsigned int gradientFillOffset;
    unsigned int t;
    unsigned int ud;                   // ud = unscaled edge distance
    unsigned int dmin;                 // dmin = minimun edge distance
    float odist;                       // odist = current outer edge distance
    float idist;                       // idist = current inner edge distance
    int dx;                            // dx = X-delta (used for distance proportion calculation)
    int dy;                            // dy = Y-delta (used for distance proportion calculation)

    /*
     The general algorithm used to color each gradient pixel is:

     1.) Loop through all gradient pixels.
        A.) For each gradient pixel:
            a.) Loop though all outside edge pixels, looking for closest one
                to the gradient pixel we are in.
            b.) Loop through all inside edge pixels, looking for closest one
                to the gradient pixel we are in.
            c.) Find proportion of distance from gradient pixel to inside edge
                pixel compared to sum of distance to inside edge and distance to
                outside edge.

                In an image where:
                . = blank (black) pixels, not covered by inner mask or outer mask
                + = desired gradient pixels, covered only by outer mask
                * = white full mask pixels, covered by at least inner mask

                ...............................
                ...............+++++++++++.....
                ...+O++++++..++++++++++++++....
                ..+++\++++++++++++++++++++.....
                .+++++G+++++++++*******+++.....
                .+++++|+++++++*********+++.....
                .++***I****************+++.....
                .++*******************+++......
                .+++*****************+++.......
                ..+++***************+++........
                ....+++**********+++...........
                ......++++++++++++.............
                ...............................

                    O = outside edge pixel
                     \
                      G = gradient pixel
                      |
                      I = inside edge pixel

                                 __
                      *note that IO does not need to be a straight line, in fact
                       many cases can arise where straight lines do not work
                       correctly.

                                            __       __     __
            d.) Pixel color is assigned as |GO| / ( |GI| + |GO| )

     The implementation does not compute distance, but the reciprocal of the
     distance. This is done to avoid having to compute a square root, as a
     reciprocal square root can be computed faster. Therefore, the code computes
     pixel color as |GI| / (|GI| + |GO|). Since these are reciprocals, GI serves the
     purpose of GO for the proportion calculation.

     For the purposes of the minimun distance comparisons, we only check
     the sums-of-squares against eachother, since they are in the same
     mathematical sort-order as if we did go ahead and take square roots

     Loop through all gradient pixels.
     */

    for(x= gsz-1; x>=0; x--) {
        gradientFillOffset=x<<1;
        t=gbuf[gradientFillOffset];         // calculate column of pixel indexed by gbuf[x]
        fsz=gbuf[gradientFillOffset+1];     // calculate row of pixel indexed by gbuf[x]
        dmin=0xffffffff;                    // reset min distance to edge pixel
        for(a=outerEdgeOffset+osz-1; a>=outerEdgeOffset; a--) {   // loop through all outer edge buffer pixels
            ud=a<<1;
            dy=t-gbuf[ud];                  // set dx to gradient pixel column - outer edge pixel row
            dx=fsz-gbuf[ud+1];              // set dy to gradient pixel row - outer edge pixel column
            ud=dx*dx+dy*dy;                 // compute sum of squares
            if(ud<dmin) {                   // if our new sum of squares is less than the current minimum
                dmin=ud;                    // set a new minimum equal to the new lower value
            }
        }
        odist=(float)(dmin);                     // cast outer min to a float
        rsf=odist*0.5f;                          //
        rsl=*(unsigned int*)&odist;              // use some peculiar properties of the way bits are stored
        rsl=0x5f3759df-(rsl>>1);                 // in floats vs. unsigned ints to compute an approximate
        odist=*(float*)&rsl;                     // reciprocal square root
        odist=odist*(rsopf-(rsf*odist*odist));   // -- ** this line can be iterated for more accuracy ** --
        dmin=0xffffffff;                         // reset min distance to edge pixel
        for(a= innerEdgeOffset+isz-1; a>=innerEdgeOffset; a--) {   // loop through all inside edge pixels
            ud=a<<1;
            dy=t-gbuf[ud];         // compute delta in Y from gradient pixel to inside edge pixel
            dx=fsz-gbuf[ud+1];     // compute delta in X from gradient pixel to inside edge pixel
            ud=dx*dx+dy*dy;        // compute sum of squares
            if(ud<dmin) {          // if our new sum of squares is less than the current minimum we've found
                dmin=ud;           // set a new minimum equal to the new lower value
            }
        }
        idist=(float)(dmin);                     // cast inner min to a float
        rsf=idist*0.5f;                          //
        rsl=*(unsigned int*)&idist;              //
        rsl=0x5f3759df-(rsl>>1);                 // see notes above
        idist=*(float*)&rsl;                     //
        idist=idist*(rsopf-(rsf*idist*idist));   //
        /*
         Note once again that since we are using reciprocals of distance values our
         proportion is already the correct intensity, and does not need to be
         subracted from 1.0 like it would have if we used real distances.
         */

        /*
         Here we reconstruct the pixel's memory location in the CompBuf by
         Pixel Index = Pixel Column + ( Pixel Row * Row Width )
         */
        res[gbuf[gradientFillOffset+1]+(gbuf[gradientFillOffset]*rw)]=(idist/(idist+odist));	//set intensity
    }

}


static void node_composit_exec_doubleedgemask(void *UNUSED(data), bNode *node, bNodeStack **in, bNodeStack **out) {

    float *imask;                      // imask = pointer to inner mask pixel buffer
    float *omask;                      // omask = pointer to outer mask pixel buffer
    float *res;                        // res = pointer to output mask

    unsigned int *lres;                // lres = unsigned int pointer to output pixel buffer (for bit operations)
    unsigned int *limask;              // limask = unsigned int pointer to inner mask (for bit operations)
    unsigned int *lomask;              // lomask = unsigned int pointer to outer mask (for bit operations)

    int rw;                            // rw = pixel row width
    int t;                             // t = total number of pixels in buffer - 1 (used for loop starts)
    int fsz;                           // size of the frame

    unsigned int isz=0;                // size (in pixels) of inside edge pixel index buffer
    unsigned int osz=0;                // size (in pixels) of outside edge pixel index buffer
    unsigned int gsz=0;                // size (in pixels) of gradient pixel index buffer
    unsigned int rsize[3];             // size storage to pass to helper functions
    unsigned int innerEdgeOffset=0;    // offset into final buffer where inner edge pixel indexes start
    unsigned int outerEdgeOffset=0;    // offset into final buffer where outer edge pixel indexes start

    unsigned short *gbuf;              // gradient/inner/outer pixel location index buffer

    CompBuf *cbuf;                     // pointer, will be set to inner mask data
    CompBuf *dbuf;                     // pointer, will be set to outer mask data
    CompBuf *stackbuf;                 // pointer, will get allocated as output buffer

    if(out[0]->hasoutput==0) {         // if the node's output socket is not connected to anything...
        return;                        //     do not execute any further, just exit the node immediately
    }

    if(in[0]->data && in[1]->data) {                    // if both input sockets have some data coming in...
        cbuf= in[0]->data;                              //     get a pointer to the inner mask data
        dbuf= in[1]->data;                              //     get a pointer to the outer mask data
        if(cbuf->type!=CB_VAL || dbuf->type!=CB_VAL) {  // if either input socket has an incorrect data type coming in
            return;                                     //     exit the node immediately
        }

        t=(cbuf->x*cbuf->y)-1;                                // determine size of the frame

        stackbuf= alloc_compbuf(cbuf->x, cbuf->y, CB_VAL, 1); // allocate the output buffer

        imask= cbuf->rect;             // set the inner mask
        omask= dbuf->rect;             // set the outer mask
        res= stackbuf->rect;           // set output pointer
        lres= (unsigned int*)res;      // unsigned int pointer to output buffer (for bit level ops)
        limask=(unsigned int*)imask;   // unsigned int pointer to input mask (for bit level ops)
        lomask=(unsigned int*)omask;   // unsigned int pointer to output mask (for bit level ops)
        rw= cbuf->x;                   // width of a row of pixels


        /*
         The whole buffer is broken up into 4 parts. The four CORNERS, the FIRST and LAST rows, the
         LEFT and RIGHT edges (excluding the corner pixels), and all OTHER rows.
         This allows for quick computation of outer edge pixels where
         a screen edge pixel is marked to be gradient.

         The pixel type (gradient vs inner-edge vs outer-edge) tests change
         depending on the user selected "Inner Edge Mode" and the user selected
         "Buffer Edge Mode" on the node's GUI. There are 4 sets of basically the
         same algorithm:

         1.) Inner Edge -> Adjacent Only
             Buffer Edge -> Keep Inside

         2.) Inner Edge -> Adjacent Only
             Buffer Edge -> Bleed Out

         3.) Inner Edge -> All
             Buffer Edge -> Keep Inside

         4.) Inner Edge -> All
             Buffer Edge -> Bleed Out

         Each version has slightly different criteria for detecting an edge pixel.
         */
        if(node->custom2) {            // if "adjacent only" inner edge mode is turned on
            if(node->custom1) {        // if "keep inside" buffer edge mode is turned on
                do_adjacentKeepBorders(t,rw,limask,lomask,lres,res,rsize);
            }else{                     // "bleed out" buffer edge mode is turned on
                do_adjacentBleedBorders(t,rw,limask,lomask,lres,res,rsize);
            }
            isz=rsize[0];              // set up inner edge, outer edge, and gradient buffer sizes after border pass
            osz=rsize[1];
            gsz=rsize[2];
            // detect edges in all non-border pixels in the buffer
            do_adjacentEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
        }else{                         // "all" inner edge mode is turned on
            if(node->custom1) {        // if "keep inside" buffer edge mode is turned on
                do_allKeepBorders(t,rw,limask,lomask,lres,res,rsize);
            }else{                     // "bleed out" buffer edge mode is turned on
                do_allBleedBorders(t,rw,limask,lomask,lres,res,rsize);
            }
            isz=rsize[0];              // set up inner edge, outer edge, and gradient buffer sizes after border pass
            osz=rsize[1];
            gsz=rsize[2];
            // detect edges in all non-border pixels in the buffer
            do_allEdgeDetection(t,rw,limask,lomask,lres,res,rsize,isz,osz,gsz);
        }

        isz=rsize[0];                  // set edge and gradient buffer sizes once again...
        osz=rsize[1];                  // the sizes in rsize[] have been modified (always increased)
        gsz=rsize[2];                  // by the do_*EdgeDetection() function.

        // quick check for existance of edges in the buffer...
        // if we don't have any one of the three sizes, the other two make no difference visually,
        // so we can just pass the inner input buffer back as output.
        if(!gsz || !isz || !osz) {
            out[0]->data= stackbuf;    // point the node output buffer to our filled buffer
            return;
        }


        fsz=gsz+isz+osz;                                   // calculate size of pixel index buffer needed
        gbuf= MEM_mallocN(fsz*sizeof(int), "grd buf");     // allocate edge/gradient pixel index buffer

        do_createEdgeLocationBuffer(t,rw,lres,res,gbuf,&innerEdgeOffset,&outerEdgeOffset,isz,gsz);
        do_fillGradientBuffer(rw,res,gbuf,isz,osz,gsz,innerEdgeOffset,outerEdgeOffset);

        MEM_freeN(gbuf);          // free the gradient index buffer
        out[0]->data= stackbuf;   // point the node output buffer to our filled buffer
    }
}

void register_node_type_cmp_doubleedgemask(bNodeTreeType *ttype) {
    static bNodeType ntype;      // allocate a node type data structure

    node_type_base(ttype, &ntype, CMP_NODE_DOUBLEEDGEMASK, "Double Edge Mask", NODE_CLASS_OP_FILTER, NODE_OPTIONS);
    node_type_socket_templates(&ntype, cmp_node_doubleedgemask_in, cmp_node_doubleedgemask_out);
    node_type_size(&ntype, 210, 210, 210);
    node_type_exec(&ntype, node_composit_exec_doubleedgemask);

    nodeRegisterType(ttype, &ntype);
}